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Abstract. Let G be a simple graph with n vertices. Let L(G) denote the line graph
of G. We show that if k'(G) > 2 and if for every pair of nonadjacent vertices v, u €
V(G), d(v) + d(u) > 2n/3 — 2, then for any pair of vertices e, e’ € V(L(G)),
either L(G) has a hamilton (e, €’)-path, or {e, '} is a vertex-cut of L(G). When G
is a triangle-free graph, this bound can be reduced to n/3. These bounds are all best
possible and they partially improve prior results in [J. Graph Theory, 10 (1986), 411-
425] and [Discrete Math. 76 (1989) 95-116].

1. Introduction.

We shall follow the notation of Bondy and Murty [2], unless otherwise stated.
Let G be a graph and e, e’ be two edges of G. A trail in G whose first edge is e
and whose last edge is € is called an (e, e')-trail. An (e,e’)-trail T is called a
spanning (e,e')-trail of G if V(T') = V(G) and if every edge of G is incident
with an internal vertex of T'. A trial T" of G is dominating if G—V (T') is edgeless.
For convenience, the graph K is regarded as having a closed trail.

The line graph of G, denoted by L(G) , has E(G) as its vertex set in which two
vertices are adjacent in L( @) if and only if the corresponding edges are adjacent
inG.

Theorem A. (Harary and Nash-Williams [12]) Let G be a graph with at least

three edges. Then G has a dominating closed trial if and only if L(G) is hamil-
tonian.

Theorem B. (Lesniak-Foster and Williamson [13], Zhan [14]) Let G be a graph
and let e e’ be in E(G). If G has a spanning (e, €')-trail, then L(G) has a
spanning (e, e') -path.

The definition of spanning (e, e’)-trails was used in [9]. We shall say a few
words about this definition. Let G be the 4-cycle and e, ¢’ be two nonadjacent
edges in G. Then G has an (e, ¢')-trail that is spanning in G but L(G) does not
have a hamilton (e, e’) -path. This is why we define a spanning (e, ') -trail in the
way above.

If for every pair of vertices u, v of G, G has a spanning (u, v) -path, then G is
said to be kamiltonian connected . With the help of Theorem B, Zhan showed the
following:
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Theorem C. (Zhan [14]) If «'(G) > 4, then for every pair of edges e,e' €
E(G), G has a spanning (e, ') -trail and so L(G) is hamiltonian connected.

If X C E(Q) is an edge-cut such that at least two components of G — X
have edges, then X is called an essential edge-cut . It is easy to see that if {e, e'}
is an essential edge-cut of G, then G cannot have any spanning (e, ¢')-trails. It
has been noted by Catlin [7], (and by Zhan [14], for the case when k = 2), that
G is 2 k-edge-connected if and only if |[E(G)| > k and for any k-subset X C
E(G),G - X has k edge-disjoint spanning trees. In particular, 4-edge-connected
graphs always have 2 edge-disjoint spanning trees. Thus, the following improves
Theorem C:

Theorem D. (Catlinand Lai 9]) Let G be a graph with 2 edge-disjoint spanning
trees. For two edges e,e' € E(G), one of the following holds:
(i) @ has a spanning (e, e') -trail;
(ii) {e,e'} is an essential edge-cut of G.

2. Main results.
The proofs of the following theorems appear in the last section.

Theorem 1. Let G be asimple graph with |V (G)| = n > 27 and with &'(G) >
2. If for every pair of nonadjacent vertices u,v € V(G),

d(u) + d(v) > 2—" -2, ¢)]

then for every pair of edges e, e’ € E(G), exactly one of the following holds:
(i) G has a spanning (e, €') -trail;
(ii) {e,e'} is an essential edge-cut of G.

Corollary 1A. Let G satisfy the hypothesis of Theorem 1. Then either L(G)
has a 2-vertex-cut or L(QG) is hamiltonian connected.

Corollary 1B. (Catlin [4] and Benhocine, Clark, Koler, and Veldman [1]) Let G
be a 2-edge-connected simple graph with n= |V(G) | > 21. If for every pair of
nonadjacent vertices u,v € V(G),

2
d(u) + d(v) > T"—z, @
then L(QG) is hamiltonian.

