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Abstract. In [1], we introduced the generalized exponent for primitive martices. In
this paper the generalized exponents of tournament matrices are derived.

1. Introduction
The directed graph I" defined by a (0,1) matrix M, consists of nvertices 1,2,...,
nsuch that an arc (45) goes from 1 to ; if and only if the (4, j) entry of M,, is one.
A tournament T, is a directed graph I" such that each pair of distinct vertices 1
and j is joined by exactly one of the arcs (4j) or (j1) and no vertex is joined to
itself by an arc. A tournament matrix M,, is a matrix that defines a tournament T,
According to [1], exp(4, j) := The smallest integer p such that there is a walk
of length from 1 to j for each integert > p (1 < 1,5 < m).
The tournament T;, is called primitive provided all of the number exp,(1, /)
are finite, and the number

exp(T) := max;;{expp(ij)}

is called the exponent of T5,.
It is well known (see [2]) that a tournament T, is primitive if and only if n > 4
and T is irreducible (i.e. strongly connected). Let

exp(n) := maxr{exp(T)}

where the maximum is taken over all the primitive tournaments T" with n vertices.
It is well known ([2]) that
exp(n) =n+ 2.

Let the exponent of vertex ¢ defined by
expp(4) := max;{expr(s,/)} (i=1,2,...,n).

Thus expp(4) is the smallest integer p such that there is a walk of length p (and
thus of every length larger than p) from i to each vertex j of T. We choose to
order the vertices of T is such a way that

expr(1) < expp(2) < --- < expp(n).
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We define
exp(n, k) := maxp{expr(k)}, (k=1,2,...,n)

where the maximum is taken over all primitive tournaments T' with n vertices. It
follows that exp(n, ) = exp(n), the largest exponent of a primitive tournament
with n vertices.

The number exp(4) has an interpretation in terms of a memoryless communi-
cation system associated with T" (see [1]). In fact, expp(k) is the smallest power
of M, for which there are k rows with no zero entry.

In this paper we show that if a tournament " with n vertices is stronly connected
and » > 6 then

' exp(n, k) =k+2,

for any integer k with 1 < k < n. Thus some new propertices are derived about
tournaments.

2. Preliminaries
LetT = (V, E) be a tournament whose set of vertices is V' and whose set of arcs
isE.

Let z and y be vertices of T. A path from z toy isasequence z = 1oz, ...z =
y of vertices with k > O such that (z;z;,1) isanarc fori = 0,1,...,k— 1. A
vertex K is called an r-king if for every vertex i in T, there is a path from K to
1 of length r (or shortly r-path ). By the definition of a tournament it is obvious
that r > 3.

Fori e V(T)

N*():={j|(i,j) €E,jeV}
N=(9):={j|(J,) €E,jeV}.
Clearly, N* (i) UN~(3) U {1} = V(T) foreachi € V(T), and
IN*()|+ I[N~ (9)|=n—1,

where |S| denote the cardinality of the set S.

Some basic results concerning tournaments are the following well-known the-
orems.(see, e.g. [3]).
Theorem A. (Camion) Every strong tournament has a spanning circuit (Hamil-
tonian).
Theorem B. (Benhocine) Every tournament has either a Hamilton circuit or a
spanning path.
Theorem C. Each vertex of a strong fournament with n vertices is contained in
acircuit of length k, for k= 3,4,...,n.
Theorem D. A tournament T, is primitive if and only if n > 4 and T is irre-
ducible (i.e. T, is a strong tournament).



3. The Main Result

Lemma 1. If T,,, where n > 6, is an irreducible tournament and K is a vertex
with maximum outdegree in T, then there exists a 3 -path from K to every vertex
of N-(K).

Proof: Since T, is irreducible, N~(K) # 0. Let [IN*(K)| = r. Thenr >
() /n=(n—-1)/2 >3 (n>6).

For any vertex j € N~ (K), by maximality of outdegree d* ( K') there exists at
least one vertex 1 € N*( K) such that (ij).

