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The k-packing number of an m x n checkerboard, Pi(Ppm,»), is the max-
imum number of checkers that can be placed on an m x n board so at least
k squares separate each pair of checkers (Hare and Hare [2]). This is also
called the k-packing number of an m X n complete grid graph. It is easy to
show the 1-packing number of an m x n board is

Pi(Pp,n) = [mn/2].

(1)

Let a ob be the number ! such that I = a (mod b) with 0 < ! < b. Fisher
[1] showed the 2-packing number of an m X n board when m < n is:

if m € {1,2,3}
fm=4andno7#1
ifm=4andnoT7=1
if (m,n) = (7,7)
if m € {5,6,7} and (m,n) # (7,7)
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if m > 8 and (m, n) # (8,10)

(2)

The paper examines the 3-packing number of an m xn board (see Figure
1). We find P3(Pp, ) when m < 18. We show that for m < n with m < 18,
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Figure 1 — Legal 3-Packings. Checkers in a 3-packing must be
separated by at least three squares (horizontally or vertically).

Equations (2) and (3) qualitatively differ in two ways. First, the 3-packing
number depends on the parity of m and n. Second, there seems to be a
growing (as m grows) list of exceptions to the general rule for 3-packing.
These exceptions prevented us from finding P3(Pp, ) for all m and n.

1 Preliminary Calculations

This section gives three results needed to prove (3).

Lemma 1. For all j, m and n with0 < j < n and m > 0, P3(Pp,,) <
P3(Pm,n—;j) + P3(Pm,;).
Proof. A maximal 3-packing of P, has at most P3(Pp ,—;) checkers in

the first n — j columns and at most P3(Pp,,;) checkers in the last j columns.
]

Lemma 2. For all m > 0 and n > 0,

[ [(m+2)n‘|‘| ifno(m+1)
m+1 s odd ifm
18 even

+2[ mn ifno(m+1)
P3(Pm,n) > 9 [ 3 |Vm+1” is even

=2 12] gm

Proof. Since P3(Pp,,,) is the maximum number of checkers in a 3-packing,
any 3-packing of Py, ,, is a lower bound for P3(Py, ,). Figure 2 proves the
result when m is odd. Figure 3 proves the result when m is even. O

We also needed P3(Ppn,n) for a number of small cases. Proving these
“by hand” would have been very tedious. Instead, a computer program
was used that found P3(Pp,,,) with a branch and bound algorithm which
bounded with previous values of P3(Pp ). Lemma 3 summarizes these
results.

Lemma 3: Equation (3) holds when m < 18 and n < 24.
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Figure 2 - A 3-packing. On P,,, this 3-packing has
[m/2] [n/2] /2 checkers.
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For clarity, the proof of (3) is given as 18 theorems (one each for m

1,2,3,...,18). When m < 10, the proofs are straightforward. When m >

Figure 3 — 3-packings of P,. for Even m. This shows
3-packings of Ppn,, when m is even (only shown when m is 8
and 10) which has more checkers than the 3-packing in Figure

2. It has ’Vﬂ [M.H checkers if n o (m + 1) is odd, and
8 m+1

I'm ;— 2 I'mm: : ]] checkers if no(m+1) is even. The diagonal “fault
lines” show boundaries between 3-packings like those in Figure 2.

Verification of (3)

10, there are “exceptions” where there is a 3-packing with more checkers
than the 3-packings of Figure 2 or Figure 3.

Theorem 1. For alln > 0, P3(Py») = [n/4].
Proof. Lemma 3 gives the results for n < 5. For n > 5, assume it holds for
n — 4. Then P3(Py,) < Ps(Pi) + Ps(Pra—a) =1+ [(n— 4)/4] = [n/4].
Lemma 2 shows P5(P,,) > [n/4]. The result follows by induction. O
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Theorem 2. For alln > 0, P3(P,,) = [n/3].

Proof. Lemma 3 gives the results for n < 4. For n > 4, assume it holds for
n — 3. Then P3(P2,n) S P3(P2,3) + P3(P2,n_3) =1+ [(n - 3)/3] = |'n/3].
Lemma 2 shows P3(P,,) > [n/3]. The result follows by induction. O

Theorem 3. For alln > 0, P3(P;3,) = [n/2].

