The Class of t-sc Graphs and Their Stable Complementing Permutations

T. Gangopadhyay

XLRI Jamshedpu Post Box 222 Jamshedpur 831001 India

Abstract. In this paper, we present a new generalization of the self-complementary graphs, called the t-sc graphs. Various properties of this class of graphs are studied generalizing earlier results on self-complementary graphs. Certain existential results on t-sc graphs are presented, followed by the construction of some infinite classes of t-sc graphs. Finally, the notion of t-sc graphs is linked with the notion of factorization. This leads to a generalization of τ -partite self-complementary graphs.

1. Introduction and definitions.

The class of self-complementary graphs has been extensively studied by many people, among others by C.R.J. Clapham [2], R.A. Gibbs [8], S.B. Rao [10], G. Ringel [11], and H. Sachs [12], and many problems have been solved for this class of graphs, such as the hamiltonian problem and the characterization of potentially and forcibly self-complementary degree sequences (see the references given in [10]). This interesting class has also been generalized into the class of multipartite self-complementary graphs by T. Gangopadhyay and S.P. Rao Hebbare [5]. Several important notions such as path-lengths, range of diameters have already been studied for the generalized class (see [6], [7]).

In the present paper a new generalization of the self-complementary graphs, the class of t-sc graphs, is presented and various properties of this class of graphs are studied — generalizing earlier results of Ringel [11] and Sachs [12]. In Section 2 of this paper, we study some structural properties of stable complementing permutations. In Section 3, we study certain existential results on t-sc graphs. In Section 4, we construct infinite classes of t-sc graphs having a stable complementing permutation. In conclusion, we define the notion of t-rpsc graphs which constitutes a generalization of r-partite self-complementary graphs, extensively studied in ([5], [6]). For all undefined terms we refer to Harary [9].

Given an integer t, the t-tuple $G = (G_1, G_2, \ldots, G_t)$ is called a t-sc graph if there exists a complete graph G such that:

- i) each G_i is a spanning subgraph of G;
- ii) E(G) is the disjoint union of $E(G_1), E(G_2), \ldots, E(G_t)$;
- iii) G_1, G_2, \ldots, G_t are all isomorphic graphs.

A t-sc graph $\mathcal{G} = (G_1, G_2, \dots, G_t)$ is called connected if G_1 is connected.

Let (G_1, G_2, \ldots, G_t) be a t-sc graph. Let σ_i be an isomorphism from G_i to G_{i+1} , $1 \le i \le t-1$, and let σ_t be an isomorphism from G_t to G_1 . Then the

t-tuple $(\sigma_1, \sigma_2, \dots, \sigma_t)$ is called a complementing permutation class (cpc) for (G_1, G_2, \dots, G_t) .

Let π be a cycle of σ_i . We denote by $|\pi|$ the length of π , that is, the number of points of G_i contained in π . We say π is a fixed point if $|\pi| = 1$.

Clearly, if t=2 then $G_2=G_1^C$ and G_1 is a self-complementary graph in the usual sense. Also, if (σ_1, σ_2) is a cpc for (G_1, G_2) then σ_1 is a complementing permutation for the self-complementary graph G_1 , in the usual sense of the term.

Let $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ be a cpc for a t-sc graph. If $\sigma_1 = \sigma_2 = \ldots \sigma_t = \sigma$ (say) then σ is called a stable complementing permutation (scp) for (G_1, G_2, \ldots, G_t) .

Figure 1 shows the only 3-sc graph on 3 points. Clearly, (a) $\sigma = (123)$ is an scp and (b) ((2)(13), (3)(12), (1)(23)) is a cpc for the 3-sc graphs.

Figure 2 shows a 3-sc graph on 4 points with $\sigma = (1)(234)$ as an scp. Figure 3 depicts a 3-sc graph on 6 points with an scp $\sigma = (123456)$ and a cpc

Figure 3 depicts a 3-sc graph on 6 points with an scp $\sigma = (123456)$ and a cpc ((126)(345),(123)(456),(156)(234)).

Figure 4 depicts a 6-sc graph on 4 points with a cpc $(\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6)$ where each σ_i is as given in the figure.

The notion of t-sc graphs is intimately linked with the notion of factorization. For instance, if $\mathcal{G} = (G_1, G_2, \ldots, G_t)$ is a t-sc graph with the property that G_1 is regular with degree d, then \mathcal{G} constitutes a d-factorization of K_n where $n = |V(G_1)|$.