Let the subtournament induced by N* ( K) be T;.

Case 1. If there exists a vertex z € N*( K) such that (z1), then there is a path of
length 3 from K to j, Kxzij.

Case 2. If for each vertex z € N*(K) — {i}, there is a (iz), then dz, (1), the
outdegree of 1 in T, is r — 1. It follows that one of the following exists:
Subcase 2.1. If there is a vertex y € N~(K) such that (yj), then by the maxi-
mality of d*( K') there exists a vertex £ € N*( K) such that (zy). Thus there is
a 3-path from K to j, Kzyj.

Subcase 2.2. If [IN~(K)| > 2 and for each vertex y € N~(K) — {7}, thereisa
(jy), then there mustbe z € N*(K) — {1}, such that (z5). Thus there is a-path
Kizj.

If[N-(K)|=1ie. N~(K) = {j}, then there mustexista z € N*(K) — {4}
such that (zj). (If not, each vertex of N*(K) — {i} can not reach j. This is
contrary to the connectivity.) Hence there is a 3-path Kizj. This completes the
proof of the lemma. 1

Lemma 2. Let T, where n > 6, be an irreducible tournament. Let K be a
vertex with maximum outdegree in T, and d*(K) = r. If the subtournament T
induced by N* ( K) is strongly connected, then there is a 3 -path from K to every
vertex of N*(K).

Proof: By Theorem A T, has a Hamilton circuit, say z1z3 ... z,71, z; € N*(K),
i=1,2,...,7,v > 3. Thus foreach z;,1 = 1,2,...,r, there exists a 3-path
from K to z; as follows.

Kz, 21 174 if3<i<r,
Kz, 12,71 ifi=1,
Kz,z125 ifi=2.

According to Lemmas 1 and 2 and Theorem C, we obtain

245



Theorem 1. T,, n > 6, is an irreducible tournament. Let K be a vertex with
maximum outdegree in T,, and T, be the subtournament induced by N*(K). If
T, is irreducible, then K is a 3 -king of T,.

Lemma 3. T, where n > 6, is an irreducible tournament. Let K be a verfex
with maximum outdegree in T,,. If d*( K) = n—2 and the subtournament T,,_,
induced by N*(K) is reducible, then T,, has a 3 -king.

Proof: Let N-(K) = {w}.

By Theorems A and B, we see that T,,_, has a spanning path, say x5 ...z, >
and (z1Tp-2).

Clearly, for z;, 1 = 3,4,...,n— 2, there is a path of length 3 from K to z;,
Kz; >z; 1x;. We need only show that there is a 3-path from K to z;,i=1,2.

By the connectivity of T, there must exist a path

Tn-2 ... TtT;W, Q)

where z; € N*(K). If not, z, » cannot reach vertex w. This is contrary to the
connectivity.

Case 1. If there is a z; € {z3,...,Z,2 } such that (z;z,), then there exist fol-
lowing paths of length 3

Kz;z179 from K to x;,
Kz 137 from K to x;.

Case 2. For each of z3,...,z,2 thereis a z1z;,1 = 3,...,n— 2 (ie. 1 =
2,3,...,n—2).
Subcase 2.1. If (wz;), (wz2), then by path (1) there are

Kzjwz from K to z,
Kzjwz) from K t0 z5.

Subcase 2.2. If (wz1), (z2w) and if there is at least one z; € {z4,s,...,Tn-2}
such that (z;z, ), then there are paths of length 3, Kz, wz; and Kz;_7;7,.

In preceding cases, there are 3-paths from K to each vertex of N*(K). By
Lemma 1, there is a 3-path from K to w. By Theorem C, there is a 3-path from
K to K. Namely, K is a 3-king of T,.

