Generalized Exponents of Tournament Matrices

Bolian Liu[†]

Department of Mathematics South China Normal University Guangzhou, People's Republic of China

Abstract. In [1], we introduced the generalized exponent for primitive martices. In this paper the generalized exponents of tournament matrices are derived.

1. Introduction

The directed graph Γ defined by a (0,1) matrix M_n consists of n vertices $1,2,\ldots,n$ such that an arc (ij) goes from i to j if and only if the (i,j) entry of M_n is one.

A tournament T_n is a directed graph Γ such that each pair of distinct vertices i and j is joined by exactly one of the arcs (ij) or (ji) and no vertex is joined to itself by an arc. A tournament matrix M_n is a matrix that defines a tournament T_n .

According to [1], $\exp_T(i,j) :=$ The smallest integer p such that there is a walk of length from i to j for each integer $t \ge p$ ($1 \le i, j \le n$).

The tournament T_n is called primitive provided all of the number $\exp_T(i,j)$ are finite, and the number

$$\exp(T) := \max_{ij} \{ \exp_T(ij) \}$$

is called the exponent of T_n .

It is well known (see [2]) that a tournament T_n is primitive if and only if $n \ge 4$ and T is irreducible (i.e. strongly connected). Let

$$\exp(n) := \max_{T} \{ \exp(T) \}$$

where the maximum is taken over all the primitive tournaments T with n vertices. It is well known ([2]) that

$$\exp(n) = n + 2.$$

Let the exponent of vertex i defined by

$$\exp_T(i) := \max_j \{ \exp_T(i, j) \}$$
 $(i = 1, 2, ..., n).$

Thus $\exp_T(i)$ is the smallest integer p such that there is a walk of length p (and thus of every length larger than p) from i to each vertex j of T. We choose to order the vertices of T is such a way that

$$\exp_T(1) \le \exp_T(2) \le \cdots \le \exp_T(n)$$
.

[†]This research was supported by NSF of P. R. China Grant No. 19171034

We define

$$\exp(n, k) := \max_{T} \{ \exp_{T}(k) \}, \qquad (k = 1, 2, ..., n)$$

where the maximum is taken over all primitive tournaments T with n vertices. It follows that $\exp(n, n) = \exp(n)$, the largest exponent of a primitive tournament with n vertices.

The number $\exp_T(i)$ has an interpretation in terms of a memoryless communication system associated with T (see [1]). In fact, $\exp_T(k)$ is the smallest power of M_n for which there are k rows with no zero entry.

In this paper we show that if a tournament T with n vertices is stronly connected and n > 6 then

$$\exp(n,k) = k+2,$$

for any integer k with $1 \le k \le n$. Thus some new propertices are derived about tournaments.

2. Preliminaries

Let T = (V, E) be a tournament whose set of vertices is V and whose set of arcs is E.

Let x and y be vertices of T. A path from x to y is a sequence $x = x_0 x_1 \dots x_k = y$ of vertices with $k \ge 0$ such that $(x_i x_{i+1})$ is an arc for $i = 0, 1, \dots, k-1$. A vertex K is called an r-king if for every vertex i in T, there is a path from K to i of length r (or shortly r-path). By the definition of a tournament it is obvious that $r \ge 3$.

For $i \in V(T)$

$$N^+(i) := \{j \mid (i,j) \in E, j \in V\}$$

 $N^-(i) := \{j \mid (j,i) \in E, j \in V\}.$

Clearly, $N^+(i) \cup N^-(i) \cup \{i\} = V(T)$ for each $i \in V(T)$, and

$$|N^+(i)| + |N^-(i)| = n-1,$$

where |S| denote the cardinality of the set S.

Some basic results concerning tournaments are the following well-known theorems.(see, e.g. [3]).

Theorem A. (Camion) Every strong tournament has a spanning circuit (Hamiltonian).

Theorem B. (Benhocine) Every tournament has either a Hamilton circuit or a spanning path.

