A note on the edge reconstruction conjecture

Yue Zhao
Department of Mathematics
Ohio State University, Columbus Ohio 43210

Abstract. We proved that if a graph G of minimum valency $\delta = 6\alpha + 5$, with α non-negative integer, can triangulate a surface Σ with $\chi(\Sigma) = -\alpha n + \beta$, where $\beta \in \{0, 1, 2\}$, then G is edge reconstructible.

In this note, all graphs G = (V(G), E(G)) considered will be finite and simple. Let n = |V(G)|, m = |E(G)|. For a vertex $v \in V(G)$, let d(v) be the degree of v. If d(v) = k, we call v a k-vertex and we use n_k to denote the number of k-vertices in G.

Surfaces denoted by Σ in this note are understood to be compact and connected 2-manifolds without boundary. If a graph G with n vertices and m edges has an embedding in a surface Σ of characteristic $\chi(\Sigma)$, and if f is the number of faces of the embedding, the Euler's formula states that

$$n-m+f=\chi(\Sigma).$$

This gives that $m \le 3n - 3\chi(\Sigma)$, with equality holding if and only if G triangulates Σ .

A graph G is *edge reconstructible* if its isomorphic class is uniquely determined by the collection $D(G) = \{G - e; e \in E(G)\}$ of single-edge-deleted subgraphs of G. The edge form of the reconstruction conjecture states that every graph with at least four edges is edge reconstructible. In this note, we give a very simple proof of the following theorem.

Theorem. Let G be a graph of minimum valency $\delta = 6\alpha + 5$ with α non-negative integer. If G can triangulate a surface Σ with $\chi(\Sigma) = -\alpha n + \beta$, where $\beta \in \{0, 1, 2\}$, then G is edge reconstructible.

Before we prove our theorem, we need two lemmas. The first lemma is due to Hoffman[1].

Lemma 1. Let G be a graph of minimum valency δ . Suppose that, for some $k \ge 0$, there is a vertex in G of degree $\delta + k$ adjacent to k + 1 or more vertices of degree δ . Then G is edge reconstructible.

We define $E_{\delta,i} = \{e \in E(G); \text{ one end of } e \text{ is incident to a } \delta\text{-vertex and the other end of } e \text{ is incident to an i-vertex} \}$ and $t_{\delta,i} = |E_{\delta,i}|$, $i > \delta$. By Lemma 1, if a graph G of minimum valency δ is not edge reconstructible, then $t_{\delta,i} \le (i - \delta)n_i$.

The second lemma comes from Lemma 1.4. of [2].

Lemma 2. If graph G of minimum valency δ contains a triangle which is incident to one δ -vertex and two $(\delta + 1)$ -vertices, then G is edge reconstructible.

Throughout the rest of this note, G always stands for a graph of minimum valency δ which can triangulate a surface Σ with $\chi(\Sigma) = -\alpha n + \beta$. Since regular graphs and bidegreed graphs [3] are edge reconstructible, we assume that G is neither a regular graph nor a bidegreed graph. Since G is trivially edge reconstructible from G_{uv} for any two adjacent δ -vertices u and v in G, we will assume that there do not exist any two adjacent δ -vertices in G.

Proof of Theorem. By Lemma 1, we can assume $t_{\delta,i} \leq (i-\delta)n_i$, $i \geq \delta + 1$. Since G triangulates a surface Σ , then $m = 3n - 3\chi(\Sigma) = 3(1+\alpha)n - 3\beta$. Since $2m = \sum_{i=0}^{\Delta} in_i$ and $n = \sum_{i=0}^{\Delta} n_i$, where Δ is the maximum degree of G, we have

$$\begin{split} n_{\delta} &= n_{\delta+2} + ... + [\Delta - (\delta+1)] n_{\Delta} + 6\beta. \\ \text{By } \delta n_{\delta} &= \sum_{i=\delta+1}^{\Delta} t_{\delta,i}, \text{ we have} \\ t_{\delta,\delta+1} &= \delta n_{\delta} - t_{\delta,\delta+2} - ... - t_{\delta,\Delta} \\ &= \delta n_{\delta+2} + ... + \delta [\Delta - (\delta+1)] n_{\Delta} - t_{\delta,\delta+2} - ... - t_{\delta,\Delta} + 6\delta\beta \\ &= (2n_{\delta+2} - t_{\delta,\delta+2}) + ... + [(\Delta - \delta)n_{\Delta} - t_{\delta,\Delta}] + (\delta - 2)n_{\delta+2} + ... + [(\delta - 1)\Delta - \delta^2] n_{\Delta} + 6\delta\beta \\ &\geq \frac{\delta+1}{2} n_{\delta+2} + ... + \frac{\delta+1}{2} [\Delta - (\delta+1)] n_{\Delta} + 3(\delta+1)\beta + \frac{\delta-5}{2} n_{\delta+2} + ... + \frac{1}{2} [\Delta(\delta-3) - \delta^2 + 2\delta + 1] n_{\Delta} + 3(\delta-1)\beta \\ &\geq \frac{\delta+1}{2} n_{\delta} + \frac{\delta-5}{2} n_{\delta+2} + ... + \frac{1}{2} [\Delta(\delta-3) - \delta^2 + 2\delta + 1] n_{\Delta} + 3(\delta-1)\beta \end{split}$$

By $\beta \ge 0$, it is clear that $t_{\delta,\delta+1} \ge \frac{\delta+1}{2} n_{\delta}$. Hence G has at least one δ -vertex which is adjacent to at least $\frac{\delta+1}{2}$ ($\delta+1$)-vertices. Therefore G has a triangle which is incident to one δ -vertex and two ($\delta+1$)-vertices. By Lemma 2, G is edge reconstructible.

As corollary of our theorem, we have

Corollary. Let G be a graph of minimum valency 5. If G can triangulate a surface Σ with $\chi(\Sigma) \ge 0$, then G is edge reconstructible.

REFERENCES

1)B.

- [1] J.A. Bondy, The reconstruction of graphs, preprint, Department of Combinatories and Optimization, University of Waterloo, 1983.
- [2] S. Fiorini and J. Lauri, On the edge reconstruction of graphs which triangulate surfaces, Quart. J Math. Oxford (2), 33 (1982), 191-214.
- [3] W. J. Myrvold, M. N. Ellingham and D. G. Hoffman, Bidegreed graphs are edge reconstructible, J. Graph Theory 11 (1987), 281-302.