Subcase 2.3. If (wz), (r2w) and (z2z;) fori = 3,...,n—2, then 1, is a3-king
of T,,, because of the following 3-path. '
TawKz; 1i=1,2,...,n—-2.
TyzjwK (7 # 2, seepath (1)).
T3 Ty 3 T2 W if path (1) is (z,_» w).
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zax;w ( # 2, 7, butit is possible for ¢t = n— 2) if length of path (1) is larger
than 1.

Subcase 2.4. If (z; w), then z; is a 3-king of T, because of

T1wKz; i=1,2,...,n—-2
nizjwK  (j#1)
T T Tjw (similar to the proof of subcase 2.3).

This completes the proof of Lemma 3. |

Lemma 4. T,,, n > 6, is an irreducible tournament. Let K be a vertex with
maximum outdegree in T,,. If d*(K) = n— 3 and the subtournament T,,,_3
induced by N*(K) is reducible, then T,, has a 3 -king.

Proof: Let N~(K) = {u1,u2}. Suppose (ujuz) generality. Since T, is not
strongly connected, T;,_3 has a spanning path, say z,z, ...z, 3 and %, 3 .

As the proof of Lemma 3, we see that there are 3-paths from K to z;, i =
3,4,...,n— 3. Now we need only show that there is a 3-path from K to z;,
i=1,2.

Case 1. If there exists a z; € {z3,...,Zn-3 } such that (z;z;), then there are the
following 3-paths.

Kxx1722
KZ,'_l TiT.

Case 2. If for every z;,1 = 2,...,n— 3, (z11;), by the maximality of d*( K),
Ju; € N™(K), i € {1,2}, such that (u;z;). Next, there is at least a z; €
N*(K) — {z1} such that (z;u;) . Thus there is a 3-path from K to z,, Kzju;z;.
Subcase 2.1. If 3z; € {z4,...,Ts-3} such that (z;z,), then there is a 3-path
from K t0 z3, Kx;_1z;z3. Thus, by Theorem C and Lemma 1, K is a 3-king.
Subcase 2.2. If for every ;, i = 3,4,...,n— 3, (z21;), then we consider the
following cases.

Subcase 2.2.1. If Ju; € N=(K),i=1o0r2,(u;z2), then as in the proof of case 2
above, there is a z; € N*(K),j # 2, such that (z;u;). Thus there is a 3-path
Kzju;zy. As before, K is a 3-king.

Subcase 2.2.2. If (z241), (72 u2 ), then by the connectivity of T, there is a path
from z,_3 to u;,1 = 1 or 2, as follows.

Tn3...0Tju; t=1o0r2, j=3,...,n-3. )

Let’s consider the following cases about the adjacency between z; and u;, i = 1
or2.
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Since there is either (zju;) or (z;u2), one of the following exists:
(1) (=zju1) and (z;u2).
Sincen > 6, [N*(K)| > 3. Hence 3z, t € {3,...,n—3}\{;}, (see
path (2)) such that z3 z:z;u; (Notice that (z2z;),1 = 3,4,...,n—2). And
zauuz K, ma 50102, ;w1 Ko, 4= 1,2, .., n— 3. Thus z; is a 3-king.
(2) (zjuz) and (u1z;).
Notice that uy Kzauy, 1 Kzauz, vius Kz,1=1,...,n—3, ulzjuzK.
Thus u; is a 3-king.
3) (uz2zj) and (zju1).
We have z2zju1u2, 2u1u K, noui Kz 4 = 1,...,n— 3, 2y 3750,
wheret € {3,4,...,n— 3}\{/} (see path (2)). Thus =, is a 3-king.
The proof is complete. |

Lemma 5. T,, n > 6, is an ireducible tournament. Let K be a vertex with
maximum outdegree in Ty,. If d*(K) = r < n— 3 and T, induced by N*( K)
is reducible, then T, has a 3 -king.

Proof: We will show that K is a 3-king of T,,.

Let the spanning path of T, be z;z; ...z, where (z1%,). According to the
proof of Lemmas 3, 4, there are 3-path from K to z;,1i = 3,4,...,r. We show
that there is a 3-path from K to z;,i = 1,2.