Proof. Lemma 3 gives the results for n < 3. For n > 3, assume it holds for
n — 2. Then P3(Ps3,) < P3(P33) + P3(P3n-2) = [(n —2)/2] + 1 = [n/2].
Lemma 2 shows P3(P3 ) > [n/2]. The result follows by induction. O

Theorem 4. For alln > 0, P3(P,,,) = [3n/5].
Proof. Lemma 3 gives the results for n < 6. For n > 6, assume it holds for

n—>5. Then P3(P4‘n) < P3(P4’5)+P3(P4,n_5) =3+ [3(1& - 5)/5] = [3n/5]
Lemma 2 shows P3(Ps,) > [3n/5]. The result follows by induction. O

Theorem 5. For alln > 0, P3(Ps,) = [1.5[n/2]].

Proof. Lemma 3 gives the results for n < 5. For n > 5, assume it holds
for n—4. Then P3(Ps,) < P3(Ps,4)+ P3(Ps,n-4) =3+ [1.5[(n—4)/2]] =
[1.6 [n/2]]. Lemma 2 shows this is equality. The result follows by induc-
tion. O

[6n/T]+1 ifnoT=1

Theorem 6. For alln > 0, P3(Psp) = { [6n,/7] otherwise

Proof. Lemma 3 gives the results for n < 8. For n > 8, assume it holds
for n — 7. Then

[6(n—T7)/T]+1 ifnoT7=1

Ps(Pe,n) < Ps(Pe,7) + Ps(Po,n-1) = 6 + { [6(n—17)/T] otherwise

_J[6n/T1+1 ifno7=1
1 [6n/7] otherwise.

Lemma 2 shows this is equality. The result follows by induction. O
Theorem 7. For alln > 0, P3(P;,) = {"’+ 1 ifn= 2,’4’ or n is odd
’ n otherwise.

Proof. Lemma 3 gives the results for n < 11. For n > 11, assume it holds
for n — 6. Then

if n is odd

—-6+4+1
P3(Pr.n) < P3(Pz,6) + P3(Prn-6) = 6 + {:_ 6 + otherwise

:{n+l if n is odd

n otherwise.
Lemma 2 shows this is equality. The result follows by induction. O
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[10n/9]+1 ifno9=6,8

Theorem 8. For alln >0, P3(Pgp) = { [10n/9] otherwise.

Proof. Lemma 3 gives the results for n < 10. For n > 10, assume it holds
for n — 9. Then
P3(Pg.n) < P3(Ps,9) + P3(Ps,n-9)

— 104 [10(n—9)/9]+1 ifno9=6,8
- [10(n — 9)/9] otherwise
_ [[10n/9]+1 ifno9=6,8
~ 1 [10n/9] otherwise.
Lemma 2 shows this is equality. The result follows by induction. O

ifn=4

6
Theorem 9. For alln > 0, P3(Pon) = { [2.5[n/2]] otherwise.

Proof. Lemma 3 gives the results for n < 13. For n > 13, assume it holds
for n—8. Then P3(Py ) < P3(Po,s)+ P3(Pon-8) = 10+[2.5 [(n — 8)/2]] =
[2.5[n/2]]. Lemma 2 shows this is equality. The result follows by induc-
tion. O

Theorem 10. For alln > 0,

_ [ [15n/11]+1 ifn=20rnol1=1,8,10
Py(Pion) = { [15n/11] otherwise.

Proof. Lemma 3 gives the results for n < 14. For n > 14, assume it holds
for n — 11. Then

P3(Pyo,n) < P3(Pi0,11) + P3(Pron—11)

_ 154 [18(r—11)/111+1 ifnoll=1,8,10
[15(n — 11)/11] otherwise.

_[M15n/11]+1 ifnoll=1,8,10
T | [15n/11] otherwise.

Lemma 2 shows this is equality. The result follows by induction. O

Theorem 11. For alln > 0,

_ [3[n/2]+1 ifn=24,68,16,18
Po(Piin) = { 3[n/2] otherwise.

Proof. Lemma 3 gives the results for n < 24 (a maximal 3-packing for
n = 16 and n = 18 is given by Figure 4). For n = 26 and n = 28,
P3(Py1,26) < P3(Pi1,12) + P3(Piy1.1a) = 18 + 21 = 39 and P3(Piy,28) <
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2P3(Py1,14) = 2+ 21 = 42. Lemma 2 shows these are equalities. For n > 24
with n # 26,28, assume the result holds for n — 10. Then P3(Py;,,) <
P3(P]1,10)+P3(P11,n_10) = 1543 [(n - 10)/2] =3 [n/2] Lemma 2 shows
P3(Py1,n) > 3[n/2]. The results follow by induction. O
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Figure 4 — Maximal 3-packings of 11 x 16 and 11 x 18 Boards.
Above is a maximal 3-packing of an 11 x 18 board. The first 16
columns is a maximal 3-packing of an 11 x 16 board.