This relationship is strongly reflected in Section 3, where we repeatedly invoke the following.

$$\sigma_1 = (1)(23)(4) = \sigma_3$$
, $\sigma_2 = (3)(14)(2)$, $\sigma_4 = (4)(12)(3)$,
 $\sigma_5 = (12)(34)$, $\sigma_6 = (2)(13)(4)$.
Figure 4

Theorem 1.1. (See Harary [9]). The graph K_{2n+1} can be factored into n spanning cycles.

Proof: Let $V(K_{2n+1}) = \{u_1, u_2, \dots, u_{2n+1}\}$. We construct n paths P_i on the

points u_1, u_2, \ldots, u_{2n} as follows:

$$P_i = u_i u_{i-1} u_{i+1} u_{i-2} \dots u_{i+n-1} u_{i-n}.$$

Thus, the *j*th point of P_i is u_k , where $k = i + (-1)^{j+1} [j/2]$ and all subscripts are taken as the integers $1, 2, \ldots, 2n \pmod{2n}$. The spanning cycle C_i is then constructed by joining u_{2n+1} to the end points of P_i .

We also make use of Beineke's [1] construction in which K_{2n} is factored into n hamiltonian paths.

2. Fundamental properties of stable complementing permutations.

In this section, we study the properties of an scp of a t-sc graph and establish analogues of some well-known theorems on self-complementary graphs.

Lemma 2.1. Let $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ be a cpc for (G_1, G_2, \ldots, G_t) . Then for each $i \in \{1, 2, \ldots, t\}$, $\sigma_i \sigma_{i+1} \ldots \sigma_{i-1}$ is an autormorphism for G_i .

Proof:

$$\begin{split} uv \in & E(G_i) \Rightarrow \sigma_i(u) \, \sigma_i(v) \in E(G_{i+1}) \\ & \Leftrightarrow \sigma_i \sigma_{i+1}(u) \, \sigma_i \sigma_{i+1}(v) \in E(G_{i+2}) \\ & \Leftrightarrow \ldots \Leftrightarrow \sigma_i \sigma_{i+1} \ldots \sigma_{t-1}(u) \, \sigma_i \sigma_{i+1} \ldots \sigma_{t-1}(v) \in E(G_t) \\ & \Leftrightarrow \sigma_i \ldots \sigma_{t-1} \, \sigma_t(u) \, \sigma_i \ldots \sigma_{t-1} \, \sigma_t(v) \in E(G_1) \\ & \Leftrightarrow \sigma_i \sigma_{i+1} \ldots \sigma_t \sigma_1(u) \, \sigma_i \sigma_{i+1} \ldots \sigma_t \sigma_1(v) \in E(G_2) \\ & \Leftrightarrow \sigma_i \sigma_{i+1} \ldots \sigma_t \sigma_1 \sigma_2 \ldots \sigma_{i-1}(u) \, \sigma_i \sigma_{i+1} \ldots \sigma_t \sigma_1 \sigma_2 \ldots \sigma_{i-1}(v) \in E(G_1). \end{split}$$

This proves the Lemma.

Lemma 2.2. Let σ be an scp for (G_1, \ldots, G_t) . Then σ^t is an automorphism for each G_i , $i = 1, 2, \ldots, t$.

Proof: This follows by substituting
$$\sigma_i = \sigma \ \forall i = 1, 2, ..., t$$
.

The existence of an scp is a very desirable property for a t-sc graph. The following Lemma gives a sufficient condition for the existence of an scp.

Lemma 2.3. Let $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ be a cpc for a t-sc graph (G_1, G_2, \ldots, G_t) . If $\sigma_1 = \sigma_2 = \ldots = \sigma_{t-1} = \sigma$ (say), then σ is an scp for (G_1, G_2, \ldots, G_t) .

Proof: It is enough to show that σ is an isomorphism from G_t to G_1 . This follows since $uv \in E(G_t)$. $\Leftrightarrow uv \notin E(G_i)$ for each i = 1, 2, ..., t - 1. $\Leftrightarrow \sigma(u)$ $\sigma(v) \notin E(G_i)$ for each i = 2, 3, ..., t. $\Leftrightarrow \sigma(u) \sigma(v) \in E(G_1)$.