Proof: The truth of Corollary 1A follows immediately from Theorem B and Theo-
rem 1. Call an end-block of G amaximal 2-connected subgraph H such that either
H = G or H contains exactly one cut-vertex of G. If G satisfies the conclusion
of Theorem 1 but L(G) is not hamiltonian, then it would follow that every pair
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of adjacent edges are incident with a cut-vertex of G, which leads to an obvious
contradiction, since in an end block of G, one can always find two adjacent edges
that are not both incident with a cut-vertex of G. Thus, Corollary 1B follows from
Theorem 1 and Theorem A. |

In fact, it was proved in [1] and in [4] that G has a spanning closed trail with
[V(G)| > 4 and with a weaker lower bound (2 »+ 1) /3, and in [8], Catlin showed
that when n = |V(G)| > 20, then bound in (2) can be lowered (2n— 9) /5.

Theorem 2. Let G be a 2-edge-connected triangle-free simple graph with n >
33 vertices. If for every pair of distinct nonadjacent vertices u,v € V(G&),

d(v) +d(v) > T, 3)

then for every pair of edges e, e' € E(G), exactly one of the following holds:
(i) G has aspanning (e, ') -trail;
(ii) {e,e'} is an essential edge-cut of G.

Corollary 2. Let G be a graph satistying the hypothesis of Theorem 2, then
L(G) is either hamiltonian connected or has a vertex-cut of size 2.

Theorem 1, Theorem 2, and Corollary 2, are best possible in some sense. Let
s > 10 be an integer, and let G(s) and G(s, ) be defined as follows.

‘ : ’

Figure 1: G(s) or G(s, s) with edges e and ¢'.

For G(s), each circle in Figure 1 denotes a complete subgraph K, and a line
joining two circles denotes a single edge joining two vertices in two distinct K,’s.
Let n = |[V(G(s))| = 3s. Apparently for every pair of nonadjacent u, v €
V(G(s)),d(v)+d(u) > (2n)/3—2. Butforthe given edges e, €', neither (i) nor
(ii) of Theorem 1 holds. We then obtain G( s, s) by replacing each circle in Figure
1 by a complete bipartite subgraph K, , and by arranging the 3 edges between the
3 K,,’s so that the resulting graph is a bipartite one. Letn = [V(G(s,3))| =
6 s this time. Then for every pair of nonadjacent u, v € V(G(s,s)), d(v) +
d(u) > n/3. But for the given edges e, €, neither (i) nor (ii) of Theorem 2, nor
the conclusion of Corollary 2, holds.
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We shall also consider the computational complexity of the following decision
problem: given a graph G and a pair of edges e, €', does G have a spanning (e, ') -
trial?

Theorem 3. The problem to determine if G has a spanning (e, €') -trail is NP-
complete.

3. Collapsible and reduced graphs.

LetGbeagraphandlet X C E(G). The contraction G/X is the graph obtained
from G by identifying the ends of each edge of X and deleting the resulting loops.
If H is a subgraph of G, then we use G/ H for G/E( H).

Let O(G) denote the set of vertices of odd degree in G. A graph G is eulerian
if G is connected and O(G) = 0. A graph is supereulerian if it has a spanning
eulerian subgraph. Let R C V(G) be a subset with even cardinality. An R-
subgraph of G is a subgraph I of G such that G — E(T") is connected and such
that O(I") = R. A graph G is collapsible if for every R C V(G) with |R|
even, G has an R-subgraph. Note that by definition, K is both collapsible and
supereulerian. In [5], Catlin proved that every graph G has a unique collection
of maximal collapsible subgraphs, say H;, H,,... , H.. Thus, the graph G' =
G/(UL, E(H;)) is unique, and is called the reduction of G. A vertex v in the
reduction of G is trivial if its preimage in G under the contraction is a K, in G.
A graph is reduced if it is the reduction of some graph.

Theorem E. (Catlin [5]) Let G be a graph, and let F(G) denote the minimum
number of extra edges that must be added to G so that the resulting graph has 2
edge-disjoint spanning rees.

(i) Let H be a collapsible subgraph of G. Then G is supereulerian if and
only if G/ H is supereulerian; and G is collapsible if and only if G/ H is
collapsible.