Case 1. 3z; € {3,...,r — 1} such that (z;z).

As in the proof of Lemma 3, we see there are 3-paths from K to z;,i = 1,2.
Case 2. For every z;,1 = 2,3,...,7, (21 ;). _

Since IN~(K)| > 2, by maximality of d* ( K), there is a u; € N~(K) such
that (u;z;) and a z;7,, z; # 71, z; € N*(K) such that (z;u;). Thus there is a
3-path Kziu;1,.

If 3z; € {z4,...,z,} such that (z;z;), then as in the proof of Lemmas 3, 4,
there is a 3-path from to ;. If for every z;,i = 3,...,r, (z21;), then dy, (x2) >
r— 2. Since [N~(K)| > 3, by the maximality of d*( K), there exists a u; €
N~(K) such that (u;z,) and 3z; € N*(K) — {z,}, such that (z;u;). Thus
there is also a 3-path K z;u;zs.

Hence there is a 3-path from K to every z; € N*( K).

According to Lemma 1 and Theorem C, we conclude that K is a 3-king of T,.
The proof is complete. 1

Now we can give the main results.
Theorem 2. If T,, n> 6, is an irreducible tournament, then T,, has a 3 -king.
Proof: By Lemmas 1,2,3,4,5, the proof is complete. [ |

Corollary 2.1. If T,,, n > 6, is an irreducible tournament, then T, has a vertex
from which there is a path (walk) of length r,r = 3,4,... to each vertex of T,.
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Proof: Let A, be a tournament matrix corresponding to T;,. By Theorem 2, A3
has a row, say the kth row, with no zero entry. Since A,, is irreducible, A, has no
column of all zeros. Thus A", r > 3, has kth row with no zeros. Thus A™,r > 3,
no zeros in its kth row. |

According to Corollary 2.1, we have

Theorem 3. If T, n> 6, is an irreducible tournament, then expr, (1) =3.
In [1], we have proved

Lemma 7. If T is a primitive digraph of order n, then

expr(k) <expr(k—1D +1, 2<k<n
Hence we obtain

Theorem 4. If T,,, n > 6, is an irreducible tournament, then
expr(k) = k+2 1<k<n
Proof: By Lemma 7 and Theorem 3

expp(k) < expp(1) + (k—1)
=3+(k-1
=k+2.

Consider the tournament T, defined on the vertices 1,2, ..., nas follows: The
arcs (i) if 1 < 1 < n. This tournament contains a simple cycle of length n so it
is irreducible and hence primitive.

For1 < j < m, there are walks of lengthr,» = j+2,7+3, ... from vertex j to
1,7 > 1,butthereis no walk of length j+ 1. (If the reader sketches the tournament
T, the reasons for this and subsequent statements should become apparent).

expr(k) = max{expp(k,j) | j=1,2,...,n}
= expp(k, 1)
=k+2,
where T is Ty,. |
It follows that each irreducible tournament 75, has at least k vertices from each
of which there is a path of length k + 2 to every vertex of Tj,.

Corollary 4.1. ([3]) If T,, n > 6, is an irreducible tournament with primitive
exponent e, then e < expy, (n) = n+ 2.

Now that there are exactly 1, 6, 35 non-isomorphic irreducible tournaments
T4, Ts, Te respectively (see e.g. [3]). It is not difficult to verify (or prove) the
following theorem directly.
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Theorem 5. If T,,3 < n < 6, is an irreducible tournament, then

cxpn ( 1) =6
exst( l) =4
expr (1) = 4.

There is essentially only one irreducible tournamentT;,i = 4,5,6 withexpy,(1)
given as above. They are as follows:

011100
0100 8‘3?3‘1’ 001100
0010 000111
Ta=1100 1 Ts‘é?gé(l’ Te=10000 1 1
1100 e 1 e e 110001
110000
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