Corollary 2.4. Let G be a sc graph and σ a complementing permutation of G. Then σ is an scp for the 2-sc graphs (G, \overline{G}) .

The following corollary now directly follows from Lemma 2.2 and Corollary 2.4.

Corollary 2.5. Let G be a sc graph with a complementing permutation σ . Then σ^2 is an automorphism of G.

Lemma 2.6. Let σ be an scp for a t-sc graph (G_1, G_2, \ldots, G_t) . Then σ has at most one fixed point.

Proof: Let $\pi_1 = (u)$, $\pi_2 = (v)$ be two fixed points in σ . Let $uv \in E(G_i)$. Then $\sigma(u)$ $\sigma(v) \in E(G_{i+1})$. But $\sigma(u) = \pi_1(u) = u$ and $\sigma(v) = \pi_2(v) = v$. So $uv \in E(G_{i+1})$. Thus, $uv \in E(G_i) \cap E(G_{i+1})$, a contradiction. This proves the Lemma.

Theorem 2.7. If a t-sc graph (G_1, G_2, \ldots, G_t) on n points has an scp σ then $n \equiv 0$ or $1 \pmod{t}$. If $n \equiv 0 \pmod{t}$ then all cycles π of σ have $|\pi| \equiv 0 \pmod{t}$. If $n \equiv 1 \pmod{t}$ then σ has exactly 1 cycle of length 1, all other cycles π having $|\pi| \equiv 0 \pmod{t}$.

Proof: Let $\pi = (v_1, v_2, \dots, v_{kt+r})$ be a cycle of σ with r < t and kt + r > 1. Clearly, $v_1v_2 \in E(G_i)$ for some i. Without loss of generality, let $v_1v_2 \in E(G_1)$. Then since σ is an scp we have

$$\begin{split} v_1 v_2 \in & E(G_1) \Rightarrow v_2 v_3 \in E(G_2) \\ & \Rightarrow \dots \Rightarrow v_t v_{t+1} \in E(G_t) \Rightarrow v_{t+1} v_{t+2} \in E(G_1) \\ & \Rightarrow v_{t+2} v_{t+3} \in E(G_2) \Rightarrow \dots \Rightarrow v_{2t} v_{2t+1} \in E(G_t) \\ & \dots & \dots \\ & \Rightarrow v_{(k-1)t+1} v_{(k-1)t+2} \in E(G_1) \Rightarrow v_{(k-1)t+2} v_{(k-1)t+3} \in E(G_2) \\ & \Rightarrow \dots \Rightarrow v_{kt} v_{kt+1} \in E(G_t) \Rightarrow v_{kt+1} v_{kt+2} \in E(G_1) \\ & \Rightarrow v_{kt+2} v_{kt+3} \in E(G_2) \Rightarrow \dots \Rightarrow v_{kt+r-1} v_{kt+r} \in E(G_{r-1}) \\ & \Rightarrow v_{kt+r} v_1 \in E(G_r) \Rightarrow v_1 v_2 \in E(G_{r+1}). \end{split}$$

Thus, it follows that r+1=1, that is, r=0. Thus, every cycle π of σ with $|\pi|>1$ has length $\equiv 0 \pmod{t}$.

Using Lemma 2.6 we now obtain that either (a) every cycle π of σ has $|\pi| \equiv 0$ (mod t) or (b) σ has exactly one fixed point and every other cycle π of σ has $|\pi| \equiv 0 \pmod{t}$. It now easily follows that if (a) is true then $n \equiv 0 \pmod{t}$ and if (b) is true then $n \equiv 1 \pmod{t}$. This proves the theorem.

Lemma 2.8. Let p be a prime number such that for some $r \ge 1$, p^r divides t. If for n > 1, (G_1, G_2, \ldots, G_t) is t-sc on n-points then $n \equiv 0$ or $1 \pmod{p^r}$. In particular, if p = 2 then $n \equiv 0$ or $1 \pmod{2^{r+1}}$.

Proof: This follows since n(n-1)/2t, being the number of edges in G_1 , has to be an integer and p divides n if and only if p does not divide n-1.

Corollary 2.9. If p is a prime number and (G_1, G_2, \ldots, G_p) is p-sc on n points then $n \equiv 0$ or $1 \pmod{p}$.