(ii) G is reduced if and only if G has no nontrivial collapsible subgraphs; if
and only if the reduction of G is G itself. In particular, a reduced graph
does not contain 2-cycles and 3-cycles.

(ili) G is collapsible if and only if the reduction of G is K.

(iv) If G has 2 edge-disjoint spanning trees, that is F(GQ) = 0, then G is col-

lapsible.

(v) If G is reduced, then §(G) < 3.

(vi) If @ isreduced and if F(G) = 1, then G = K.

In [9], it is noted that if G is reduced, then
F(G) =2|V(®)| - |B(®)]-2. @

The following result, conjectured by Catlin in [3] and recently proved by Catlin,
Han, and Lai, will be applied in this paper.
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Theorem F. (Catlin, Han, and Lai [10]) If G is a connected reduced graph with
F(G) < 2, then either G = K, or G = K>, or there is an integer t > 1 such
that G = Kz’g.

4. The proofs.

The following notation and terminology will be used in this section. For a graph
G and an integer ¢ > 1, D;(G) denotes the number of vertices of degree 1 in G.

We say that an edge e € E(QG) is subdivided when it is replaced by a path
of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting
graph. This process is called subdividing e. For a graph G and distinct edges e,
e € E(G), let G(e,e') denote the graph obtained from G by subdividing both e
and ¢’. Thus,

V(G(e, ")) —V(G) = {v(e),v(e)}.

The reason for introducing G(e, ) can be found in Lemma 1 below.

Lemma 1. For agraph G and e,e' € E(G), G has a spanning (e, e') -trail if
and only if either G(e, e') has a spanning (v(e),v(e'))-trail, or both e and €'
are incident with the same vertex v in G such that G(e,e') — v has a spanning
(v(e),v(e"))-trail.

Proof: The proof is straightforward and so is omitted. [ |
Lemma 2. Let G be a reduced graph with n vertices. Then

3
2F(G) +4 < Y (4 —)|D(G)|. )

i=1

Proof: This follows by counting the incidences of G and by (4). |

Lemma 3. Let G be a graph and let G' be the reduction of G. For vertices u,

v € V(QG), define v', v' to be vertices in G' whose preimages contain u and v,
respectively. (Note even v # v, it may still happen that v' = v'). Then G has a
spanning (u,v) -trail if and only if G' has a spanning (', v') -trail.

Proof: Let u, v, v/, v/, and G satisfy the hypothesis of Lemma 3. Let z be a
vertex not in V(G). Define a new graph H from G with V(H) = V(G) U {z}
and E(H) = E(G) U {uz, zv}. Then G has a spanning (u, v)-trail if and only
if H is supereulerian, if and only if the reduction of H is supereulerian (by (i) of
Theorem E), if and only if G’ has a spanning ( v/, v') -trail. |

In the proof below we often need to go back and forth from subgraphs L'
of G(e, e') and subgraphs L of G. For any subgraph L' of G(e,e’) such that
dp(v(e)) = 2 whenever v(e) € V(L') (dp(v(e') = 2 whenever v(e') €
V(L')), let L denote the corresponding subgraph of G such that L = L' if V(L')
N{v(e),v(e’)} = @, and L is the graph obtained from L' by contracting exactly
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one edge incident with v(e) if v(e) € V(L') (with v(e') if v(e') € V(L')). We
say that L is obtained from L' by undoing the subdivision. For any v € V(Q),
the neighborhood of v in G, denoted by N(v), consists of the vertices in G that
are adjacent to v.

Proof of Theorem 1: Suppose that G, e, €' satisfy the hypothesis of Theorem
1. Let G" denote the reduction of G(e,e"). If G(e,e€') is collapsible, that is
G" = K, then by Lemma 3, G(e, e') has a spanning (v(e), v(e'))-trail and so
(i) of Theorem 1 follows from Lemma 1. Hence, we assume thatG" # K. Letw,
w' denote the vertices in G” whose preimages contain v(e), v(e'), respectively.
Thus, when w and w' are trivial vertices, w = v(e) and w' = v(e').

By x'(G) > 2, Di(G") = 8. By '(G) > 2 and by (vi) of Theorem E,
F(G") > 2, and so by Lemma 2, |D,(G") U D3(G")| > 4, where equality
holds only if D3(G") = .