Theorem C. Each vertex of a strong tournament with n vertices is contained in a circuit of length k, for k = 3, 4, ..., n.

Theorem D. A tournament T_n is primitive if and only if $n \ge 4$ and T is irreducible (i.e. T_n is a strong tournament).

3. The Main Result

Lemma 1. If T_n , where $n \ge 6$, is an irreducible tournament and K is a vertex with maximum outdegree in T_n , then there exists a 3-path from K to every vertex of $N^-(K)$.

Proof: Since T_n is irreducible, $N^-(K) \neq \emptyset$. Let $|N^+(K)| = r$. Then $r \geq \binom{n}{2}/n = (n-1)/2 \geq 3$ $(n \geq 6)$.

For any vertex $j \in N^-(K)$, by maximality of outdegree $d^+(K)$ there exists at least one vertex $i \in N^+(K)$ such that (ij).

Let the subtournament induced by $N^+(K)$ be T_r .

<u>Case 1.</u> If there exists a vertex $x \in N^+(K)$ such that (xi), then there is a path of length 3 from K to j, Kxij.

<u>Case 2.</u> If for each vertex $x \in N^+(K) - \{i\}$, there is a (ix), then $d_{T_r}^+(i)$, the outdegree of i in T_r , is r-1. It follows that one of the following exists:

<u>Subcase 2.1.</u> If there is a vertex $y \in N^-(K)$ such that (yj), then by the maximality of $d^+(K)$ there exists a vertex $x \in N^+(K)$ such that (xy). Thus there is a 3-path from K to j, Kxyj.

Subcase 2.2. If $|N^-(K)| \ge 2$ and for each vertex $y \in N^-(K) - \{j\}$, there is a (jy), then there must be $x \in N^+(K) - \{i\}$, such that (xj). Thus there is a-path Kixj.

If $|N^-(K)| = 1$ i.e. $N^-(K) = \{j\}$, then there must exist a $x \in N^+(K) - \{i\}$ such that (xj). (If not, each vertex of $N^+(K) - \{i\}$ can not reach j. This is contrary to the connectivity.) Hence there is a 3-path Kixj. This completes the proof of the lemma.

Lemma 2. Let T_n , where $n \ge 6$, be an irreducible tournament. Let K be a vertex with maximum outdegree in T_n and $d^+(K) = r$. If the subtournament T induced by $N^+(K)$ is strongly connected, then there is a 3-path from K to every vertex of $N^+(K)$.

Proof: By Theorem A T_r has a Hamilton circuit, say $x_1 x_2 ... x_r x_1, x_i \in N^+(K)$, i = 1, 2, ..., r, t here exists a 3-path from K to x_i as follows.

$$K x_{i-2} x_{i-1} x_i$$
 if $3 \le i \le r$,
 $K x_{r-1} x_r x_1$ if $i = 1$,
 $K x_r x_1 x_2$ if $i = 2$.

According to Lemmas 1 and 2 and Theorem C, we obtain

Theorem 1. T_n , $n \ge 6$, is an irreducible tournament. Let K be a vertex with maximum outdegree in T_n and T_r be the subtournament induced by $N^+(K)$. If T_r is irreducible, then K is a 3-king of T_n .

Lemma 3. T_n , where $n \ge 6$, is an irreducible tournament. Let K be a vertex with maximum outdegree in T_n . If $d^+(K) = n-2$ and the subtournament T_{n-2} induced by $N^+(K)$ is reducible, then T_n has a 3-king.

Proof: Let $N^-(K) = \{w\}$.

By Theorems A and B, we see that T_{n-2} has a spanning path, say $x_1 x_2 \dots x_{n-2}$ and $(x_1 x_{n-2})$.

Clearly, for x_i , i = 3, 4, ..., n - 2, there is a path of length 3 from K to x_i , $Kx_{i-2}x_{i-1}x_i$. We need only show that there is a 3-path from K to x_i , i = 1, 2. By the connectivity of T_n , there must exist a path

$$x_{n-2} \ldots x_t x_j w, \tag{1}$$

where $x_j \in N^+(K)$. If not, x_{n-2} cannot reach vertex w. This is contrary to the connectivity.