Corollary 2.9 is stronger than Theorem 2.7 in that it does not need the existence of an scp. In Figure 4, we have already exhibited a 6-sc graph on 4 points. This is possible since the graph does not have an scp. Thus, the example also demonstrates that not every t-sc graph has an scp.

Corollary 2.10. Let $r \ge 1$ and 2^r be a factor of t. If σ is an scp for the t-sc graph (G_1, G_2, \ldots, G_t) and π is a cycle of σ then $|\pi| \equiv 0$ or $1 \pmod{2}^{r+1}$, unless $|\pi| = 1$.

Proof: Let H_i be the subgraph of G_i induced by the points of π . Then (H_1, H_2, \ldots, H_t) is t-sc on $|\pi|$ points. So by Lemma 2.8 $|\pi| \equiv 0$ or 1 (mod 2^{r+1}).

Corollary 2.11. (Ringel [11], Sachs [12]). Let G be self-complementary and σ a complementing permutation of G. Then either $|V(G)| \equiv 0 \pmod{4}$ and all the cycles of σ have length of $\equiv 0 \pmod{4}$, or $|V(G)| \equiv 1 \pmod{4}$ and all but one cycle of σ have lengths $\equiv 0 \pmod{4}$, the remaining cycle having length one.

Proof: Let π be a cycle of σ . Since σ is an scp of the 2-sc graph (G, \overline{G}) , by Corollary 2.10, either $|\pi| = 1$ or $|\pi| \equiv 0$ or 1 (mod 4). By Lemma 2.6 there can be at most one fixed point, proving the corollary.

We conclude this section with a demonstration as to how, given a cpc $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ for the t-sc graph (G_1, G_2, \ldots, G_t) we can generate other cpcs from it.

Lemma 2.12. Let $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ be a cpc for the t-sc graph (G_1, G_2, \ldots, G_t) . Then there exists an integer $r \geq 1$ such that for all $i = 1, 2, \ldots, t$ and s < r, $(\sigma_i, \sigma_{i+1} \ldots \sigma_t \sigma_1 \ldots \sigma_{i-1})^r = identity$ and $(\sigma_i, \sigma_{i+1} \ldots \sigma_t \sigma_1 \ldots \sigma_{i-1})^s \neq identity$ (where suffixes are taken modulo t).

Proof: Let r be the smallest integer ≥ 1 such that $(\sigma_1 \sigma_2 \dots \sigma_t)^r = \text{identity}$. Let i > 1 and let s be the smallest integer ≥ 1 such that $(\sigma_i, \sigma_{i+1} \dots \sigma_t \sigma_1 \dots \sigma_{i-1})^s = \text{identity}$. We shall prove that s = r. Now,

$$\sigma_{i}, \sigma_{i+1} \dots \sigma_{t} = \sigma_{i}, \sigma_{i+1} \dots \sigma_{t} (\sigma_{1} \dots \sigma_{t})^{r}$$

$$= (\sigma_{i}, \sigma_{i+1} \dots \sigma_{t} \sigma_{1} \dots \sigma_{i-1})^{r} \quad \sigma_{i} \sigma_{i+1} \dots \sigma_{t}.$$

So, $(\sigma_i, \sigma_{i+1} \dots \sigma_t \sigma_1 \dots \sigma_{i-1})^r$ = identity = $(\sigma_i, \sigma_{i+1} \dots \sigma_t \sigma_1 \dots \sigma_{i-1})^s$. Thus, by definition of s, it follows $r \geq s$. Again,

$$\sigma_i, \sigma_{i+1} \dots \sigma_t = (\sigma_i, \sigma_{i+1} \dots \sigma_t \sigma_1 \dots \sigma_{i-1})^s \sigma_i \sigma_{i+1} \dots \sigma_t$$
$$= \sigma_i \sigma_{i+1} \dots \sigma_t (\sigma_1 \sigma_2 \dots \sigma_t)^s.$$

So $(\sigma_1 \sigma_2 \dots \sigma_t \sigma_1 \dots \sigma_{i-1})^s$ = identity = $(\sigma_2 \sigma_2 \dots \sigma_t)^r$.

Now by definition of s, it follows that $s \ge r$. It now follows that r = s.