Theorem 12. For alln > 0,
, _ [[21n/13]+1 ifn=40rnol3=1,3,6,8, 10,12
Py(Pra,n) = { [21n/13] otherwise.

Proof. Lemma 3 gives the results for n < 18. For n > 18, assume it holds
for n — 13. Then

P3(P12,n) < P3(Py2,13) + P3(Pi2,n—13)

914 { [21(n—13)/13] +1 ifno13=1,3,6,8,10,12
- [21(n — 13)/13] otherwise

[ [21n/13]+1 ifno13=1,3,86,8,10,12
1 [21n/13] otherwise.

Lemma 2 shows this is equality. The result follows by induction. O

Theorem 13. For alln > 0,
_[35[m/2]]+1 ifn=24,6,8,20
Py(Pig,n) = { [3.5 [n/2]] otherwise.

Proof. Lemma 3 gives the results for n < 24. Figure 5 give a maximal
3-packing for n = 20. For n = 32, P3(P13,32) S 2P3(P13’16) =2-28 = 56
and Lemma 2 gives P3(Pj333) > 56. For n > 24 with n # 32, assume the
result holds for n — 12. Then

Py(Py3,n) < P3(Pi3,12) + Ps(Pizn—12)
— 214 [3.5 [(n — 12)/2]] = [3.5 [n/2]] -

Lemma 2 shows this is equality. The result follows by induction. O
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Figure 5 — Maximal 3-packing of a 13 x 20 Board.
Theorem 14, For alln > 0,

2n+1 ifn=24
Py(Pryn) = { [1.75[2E2]] ifno15 is odd
2 IT"’l] otherwise.

Proof. Lemma 3 gives the results for n < 20. For n > 20, assume it holds
for n — 15. Then

P3(P14,n) < P3(Py4,15) + P3(Pia,n—15)

[1.75 [16(n — 15)/15]] if no 15 is odd
2 [14(n — 15)/15] otherwise

_ J [1.75[16n/15]] if no 15 is odd
T 1 2[14n/15] otherwise.

—_-28+{

Lemma 2 shows this is an equality. The result follows by induction. O

Theorem 15. For alln > 0,

m+2 ifn=68
Py(Pisn)={ 2n+1 ifn=2,4,10,12,20,22,24,26,38, 40
4 [n/2] otherwise.

Proof. Lemma 3 gives the results for n < 24. We also have P3(Py5,26) <
P3(Py5,10) + P3(Pis,16) = 21 + 32 = 53, P3(Pis34) < Ps(Pis,i6) +
P3(P15’18) = 32+ 36 = 68, P3(P15,36) S 2P3(P15,18) = 2-36 = 72,
P3(Pi5,38) < P3(Pys,16) + P3(Pis22) = 32 + 45 = 77, P3(Pi540) <
P3(Py5,16) + P3(Pys24) = 32 + 49 = 81, P3(Pis52) < P3(Pis,16) +
2133(P15,18) = 32+2'36 = 104, and P3(P15,54) S 3P3(P15,18) = 3-36 = 108.
Lemma 2 or Figure 6 show these inequalities are equalities. For n > 24 with
n ¢ {26, 34, 36, 38,40, 52,54}, assume the result holds for n — 14. Then
P3(Pi5.0) < Ps(Pis.14) + P3(Pisn—14) = 28 + 4[(n — 14)/2] = 4[n/2].
Lemma 2 shows this is an equality. The result follows by induction. O
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Figure 8 — Maximal 3-packings of 15 x 20, 15 x 22, 15 x 24,
15 x 26, 15 x 38 and 15 x 40 Boards. The first n columns are a
maximal 3-packing of a 15 x n board where n = 20, 22, 24, 26, 38
and 40.
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Theorem 18. For alln > 0,

Py(Pie,n) = 2[18n/17] tf nolT is odd 1 ifn=2,4,11
A16n) = [2.25 [16n/17]]  otherwise 0 otherwise.

Proof. Lemma 3 gives the results for n < 24. For n = 28, P3(Py¢,28) <
P3(P16,13) + P3(P16‘]5) = 28 4+ 32 = 60. Lemma 2 shows P3(P16,28) > 60.
For n > 24 with n # 28, assume the result holds for n — 17. Then

P3(Py6,n) < P3(P16,17) + P3(Pi6,n—17)

— 364+ 2[18(n — 17)/17] if no17is odd
- [2.25 [16(n — 17)/17]] otherwise

_ [ 2[18n/1T7] if no 17 is odd
1 [2.25[16n/17]] otherwise.