<u>Case 1.</u> If there is a $x_i \in \{x_3, \dots, x_{n-2}\}$ such that $(x_i x_1)$, then there exist following paths of length 3

$$Kx_ix_1x_2$$
 from K to x_2 ,
 $Kx_{i-1}x_ix_1$ from K to x_1 .

<u>Case 2.</u> For each of x_3, \ldots, x_{n-2} there is a $x_1 x_i$, $i = 3, \ldots, n-2$ (i.e. $i = 2, 3, \ldots, n-2$).

Subcase 2.1. If (wx_1) , (wx_2) , then by path (1) there are

$$Kx_jwx_1$$
 from K to x_1 ,
 Kx_jwx_2 from K to x_2 .

Subcase 2.2. If (wx_1) , (x_2w) and if there is at least one $x_i \in \{x_4, x_5, \ldots, x_{n-2}\}$ such that (x_ix_2) , then there are paths of length 3, Kx_2wx_1 and $Kx_{i-1}x_ix_2$.

In preceding cases, there are 3-paths from K to each vertex of $N^+(K)$. By Lemma 1, there is a 3-path from K to w. By Theorem C, there is a 3-path from K to K. Namely, K is a 3-king of T_n .

<u>Subcase 2.3.</u> If (wx_1) , (x_2w) and (x_2x_i) for i = 3, ..., n-2, then x_2 is a 3-king of T_n , because of the following 3-path.

$$x_2 w K x_i$$
 $i = 1, 2, ..., n - 2$.
 $x_2 x_j w K$ $(j \neq 2, \text{ see path (1)})$.
 $x_2 x_{n-3} x_{n-2} w$ if path (1) is $(x_{n-2} w)$.

 $x_2x_tx_jw$ $(t \neq 2, j, \text{ but it is possible for } t = n-2)$ if length of path (1) is larger than 1.

Subcase 2.4. If $(x_1 w)$, then x_1 is a 3-king of T_n , because of

$$x_1wKx_i$$
 $i = 1, 2, ..., n-2$
 x_1x_jwK $(j \neq 1)$
 $x_1x_tx_jw$ (similar to the proof of subcase 2.3).

This completes the proof of Lemma 3.

Lemma 4. T_n , n > 6, is an irreducible tournament. Let K be a vertex with maximum outdegree in T_n . If $d^+(K) = n - 3$ and the subtournament T_{n-3} induced by $N^+(K)$ is reducible, then T_n has a 3-king.

Proof: Let $N^-(K) = \{u_1, u_2\}$. Suppose (u_1u_2) generality. Since T_{n-3} is not strongly connected, T_{n-3} has a spanning path, say $x_1x_2 \dots x_{n-3}$ and x_1x_{n-3} .

As the proof of Lemma 3, we see that there are 3-paths from K to x_i , i = 3, 4, ..., n - 3. Now we need only show that there is a 3-path from K to x_i , i = 1, 2.

<u>Case 1.</u> If there exists a $x_i \in \{x_3, \ldots, x_{n-3}\}$ such that $(x_i x_1)$, then there are the following 3-paths.

$$K x_i x_1 x_2$$

 $K x_{i-1} x_i x_1$.

<u>Case 2.</u> If for every x_i , i = 2, ..., n-3, (x_1x_i) , by the maximality of $d^+(K)$, $\exists u_i \in N^-(K)$, $i \in \{1,2\}$, such that (u_ix_1) . Next, there is at least a $x_j \in N^+(K) - \{x_1\}$ such that (x_ju_i) . Thus there is a 3-path from K to $x_1, Kx_ju_ix_1$. Subcase 2.1. If $\exists x_i \in \{x_4, ..., x_{n-3}\}$ such that (x_ix_2) , then there is a 3-path from K to $x_2, Kx_{i-1}x_ix_2$. Thus, by Theorem C and Lemma 1, K is a 3-king. Subcase 2.2. If for every x_i , i = 3, 4, ..., n-3, (x_2x_i) , then we consider the following cases.