Theorem 2.13. Let $(\sigma_1, \sigma_2, \ldots, \sigma_t)$ be a cpc for the t-sc graph (G_1, G_2, \ldots, G_t) . Let r be as in Lemma 2.12. Then for all $s, 1 \leq s \leq r-1$, the permutations $(\sigma_i \sigma_{i+1} \ldots \sigma_t \sigma_1 \sigma_2 \ldots \sigma_{i-1})^s \sigma_i$ constitute r-1 distinct isomorphisms from G_i to G_{i+1} .

Proof: By Lemma 2.1, $\sigma_i \sigma_{i+1} \dots \sigma_t \sigma_1 \sigma_2 \dots \sigma_{i-1}$ is an automorphism of G_i . So $(\sigma_i \sigma_{i+1} \dots \sigma_{i-1})^s \sigma_i$ is an isomorphism from G_i to G_{i+1} . Suppose now for s, t, 1 < s < t < r-1

$$(\sigma_i \sigma_{i+1} \dots \sigma_{i-1})^s \quad \sigma_i = (\sigma_i \sigma_{i+1} \dots \sigma_{i-1})^t \sigma_i.$$

Then $(\sigma_i \sigma_{i+1} \dots \sigma_{i-1})^{t-s} = identity$.

But
$$t - s < r$$
. So by definition of r , $t = s$. This proves the theorem.

As an illustration for Theorem 2.13, we consider the graph in Figure 3. If σ_1 , σ_2 , σ_3 , are as in 3(b), then σ_1 σ_2 σ_3 σ_1 = σ_2 σ_3 σ_1 σ_2 = σ_3 σ_1 σ_2 σ_3 = (153) (264). Thus, (153)(264) is an scp of (G_1, G_2, G_3) . Also since $(\sigma_1 \sigma_2 \sigma_3)^2$ = identity, r = 2.

3. Existence of t-sc graphs for every integer t.

We begin with a construction of t-sc graphs for every integer t.

Theorem 3.1. For every integer t, there is a t-sc graph on 2t points with an scp σ consisting of a single cycle.

Proof: The proof uses the construction given in Beineke [1]. Let $\mathcal{G} = (G_1, G_2, \ldots, G_t)$ where G_i is the path

$$u_i u_{i-1} u_{i+1} U_{i-2} u_{i+2} u_{i-3} \dots u_{i+t-1} u_{i-t}$$

constructed on the points u_1, u_2, \ldots, u_{2t} .

Then, clearly,
$$\sigma = (u_1 u_2 \dots u_{2t})$$
 is an scp for \mathcal{G} , proving the theorem.

For odd integers t, our construction of a t-sc graph requires only t points as shown below in

Theorem 3.2. For every odd integer t, there is a t-sc graph on t points.

Proof: Let t = 2n+1. Consider K_{2n+1} . It has n(2n+1) edges. Let $V(K_{2n+1}) = \{u_1, u_2, \ldots, u_{2n+1}\}$. By Theorem 1.1, it follows that K_{2n+1} is the union of n spanning cycles. Let these cycles be C_1, C_2, \ldots, C_n . Then as in the proof of Theorem 1.1 C_i contains the edge $u_i u_{i-1}$, $i = 1, 2, \ldots, n$. Define

$$D_1 = C_1 - u_1 u_{2n}$$

 $D_i = C_i - u_i u_{i-1}, \quad i = 2, 3, ..., n.$

Then each D_i can be split into two paths of length n each, say P_{i1} and P_{i2} . Now let G_i be the graph with

$$V(G_{i}) = V(K_{2n+1}) \qquad i = 1, 2, ..., t$$

$$E(G_{i}) = E(P_{i1}) \qquad i = 1, 2, ..., n$$

$$= E(P_{i-n2}) \qquad i = n+1, n+2, ..., t-1$$

$$= \{u_{2n}u_{1}\} \cup \left(\bigcup_{j=2}^{n} \{u_{j-1}u_{j}\}\right) \qquad i = t.$$

Note that $E(G_t)$ is the path u_{2n} $u_1u_2 \ldots u_n$ which is also a path of length n. Clearly, G_1, G_2, \ldots, G_t are all isomorphic graphs. So $G = (G_1, G_2, \ldots, G_t)$ is a t-sc graph on t points. This proves the theorem.

We illustrate the construction described in Theorem 3.2 in the figure below for t = 7.

The next theorem tells us that if t is a power of an odd prime number then the construction given in Theorem 3.2 gives us a minimal t-sc graph.