Claim 1: Let vip € D2(G") U D3(G") be a nontrivial vertex with preimage
H' in G(e,¢€'), and let H be the subgraph of G obtained from H' by undoing
the subdivision. If Dy(G") U D3(G") has a trivial vertex v/ ¢ {w,w'}, then
[V(H)| > 2n/3 — 5. Moreover, if vy & {w,w'}, then |V (H)| > 2n/3 — 3.
Note that H is a simple collapsible subgraph of G and so |V ( H)| > 3. Choose
avertexv € V(H) such that vo’ ¢ E(G) and v is incident with at most one edge
in E(G"). By w' ¢ E(G), [V(H)| > d(v) and so Claim 1 follows from (1).

Claim 2: If D,(G") U D3(G") has a trivial vertex not in {v(e),v(e’)}, then
D, (G") U D3(G") has at most one nontrivial vertex.
Claim 2 follows from Claim 1 and the hypothesis of n > 27.

Claim 3: D(G") U D3(G") —{w,w'} cannot have 3 trivial vertices.

By (ii) of Theorem E, G" is reduced and so has no cycles of length less than 4.
Thus, if D, (G") UD3(G") has 3 trivial vertices other than v(e), v(e'), then two
of them must be nonadjacent and so by (1), n < 12, contrary to » > 27. This
proves Claim 3.

Claim 4: D,(G") has at most 2 nontrivial vertices.

Suppose that D, (G") has three nontrivial vertices v{, v}, vj whose preimages
in G(e,€') are Hi, H;, and H}, respectively. Let H; denote the subgraph of G
obtained from H; by undoing the subdivision and let n; = |V ( H;)|, (1 < i < 3).
Since v; € D2(G"), each H; has a vertex v; that not incident with edges in G”
and so by (1),

2
o+ > 2+ d(v) + d(v) > ?" ©)

Thus,2n > 2 33, m > 2n, a contradiction. This proves Claim 4.

If F(G") < 2, then by Theorem F and by x'(G') > 2, there is some integer
t > 2 such that G" = K3 . Assume firstthatt = 2. By Lemma 1 and Lemma 3,
G has a spanning (e, e’)-trail unless v(e) and v(e’) are contained in the preimages
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of two distinct nonadjacent vertices of w, w’ G". In the latter case, at least one of
the two vertices z and y in V(G") — {w, w'} is nontrivial by (1). If both z and y
are nontrivial, then by Claim 4, w and w' must be trivial, whence (ii) of Theorem
1 holds. If z or y is trivial, then by Claim 2, both w and w/' are trivial, whence G
has a spanning (e, €') -trail.

Thus, we assume that ¢t > 3. By Claim 4 and by ¢t > 3, D,(G") has at
least t — 2 trivial vertices. If D,(G") — {w,w'} has a trivial vertex, then by
Claim 2, D,(G") U D3(G") has at most one nontrivial vertex. Thus, ift > 5,
then D, (G") must have at least two trivial vertices « and v (say), and so by (1),
4 = d(u) + d(v) > (2n+ 1)/3, contrary to the assumption that n > 27.
Similarly, if ¢ = 4, then w, w' must be two trivial vertices in D, (G"), and so
G" has a spanning (w, w')-trail, which implies (i) of Theorem 1 by Lemma 1 and
Lemma 3.

Therefore, we assume that ¢t = 3 and that G” does not have a spanning (w, w') -
trail, whence w and w’ cannot be both in D, (G"). Hence, we assume that w €
D3(G"), and so w is nontrivial, and that either w' = w or w' € Dy (G"). If
D2(G") — {w'} has a trivial vertex, then by Claim 2 and w € D3(G") being
nontrivial, D, (G") —{w'} must have 2 trivial vertices, contrary to the assumption
that n > 27, by (1). Note that by Claim 4, if w = w’, then D, (G") must have a
trivial vertex, which would lead to the same contradiction. It follows thatw’ € D,
and there are two nontrivial vertices vy, v2 € D,(G"). Let v3 denote the vertex
in D3(G") — {w}. Let H; (1 < i < 3) denote the preimages of v; in G, and
let Ho denote the subgraph of G obtained from the preimage of w in G(e, e') by
undoing the subdivision. If v3 is trivial, then by Claim 1, we have

n—1> [V(Ho)|+ [V(H)|+ |V(H2)| > 2n/3 —5+4n/3 —6=2n—11,

and so n < 10, a contradiction. Thus, v3 is also nontrivial. By choosing u; €
V ( H;) such that u; is incident with as few edges in EF(G") as possible, we have

by (1)