Subcase 2.2.1. If $\exists u_i \in N^-(K)$, i = 1 or 2, $(u_i x_2)$, then as in the proof of case 2 above, there is a $x_j \in N^+(K)$, $j \neq 2$, such that $(x_j u_i)$. Thus there is a 3-path $Kx_j u_i x_2$. As before, K is a 3-king.

<u>Subcase 2.2.2.</u> If (x_2u_1) , (x_2u_2) , then by the connectivity of T_n , there is a path from x_{n-3} to u_i , i = 1 or 2, as follows.

$$x_{n-3} \dots x_i x_j u_i \quad i = 1 \text{ or } 2, \quad j = 3, \dots, n-3.$$
 (2)

Let's consider the following cases about the adjacency between x_j and u_i , i = 1 or 2.

Since there is either (x_ju_1) or (x_ju_2) , one of the following exists:

- (1) $(x_j u_1)$ and $(x_j u_2)$. Since n > 6, $|N^+(K)| > 3$. Hence $\exists x_t, t \in \{3, ..., n-3\} \setminus \{j\}$, (see path (2)) such that $x_2 x_t x_j u_1$ (Notice that $(x_2 x_i)$, i = 3, 4, ..., n-2). And $x_2 u_1 u_2 K$, $x_2 x_j u_1 u_2$, $x_2 u_1 K x_i$, i = 1, 2, ..., n-3. Thus x_2 is a 3-king.
- (2) $(x_j u_2)$ and $(u_1 x_j)$. Notice that $u_1 K x_2 u_1$, $u_1 K x_2 u_2$, $u_1 u_2 K x_i$, i = 1, ..., n-3, $u_1 x_j u_2 K$. Thus u_1 is a 3-king.
- (3) (u_2x_j) and (x_ju_1) . We have $x_2x_ju_1u_2$, $x_2u_1u_2K$, $x_2u_1Kx_i$ $i=1,\ldots,n-3$, $x_2x_tx_ju_1$, where $t \in \{3,4,\ldots,n-3\}\setminus\{j\}$ (see path (2)). Thus x_2 is a 3-king.

The proof is complete.

Lemma 5. T_n , n > 6, is an irreducible tournament. Let K be a vertex with maximum outdegree in T_n . If $d^+(K) = r < n-3$ and T_r induced by $N^+(K)$ is reducible, then T_n has a 3-king.

Proof: We will show that K is a 3-king of T_n .

Let the spanning path of T_r be $x_1x_2...x_r$ where (x_1x_r) . According to the proof of Lemmas 3, 4, there are 3-path from K to x_i , i = 3, 4, ..., r. We show that there is a 3-path from K to x_i , i = 1, 2.

Case 1. $\exists x_i \in \{3, \ldots, r-1\}$ such that $(x_i x_1)$.

As in the proof of Lemma 3, we see there are 3-paths from K to x_i , i = 1, 2.

Case 2. For every x_i , i = 2, 3, ..., r, $(x_1 x_i)$.

Since $|N^-(K)| > 2$, by maximality of $d^+(K)$, there is a $u_i \in N^-(K)$ such that (u_ix_1) and a $x_ix_1, x_i \neq x_1, x_i \in N^+(K)$ such that (x_iu_i) . Thus there is a 3-path $Kx_iu_ix_1$.

If $\exists x_i \in \{x_4, \ldots, x_r\}$ such that $(x_i x_2)$, then as in the proof of Lemmas 3, 4, there is a 3-path from to x_2 . If for every x_i , $i = 3, \ldots, r$, $(x_2 x_i)$, then $d_{T_r}^+(x_2) \ge r - 2$. Since $|N^-(K)| \ge 3$, by the maximality of $d^+(K)$, there exists a $u_i \in N^-(K)$ such that $(u_i x_2)$ and $\exists x_i \in N^+(K) - \{x_2\}$, such that $(x_i u_i)$. Thus there is also a 3-path $K x_i u_i x_2$.