Theorem 3.3. Let $t = p^{r}$, where p is an odd prime. Then every t-sc graph has at least t points.

Proof: Suppose a t-sc graph has *n* points. By Lemma 2.8 it follows that $n \equiv 0$ or $1 \pmod{p}^r$. So $n \ge p^r = t$.

Theorem 3.4. If t is even then no t-sc graph on t points exists.

Proof: Let \mathcal{G} be a t-sc graph on t points. Then t(t-1)/2t has to be an integer, implying t-1 is even, a contradiction. Hence, the theorem.

The next theorem tells us that if t is a power of 2 then the construction in Theorem 3.1 gives us the minimal t-sc graph.

Theorem 3.5. Let $t = 2^{\tau}$. Then every non-trivial t-sc graph has at least 2t points.

Proof: Let n be the number of points of a t-sc graph. Then $2^{r+1} = 2t$ divides n(n-1), hence, n = 0 or (mod 2t). Hence, $n \ge 2t$.

The next theorem gives a sufficient condition for the existence of t-sc graphs on less than t points.

Theorem 3.6. Let $t = 2^r$, s, with $r \ge 1$ and $s \ge 3$. If s divides either $2^{r+1} - 1$ or $2_{r+1} + 1$ then there exists a t-sc graph on 2^{r+1} points or on $2^{r+1} + 1$ points, respectively.

Proof: Suppose $2^{r+1} - 1$ is divisible by s. Let $n = 2^{r+1}$. Then by Theorem 1.1, K_{n+1} is the union of 2^r spanning cycles each of length $2^{r+1} + 1$. Let these cycles be C_1, C_2, \ldots, C_{2r} .

Let $K_{n+1} = \{u_1, u_2, \dots, u_{n+1}\}$. Each C_i contains exactly 2 edges incident with u_{n+1} . Let D_i be the path of length $2^{r+1} - 1$, obtained by deleting these two edges from C_i . Split D_i into s edge-disjoint paths of length $(2^{r+1} - 1)/s$.

Let these paths be $P_{i1}, P_{i2}, \ldots, P_{is}$. Let G_{ik} be the graph with $V(G_{ik}) = \{u_1, u_2, \ldots, u_n\}$ and $E(G_{ik}) = E(P_{ik}), k = 1, 2, \ldots, s, i = 1, 2, \ldots, 2^r$. Then clearly, $G_{11}, G_{12}, \ldots, G_{1s}, G_{21}, G_{22}, \ldots, G_{2s}, \ldots, G_{2r_1}, G_{2r_2}, G_{2r_s}$, are all isomorphic graphs. So $G = (G_{11}, G_{12}, \ldots, G_{2r_s})$, is a t-sc graph on $n(=2^{r+1})$ points.

Suppose $2^{r+1}+1$ is divisible by s. Let $n=2^{r+1}+1$. Then by Theorem 1.1, K_n is the union of 2^r spanning cycles each of length $2^{r+1}+1$. Let these cycles be $C_1, C_2, \ldots, C_{2^r}$. Split each C_i into s edge-disjoint paths of length $(2^{r+1}+1)/s$. Let these paths be $P_{i1}, P_{i2}, \ldots, P_{is}$. Then define G_{ik} as the graph with $V(G_{ik}) = V(K_n)$ and $E(G_{ik}) = E(P_{ik})$. Clearly, $G_{11}, G_{12}, \ldots, G_{1s}, G_{21}, G_{22}, \ldots, G_{2s}, \ldots, G_{2^{r_1}}, G_{2^{r_2}}, \ldots, G_{2^{r_s}}$ are all isomorphic. So $G = (G_{11}, G_{12}, \ldots, G_{2^{r_s}})$ is a t-sc graph on $n = 2^{r+1}+1$ points.

Corollary 3.7. Let $t = 2^r \cdot 3$. Then there exists a t-sc graph on 2^{r+1} points or one on $2^{r+1} + 1$ points.

Proof: Follows from Theorem 3.6 since s = 3 divides either the $2^{r+1} - 1$ or $2^{r+1} + 1$.

Figure 6 illustrates the construction described in the proof of Theorem 3.6 for t = 6 and t = 12.

The next theorem tells us that the graphs constructed in Theorem 3.6 are minimal.

Theorem 3.8. Let $t=2^r s$ with $r\geq 1$ and $s\geq 3$. Then every t-sc graph has at least $2^{r+1}+1$ points. Further, if s divides $2^{r+1}+1$ then every t-sc graph has at least $2^{r+1}+1$ points.

