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Abstract. In this paper, a composition result viz., the number of r-compositions of
1 dominated by the r-compositions of m (m > n) subject to certain restrictions, has
been derived by the method of induction.

1. Introduction.

Narayana (1955) has considered a generalized occupancy problem which can be
viewed as a problem in compositions of integers. Narayana and Fulton (1958)
considered the r-composition (or r-partition) of a positive integer n(1 < r < m)
and discussed its various properties. Also, they discussed the relation of ‘dom-
ination’ defined on the r-compositions of n, which is reflexive, transitive, and
antisymmetric. Thus, it represents a ‘partial order’ defined on the r-compositions
of n. Narayana (1959) discussed the same domination principle and the partial
order defined on the compositions of a positive integer and gave some of its appli-
cations in probability theory. Some definitions are quoted below from Narayana
(1959).

Definition 1: (t;,1,,...,t,) represents an r-composition of a positive integer n
if, and only if,

T
Sti=nand t; >1, i=1,2,...,r
i=1
We remark that, in general, we shall consider (t1,%3,...,t,) and (t2.t1, ...,
t,), where t; + t3 + ...+ t, = n, as distinct r-compositions of n, unless ¢; = t3.
If r is an integer such that 1 < r < n, we have, obviously, ('::} ) distinct r-
compositions of n.
Definition 2: Anr-composition (21,12, ... ,t,) of n‘dominates’ another r-comp-
osition (t},t5,... ,t,) of nif, and only if, the following conditions hold:
>t
i+t >t +1)
h+ta+t3 >t +1) +1)

O]

4ty +...+t,_g Dty +th+...+t,_, and
h+ty+...+t, =t +th+...+t.=n
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Definition 3: An r-composition (¢1,%2,...,t,) of m ‘dominates’ an r-composi-
tion (t},t5,...,t.) of n(m > =) if, and only if,

j j
Sux>Yt, j=12,..,r-1 )
i=1 i=1
Let us suppose we number the ('::11 ) r-compositions of n, taken in some or-
der, using the symbols p1,pz2,... ,P/q-1\. Taking the composition p;, let z;
r—1
be the number of compositions dominated by p; in the set p1,p2,...,p (,,_, );

r-1

i=1,2,..., (7})- The total

(n;'r) =r1+r+...+ .’E(,,_l)
r—1

obviously does not depend upon the particular ordering chosen for numbering the
r-compositions of n and denotes the number of r-compositions of n dominated
by the r-compositions of n.

Narayana (1959), on p. 93, gave a geometric representation of the r-composi-
tions of n and proved in Lemma 1, on p. 92, that the number of r-compositions of
n dominated by the r-compositions of n is given by

@ =220 (m)-(7) (::;) )
“e()(:20)

According to the above mentioned geometric representation, an r-composition
(t1,t5,... ,t,) of n dominated by another r-composition (t1,?2,...,t;) of n
can be represented by a ‘lattice path’ from (0, 0) to (n,n) not rising above the
diagonal y = z and having exactly r horizontal and r vertical components, by
plotting thepomts (0:0)' (t1)0)9 (tl )t’l), (tl + t2)t’1)’ (tl + tZ:t'l + tlz), (tl +
ta+t3,t +15), (B +ta+ i3, 8y +th +15),... , (b +...+ 2, t)+...+1,_)) and
(t1+...+1,,t; +...+t}) = (n,m) onan z-y plane and joining each one of them
with the next one (see Figure 1). Clearly, both horizontal and vertical components
represent an r-composition of n. Hence, (n; r), as given in (3), is equivalent to
the total number of lattice paths from (0,0) to (7, n) starting with a horizontal
step and never crossing the line y = x, each path having exactly  horizontal and
r vertical components.
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Figure 1

A lattice path from (0, 0) to (n,n) = (14, 14) representing an
r(= 7)-composition (1, ...,t,) =(2,1,1,3,1,4,2)
of n = 14 dominating another r(= 7)-composition
(t,...,t) =(1,2,1,2,2,3,3) of n = 14.

In this paper, we derive a formula by using the method of mathematical induc-
tion, for the number of r-compositions of » dominated by the r-compositions of
n, subject to certain additional restrictions, which in turn becomes a proper subset
of the set of elements in (n; ). We also give a similar formula for the number of
r-compositions of » dominated by the r-compositions of m (m > n).

2. The composition result.

In what follows, we shall denote by Ny (z, y; 7, p; t) , where z > y—t, the number
of lattice paths from (0,0) to (z,y) not crossing the line y = z + ¢, starting
with a horizontal step, having exactly r horizontal and r vertical components and
touching the line y = z + ¢ exactly p times.

We shall use in the sequel the following result on ‘strict domination’. By ‘strict
domination’ we mean that the (r — 1) inequalities in (1) are all strict inequalities.
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Result on strict domination: The number of r-compositions of n ‘strictly dom-
inated’ by the r-compositions of n is given by

w0 = (323) (021) - (771) (022)
202G,

which follows from (3) by replacing n by n— 1. In other words, (4) is the num-
ber of lattice paths from (0,0) to (n,n) lying entirely below the line y = z,
never touching it in-between except at the end points, each path having exactly r
horizontal and r vertical components.