Lemma 2 shows this is equality. The result follows by induction. O
Theorem 17. For alln > 0,

2.25n42  ifn=4,8
Py(Pi7n) = { [2.25n] +1 ifn=2,6,10,12,24,28,44
[4.5[n/2]] otherwise.

Proof. Lemma 3 gives the results for n < 24. We also have P3(P;7,26) <
P3(Py7,6)+P3(Pi17,20) = 15+45 = 60, P3(Py7,28) < P3(Pi7,12)+Ps(P17,16) =
28 + 36 = 64, P3(Pi17,40) < 2P3(Pi7,20) = 245 = 90, P3(Pi7,42) <
P3(Pi7,20) + P3(Pi7,22) = 45 + 50 = 95, P3(Pi7,44) < P3(Pi7,20) +
R;(P|7,24) = 45+ 55 = 100, and P:;(Pn‘(m) < 3P3(P[7,20) = 3-45 = 135.
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Lemma 2 or Figure 7 show these inequalities are equalities. For n > 24
with n ¢ {26, 28, 40, 42, 44, 60}, assume the result holds for n — 16. Then

P3(P17,n) < P3(P17,16) + P3(Py7,n-16)

=36+ [4.5[(n —16)/2]] = [4.5[n/2]].
Lemma 2 shows this is equality. The result follows by induction. O
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Figure 7 — Maximal 3-packings of 17 x 24, 17 x 26, 17 x 28,
and 17 x 44 Boards. The first n columns are a maximal 3-packing
of a 17 x n board where n = 24, 26, 28 and 44.
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Theorem 18. For alln > 0,

[ [2.25[20n/19]] ifnol9isodd , [1 ifn=2,4,86,11
Po(Pig,n) = { [2.5[18n/19]]  otherwise + { 0 otherwise.

Proof. Lemma 3 gives the results for n > 24. For n = 30, P3(Ps30) <
2P3(P13,15) = 2-36 = 72. Lemma 2 shows P3(P18,30) = T2. Forn > 24
with n # 30, assume the result holds for n — 19. Then

P3(Py1g,n) < P3(Pis,19) + P3(Pig,n-19)

— 22.5 [20(n — 19)/19]] if no 19 is odd
=45+ { Fz.s |'1[8(1(1, - 19)/19]]] 1 otherwise

_ [ [2.25[20n/19]] if no19is odd
~ | [2.5[18n/19]] otherwise.

Lemma 2 shows this is equality. The result follows by induction. O
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3 Remarks

¢ In a 3-packing, squares with area 8 (rotated 45° from the checkerboard
squares) can be centered on each checker so the squares do not overlap.
It is then easy to show P3(Pp ) < (m + 1)(n + 1)/8. This together
with the 3-packing of Figure 1 give P3(Py,,») = (m+1)(n+1)/8 when
m and n are both odd.

e The program which prove Lemma 3 used a bound similar to Lemma 2
to eliminate unproductive branches. On Py, n, let 7; j be the number
of checkers used in a 3-packing of the first £ — 1 columns and the first
j squares of column z. Then

Py(Ppn) < 7ij+min [Ps(Prnoin) + P3(Pia—jt1),
mino<k<;(P3(Pm—it+1,n—k) + P3(Pm—ik)]-

o Why did we stop at m = 18?7 A Vax 8820 took 116 cpu-minutes to
prove Lemma 3 (68% was for m = 18). The time needed seems to
triple when m is increased by one. Further, the number of exceptions
seem to grow with m. This will force a higher upper limit on n in
Lemma 3 (higher than the 24), and would increase the complexity
of the proofs. Still, a few more values of m could probably be done
without undue effort by the authors or the computer. However, this
would probably have not qualitatively altered the paper, and we had
to stop at some point.

e How can the 3-packing number of an m x n board be found for all m
and n? The 2-packing number of an mxn board also had irregularities
that when m < 8 and m < n. However, for m > 8, a regular pattern
emerged. Preliminary work by the first author shows the domination
number of an m X n board seems to settle into a regular pattern for
m > 15 when m < n. Hopefully, this also happens for 3-packing.
If this is the case, then a useful approach might be to automate the
approach developed in this paper and hope that a provable pattern
appears before the computations become overwhelming.
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