Proof: Let n be the number of points of a t-sc graph. Now since $n(n-1)/2^{r+1}s$ is an integer, it follows that either n or n-1 is divisible by 2^{r+1} . So $n \ge 2^{r+1}$. Now, if $n = 2^{r+1}$ then $n(n-1)/2^{r+1}s = (n-1)/s$ and so s divides $n-1 = 2^{r+1} - 1$. Clearly, then s does not divide $2^{r+1} + 1$. Hence, if s divides $2^{r+1} + 1$, then $n > 2^{r+1}$. This proves the theorem.

If G is a t-sc graph on n points then n(n-1)/2t has to be an integer. In the next few theorems we investigate some sufficient conditions for the existence of t-sc graphs on n points.

Theorem 3.9. Let n = 2s + 1. If t divides n(n-1)/2 and s divides t then there exists a t-sc graph on n points.

Proof: By Theorem 1.1, K_n is the union of s spanning cycles, say C_1, C_2, \ldots, C_s . Let t = ks. Since t divides n(n-1)/2 it follows that k divides n. Now divide each C_i into k edge-disjoint paths $P_{i1}, P_{i2}, \ldots, P_{ik}$ each of length n/k. Define G_{ij} to be the graph with $V(G_{ij}) = V(K_n)$ and $E(G_{ij}) = E(P_{ij}), j = 1, 2, ..., k$, i = 1, 2, ..., s. Then the graphs $G_{ij}, j = 1, 2, ..., k$, i = 1, 2, ..., s are all isomorphic. Hence, $G = (G_{11}, ..., G_{sk})$ is t-sc on n points.

Theorem 3.10. Let n = 2s. If t divides n(n-1)/2 and s divides t then there exists a t-sc graph on n points.

Proof: Consider K_{2s+1} . Let $V(K_{2s+1}) = \{u_1, u_2, \dots, u_{2s}, u_{2s+1}\}$. By Theorem 1.1, K_{2s+1} is the union of s spanning cycles C_1, C_2, \dots, C_s . Let

$$P_i = C_i - u_{2s+1}, \quad i = 1, 2, \dots, s.$$

Then P_i is a path of length 2s-1. Now let t=ks. Then since t divides s(2s-1) it follows that k divides 2s-1. Thus, we can split each P_i into k edge-disjoint paths of length (2s-1)/k. Let these be $P_{i1}, P_{i2}, \ldots, P_{ik}$. Now define G_{ij} as the graph with

$$V(G_{ij}) = \{u_1, u_2, \dots, u_n\}$$
 and $E(G_{ij}) = E(P_{ij})$
 $j = 1, 2, \dots, k;$ $i = 1, 2, \dots, s.$

Then the graphs G_{ij} , $j=1,2,\ldots,k$; $i=1,2,\ldots,s$ are all isomorphic. Hence, $\mathcal{G}=(G_{11},\ldots,G_{sk})$ is t-sc on n points.

Theorem 3.11. Let n = 2s. If 2t divides n then there is a t-sc graph on n points.

Proof: Let n = 2tk. By Theorem 3.1, there is a t-sc graph $\mathcal{G} = (G_1, G_2, \dots, G_t)$ on 2t points where as in the proof of the theorem G_i is the path

$$u_i u_{i-1} u_{i+1} u_{i-2} u_{i+2} u_{i-3} \dots u_{i+t-1} u_{i-t}$$

constructed on the points u_1, u_2, \ldots, u_{2t} .

Notice that u_i and u_{i+t} (same as u_{i-t}) are both end points of G_i . Let $V(K_n) = \{v_{ij}, j = 1, 2, ..., k; i = 1, 2, ..., 2t\}$ (n = 2kt). Now for m = 1, 2, ..., t, we define H_m to be the spanning subgraph of K_n with $v_{ij}v_{i'j'} \in E(H_m)$ if and only if either

- (i) i = i' = m or i = i' = m + t or
- (ii) $u_iu_{i'} \in E(G_m)$.

Then clearly, $\mathcal{H} = (H_1, H_2, \dots, H_t)$ is t-sc on n points. This proves the theorem.

Figure 7(a) and 7(b) illustrates the constructions embodied in Theorem 3.1 for t = 4 and Theorem 3.11 for n = 16 and t = 4.