A summation formula needed in the sequel is quoted from Feller (1968; Ch. II

(12.8), p. 64):
E(i+k}—l)=(r;k>, ®)

1=0

@

where r and k are positive integers.

Theorem 1. The number of r-compositions of n dominated by the r-compositions
of n subject to the restriction that any p — 1 relationships out of the first r — 1
in (1) are equalities (so that the last relationship in (1) becomes the pth equality)
and the rest are strict inequalities is given by

o _(n—1 n—p n n—p—1
NH(”:"»"';P»O) - (,,.__1) (T—p)—(r> (T—p—l)
_pfn—p-1 n—1
Tr\ r-p r—1)°

Proof: For proving the theorem we make use of the method of induction on »
and p. According to the geometric representation of Narayana (1959), the right-
hand side of (6) is equivalent to the number of lattice paths from (0,0) to (n, n)
starting with a horizontal step, never rising above the line y = z, having exactly
r horizontal and r vertical components and having exactly p contacts withy = z
including the last one at (n, n).

©
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It is easy to see that

Ng(n,m1,1,0) =1,
Ng(n,m1,2;0) =0,

1 n-1
Nu(mm2,1;0) =Y ) Nu(z,4:1,0,0)

y=1 2=2
-2 n-1

+E E Nu(z,y;1,0;0), wherez > y
y=2 z=y+1

1 n-1 -2 n—1

DML
y=1 z=2 y=2 z=y+1

-2
=(n-2+y (n—y-1)

y=2
_[(n-1
=("3 ),
n—1
Nu(nm2,2,0) =Y Nu(z,z:1,1;,0)
z=1

n—-1
=y 1=(n-1).
z=1

Assuming that the theorem holds true for r — 1 compositions and p — 1 equalities,
we have

Ny (n,nr,p;0)
n—r+p—2
= Y Nu(z,3p-1,p—1;0)- Ng(n—z,n—z;r—p+ 1,1;0)

z=p—1 .
-2 nr+g-l

+E 2 NH(z,z;q,p—l;O)‘NH(n—a:,'n—z;'r—q,1;0)
q=p I=q
n—1

+ 3 Nu(z,337—1,p—1;0)- Ng(n—z,n-2;1,1,0),

z=r-1

as we break the requisite path at the point where it touches the line y = z for the
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(p — 1) th time. Thus, by (4) and (6),

Ny(n,n7,p;0)
=w—§—2 (Z—l) 1 (n_m—Z) (n—z—l)
2 p—2 ) r—p+1 r—p T=p
+§H§l p=l( z—p \(a-1)_1 (n-3-21) (n-z-1
g-p+1/\q-1)r—q\r—q-1 ) \r—¢-1
g=p z=q+1

+§p—1 T—p z—1 1
r—1\r—p/ \r=2

_ 1 n—p—1Y) (n—p
Tr—p+l \ r-p r—p
+ ”_”Ep-z 1 n—z—2 n—x—1
r—p+1 r—p T—D
+ i’hi—l p— z—p z—1 1 n—zr—2 n—z—1
—-p+1)\qg—-1/ r—q \r—q-1 r—g—1

() (1)

+p—1 n—p—1 P—
r—1 T—p r— 2 < r—1

() () B () ()

- r—p+l T—p
+ i‘: w-ﬂzq—l p— T—p z—1 1 n—z—2 n—z—1
g—p+1 g—1 /) r—q \ r—q-1 r—q—1)/’
g=p-1 z=¢+1
Q)]

which on simplification leads to (6). The empirical equivalence of the expressions
in (6) and (7) have been shown in the following table for different values of n, r

and p.
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Table I

Values of Value of the Value of the

n,rand p R.HS.of (6) R.H.S.of(7)
(A) n=5,r=3,p=2 8 8
(B) n=5,r=4,p=3 3 3
(9] n=6,r=3,p=2 20 20
(D) n=6,r=5,p=3 3 3
(E) n=6,r=4,p=2 15 15
(F) n=7,r=4,p=2 60 60
(@) n=7,r=4,p=3 45 45
(H) n=8,r=5,p=2 140 140
(n n=8,r=4,p=3 105 105
(€)) n=8,r=4,p=2 175 175
(K) n=10,r=5,p=3 1134 1134
(L) n=12,r=8,p=5 4125 4125
(M) n=16,r=10,p=8 84084 84084
(N) n=16,r=10,p=6 378378 378378

Deductions:

(i) Putting p = 1 in (6), it reduces to the result (4) of strict domination.
(ii) Summing (6) over p from 1 to r and using the summation formula in Feller
(1968; Ch. II (12.16), p. 65), it verifies (3).