Hence there is a 3-path from K to every $x_i \in N^+(K)$.

According to Lemma 1 and Theorem C, we conclude that K is a 3-king of T_n . The proof is complete.

Now we can give the main results.

Theorem 2. If T_n , n > 6, is an irreducible tournament, then T_n has a 3-king.

Proof: By Lemmas 1,2,3,4,5, the proof is complete.

Corollary 2.1. If T_n , n > 6, is an irreducible tournament, then T_n has a vertex from which there is a path (walk) of length r, r = 3, 4, ... to each vertex of T_n .

Proof: Let A_n be a tournament matrix corresponding to T_n . By Theorem 2, A^3 has a row, say the kth row, with no zero entry. Since A_n is irreducible, A_n has no column of all zeros. Thus A^r , $r \ge 3$, has kth row with no zeros. Thus A^r , $r \ge 3$, no zeros in its kth row.

According to Corollary 2.1, we have

Theorem 3. If T_n , n > 6, is an irreducible tournament, then $\exp_{T_n}(1) = 3$.

In [1], we have proved

Lemma 7. If Γ is a primitive digraph of order n, then

$$\exp_{\Gamma}(k) \le \exp_{\Gamma}(k-1) + 1, \qquad 2 \le k \le n.$$

Hence we obtain

Theorem 4. If T_n , n > 6, is an irreducible tournament, then

$$\exp_T(k) = k + 2 \qquad 1 \le k \le n.$$

Proof: By Lemma 7 and Theorem 3

$$\exp_T(k) \le \exp_T(1) + (k-1)$$

= 3 + (k - 1)
= k + 2.

Consider the tournament T_n defined on the vertices $1, 2, \ldots, n$ as follows: The arcs (ij) if $1 \le i \le n$. This tournament contains a simple cycle of length n so it is irreducible and hence primitive.

For $1 \le j \le n$, there are walks of length $r, r = j + 2, j + 3, \ldots$ from vertex j to $1, j \ge 1$, but there is no walk of length j + 1. (If the reader sketches the tournament T_n the reasons for this and subsequent statements should become apparent).

$$\exp_T(k) = \max \{ \exp_T(k, j) \mid j = 1, 2, ..., n \}$$

= $\exp_T(k, 1)$
= $k + 2$,

where T is T_n .

It follows that each irreducible tournament T_n has at least k vertices from each of which there is a path of length k+2 to every vertex of T_n .

Corollary 4.1. ([3]) If T_n , n > 6, is an irreducible tournament with primitive exponent e, then $e \le \exp_{T_n}(n) = n + 2$.

Now that there are exactly 1, 6, 35 non-isomorphic irreducible tournaments T_4 , T_5 , T_6 respectively (see e.g. [3]). It is not difficult to verify (or prove) the following theorem directly.

Theorem 5. If T_n , 3 < n < 6, is an irreducible tournament, then

$$exp_{T_4}(1) = 6$$
 $exp_{T_5}(1) = 4$
 $exp_{T_6}(1) = 4$

There is essentially only one irreducible tournament T_i , i = 4, 5, 6 with $\exp_{T_i}(1)$ given as above. They are as follows:

$$T_4 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad T_5 = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \quad T_6 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Acknowledgement

The author wishes to thank the referee for his comments on presentation of the context.

References

- 1. R.A. Brualdi and Bolian Liu, Generalized exponents of primitive directed graphs, J. Graph Theory 14 (1990), 483-499.
- 2. J.W. Moon and N.J. Pullman, On the powers of tournament matrices, J. Combinatorial Theory 3 (1967), 1–9.
- 3. K.B. Reid and L.W. Beineke, *Tournaments*, Chapter 7 in "Selected Topics in Graph Theory" (edited by L.W. Beineke and R.J. Wilson), Academic Press, London (1979), 169–204.