[V(HD)| + [V(H2)| 2 d(u1) + d(u2) > 23—n ~2and

[V(Ho)| + [V(H3)| > d(uo) + d(us) > 23—" _2-3,

and son > E?ao [V(H;)| > 4n/3 — 7. Itfollows that n < 21, a contradiction.
Hence, we may assume that F(G") > 3 and so by Lemma 2, |D2(G") U
D3(G")| > 5 where equality holds only if D3 (G") = 0.
Case 1: D,(G") U D3 (G") has at least 4 nontrivial vertices.
Let H;,(1 < i < 4) denote the preimages in G(e, e’) of the 4 nontrivial
vertives in D, (G") U D3(G"). Let H; denote the subgraph of G obtained from
H! by undoing the subdivision. Simce G is simple, |V ( H;)| > 3, and so for H;,
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Hj, there are vertices v; € V(H;) and v; € V(H;) such that v;v; ¢ E(G) and
each of v; and v; is incident with at most one edge in E(G"). It follows by (1)
that
4 2n 8n .
2n222|V(H,-)| >4 (T_Z) = T_3,

i=1
and so »n < 12, a contradiction.

Case 2: D,(G") U D3(G") has exactly 3 nontrivial vertices.

By Claim 4, we must have D;(G") # 0. Thus, |[D,(G") U D3(G")| > 6 and
so there is a trivial vertex v € D, (G")U D3 (G") — {w, w'}. Now the conclusion
of Claim 2 contradicts the hypothesis of Case 2.

Case 3: D,(G") U D3(G") has at most two nontrivial vertices.

By Lemma 2 and by F(G") > 3, |D2(G") U D3(G")| > 5. By Claim 2 and
Claim 3, we must have D3 (G") = 0 and v(e), v(e') € D2(G"), and D, (G")
must have exactly one nontrivial vertex and two trivial vertices other than v(e),
v(e'). Let v, u be the two trivial vertices in D2 (G") — {v(e),v(e’) }. It follows
by (1) and n > 27 that

uv € E(G). @)

If V(G") = D2(G"), then G" is a 5-cycle and so (ii) of Theorem 1 must hold.
Otherwise, let H be the preimage in G of the unique nontrivial vertex in D, (G").
By Claim 1, |[V(H)| > 2n/3 — 3. Pick a vertex y that is in the preimage of
some vertex in V(G") — D2(G"). We may assume that yu € E(G) (or yv ¢
E(Q)), since that yu and yv are both in E(G") implies that G" has a 3-cycle by
(7), contrary to (ii) of Theorem E. By (1) and by yu ¢ E(G), we have d(y) >
2n/3 — 4. On the other hand, since |[N(y) N V(H)| < 1, one has d(y) <
n— (|[V(H)| — 1) — 2 < n/3 + 2. This, together with d(y) > 2n/3 — 4,
implies that n < 18, a contradiction.

This completes the proof of Theorem 1. 1
Proof of Theorem 2: The proof of Theorem 2 is analogous to that of Theorem 1
and so it is omitted. |

Proof of Theorem 3: Consider a special case of the problem when G is a cubic
graph. Let e, € be given. Note that when e, €' are not adjacent in G, G has a
spanning (e, e') -trail if and only if G(e, e’) has a spanning (v(e), v(e'))-trail by
Lemma 1. If e, €' are not adjacent, then define G* to be the graph obtained from
G(e, €') as indicated in Figure 2. If e, ¢’ are adjacent in G, then define G* = G.
Thus, for any given e, &' € E(QG), G has a spanning (e, e')-trail if and only if
G™ is hamiltonian. In Theorem 2.2 of [11], Garey et al . show that the problem of
determining if an undirected 3-regular graph is hamiltonian is NP-complete. Thus,
this NP-complete problem reduces to a special case of the problem of determining
if a graph has a spanning (e, e')-trail. |
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Figure 2: The graphs G(e, ¢') and G* with e, ¢’ nonadjacent.
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