Theorem 2. The number of r-compositions of n dominated by the r-composi-
tions of m (m > m) subject o the restriction that exactly p inequalities out of
the (r — 1) in (2) are equalities and the rest are strict inequalities is given by

Nig(m,m7,p;0) = (’;‘_*:_*f) (::i )_(T_—:_—j) (n—rl ) ,m>n.
®
Proof: We again use the method of induction. It is easy to see that, for m > n,
Ng(m,n1,1;0) =0, :
Nyg(m,n2,1;0) = (n-1),
Nyg(m,n2,2,0) =0,

n—1 n—1
Ng(m,%3,20) =y Nu(z,7:2,2,0)=) (z—1), by (©),

z=2 z=2

-(72'):

Ny(m,n3,3;0) =0.
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Assuming that the theorem holds true for » — 1 and p — 1, we have

NH(m’":T)p; 0)
n-2

= Y Nu(z,3;7=2,p—1;0)- Ng(m—z,n-12;2,1;0)
z=r-2
2 m2

+ 3 > Nu(z,yir—2,p—1,0)- Ny(m—z,n—4:2,1;0)
y=r-2 z=r-1

2 m2
+ 3 ) Nu(z,y:7—2,p-1;0)- Ng(m—z,n—y;2,1;0),

y=r-1 z=y+1

where z > y. Now by (6) and (8), we have

NH(m"n;"',P;o)
_ & p—1( z—p z—1 1
_z“_z r—2 \r—p-1 r—3 H(n—z—1)
55 [(” - ) (5)-(=553) (=3)] v
y=r—2::—r—1 r—p—2/) \r-3 r—p—3/ \r-2
155)-(553) ()] e

=L+ L+1Is, ' o)

where
-1
E('n—z 1) (r—p—l) (:—3 ) i

z=r-1

+
\ghS
ANH
—
7~
T
S
NI
~
T

<
Ll

since z = r — 2 term is zero,

n= 5 5 1(73) (43)-(23) (3) oo

z=r-1 y=r-2

m-2
= Z (::5:21)(7;—-7'4- 1)

g=r-1

= (T:;:f)(n—r+ 1),

by (5), and
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s- 3 S [(zm) () (2m) (6] s

y=r—1 z=y+l
= 52:( y (v} m—p—2 y—p
_v=r-l Y- r—3 r—p—1 /) \r—p-1
(R H(752)-(5R))
r—2 r—p—2 r—p—2 !
by (5). Further,
o (22o2) Borreo (1)
y=r—-1
n-2
m—p—2 y—-1
—_ ('r—p—2 )vﬂz_l(n_y—l) (7—2)

-Somen [(120) (52)-(2) (5]

-1

where

fj(u—y—l)( ) <n—1)z(” ‘) (r— 2)E(r 2)

y=r-1 y=r-1 y=r-1

({2 al()-1
=0 (273 )-0=2 (7] ) ~(nmre 0

= (nil ) —(n—r+1), and

r—1

S (1)),

y=r-1

by (5). Thus,
_ [ m—p-2 n—1 m—p—2 n—1
o (D [0m )]0 ()

_E(n y—l) (TE _pl><!rl:;)

y=r—1

N
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Upon substituting these expressions for I, I, I, in equation (9) and then sim-
plifying, it leads to (8). |

Alternative Proof of Theorem 1: An alternative proof of Theorem 1 can now
be given by using the result of Theorem 2 as follows. Assuming that Theorem 1
holds true for » — 1 and p — 1 and breaking the requisite path at the point, say
(z,y), T > y, where it completes its (r — 1) components in both the directions,
we have

n—1
Ny(n,mn,p;0) = 3, Ny(z,z37—1,p—1;0)
z=r-1

r—-1 n-1

+ 3 Y Nu(z,yir—1,p—1;0)

y=r—1 z=r
-2 n-1
+3° ) Nu(z,yir—1,p— 1,0),

y=r z=y+1

where z > y. Now on using (6) and (8), we have

irtmty - 3 221 (47 (71
H\T, ' Ps r—1 r—p r—2

z=r—1
-1 nl
T—p— y—1 z—p—1 y—1
22 [(30) (2)-652) 6]
2 nl
z—p—1 y—1 z—p—1)\ (y-—1
25 [G50) (2)-(G22) (2)]
=Ii+ Is+ I, (10)

where

I = p-1(z-p\ [z-1
4" r—1\r—p r=2 )’
Z=r

since z = r — 1 term is zero,
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s= S () () () ()]

z=r y=r-1

S0,

z=r
by (5), and

2

w31

2[(=2)
{

(
2 102) (7)-() (2m)
(5G]
(5 ) -EE ) 6)

y=r

S

by (5). Upon substituting these expressions for I, Is, Is, in (10) and then sim-
plifying, we obtain

Np(n,n7,p;0)
_p-1/(n-p-1 n—2
T r—1 r—p r—2
+ n—p—1 n—2 n—p-—1 n—2
r—p r—1 ) \r—p-1 T
- n—p—l> n—1 ) [p—l s _(r—p)(n—r—l)]
B T—p r—1/)[n-1 n-1 r(n—1) !

which leads to (6). This completes the alternative proof of Theorem 1. |
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