Figure 7(a)

4. Construction of an infinite class of t-sc graphs.

In this section, we give an inductive procedure for constructing infinite classes of t-sc graphs each with an scp.

Theorem 4.1. Let $\mathcal{G} = (G_1, G_2, \dots, G_t)$ be t-sc with an scp σ . Let $\mathcal{G} = (G'_1, G'_2, \dots, G'_t)$ where G'_i is the graph with

$$V(G'_{i}) = V(G_{i}) \cup \{w_{1}, w_{2}, \dots, w_{t}\}$$

$$E(G'_{i}) = E(G_{i}) \cup \{w_{i}, w_{i+1 \pmod{t}}\} \cup (\bigcup \{w_{i}u\}) u \in V(G_{i})$$

$$i = 1, 2, \dots, t.$$

Then G' is t-sc with $\sigma' = \sigma(w_1 w_2 \dots w_t)$ as an scp.

Proof: We shall prove that for each i, σ' is an isomorphism from G'_i G'_{i+1} . Let $u, v \in V(G'_i)$.

Case 1. $u, v \in V(G_i)$. Then $\sigma'(u) = \sigma(u)$ and $\sigma'(v) = \sigma(v)$ and the result

Case 1. $u, v \in V(G_i)$. Then $\sigma'(u) = \sigma(u)$ and $\sigma'(v) = \sigma(v)$ and the result follows since σ is an isomorphism from G_i to G_{i+1} and since for all j, G_j is the subgraph induced by $V(G_j)$ in G'_i .

Case 2. $u \in V(G_i)$ and $v = w_k$. Then

$$uv \in E(G'_i) \Leftrightarrow v = w_i \Leftrightarrow \sigma(u) \in V(G_{i+1}) \text{ and } \sigma(v) = w_{i+1}$$

 $\Leftrightarrow \sigma'(u)\sigma'(v) \in E(G'_{i+1}).$

Case 3. $u = w_i, v = w_k$. Then

$$uv \in E(G'_i) \Leftrightarrow u = w_i, v = w_{i+1 \pmod{t}}$$

$$\Leftrightarrow \sigma'(u) = w_{i+1 \pmod{t}} \text{ and } \sigma'(v) = w_{i+2 \pmod{t}}$$

$$\Leftrightarrow \sigma'(u)\sigma'(v) \in E(G'_{i+1}).$$

This covers all cases and, thus, the theorem is proved.

We demonstrate Theorem 4.1 in the construction shown in Figure 7.

Figure 7. $\sigma' = (123)(w_1w_2w_3)$.

The graphs generated by Theorem 4.1 are all disconnected. Our next theorem inductively generates an infinite class of connected t-sc graphs.

Theorem 4.2. Let $G = (G_1, G_2, \ldots, G_t)$ be a connected t-sc graph with an scp σ . Then there exists a connected t-sc graph $G' = (G'_1, G'_2, \ldots, G'_t)$ where for each $i = 1, 2, \ldots, t$, $|V(G'_i)| = |V(G_i)| + t$. Moreover, $\sigma' = \sigma(w_1 w_2 \ldots w_t)$ is an scp for G'.

Proof: By Theorem 2.7, σ may have at most one fixed point and every other cycle π has $|\pi| \equiv 0 \pmod{t}$. Let $\pi = (u_1, u_2, \ldots, u_{kt})$ be a cycle of σ with $|\pi| > 1$, and let (u_0) denote a possible fixed point of σ . Then we dfine the graph G_i as

follows:

$$\begin{split} V(G_i') &= V(G_i) \cup \{w_1, w_2, \dots, w_t\} \\ E(G_i') &= E(G_i) \cup \{w_i, w_{i+1 \pmod{t}}\} \cup \left(\bigcup_{\substack{\pi \in \sigma \\ |\pi| > 1}} \left(\bigcup_{r=0}^{k-1} \{u_{i+rt}w\}\right)\right) \cup \{u_0 w_i\} \end{split}$$

where the edge $u_0 w_i$ is added to $E(G'_i)$ only when σ has a fixed point, namely, ' u_0 ' and omitted otherwise.

We now prove that σ is an isomorphism from G'_i to G'_{i+1} . Let $u, v \in V(G'_i)$. If $u, v \in V(G_i)$ or if $u = w_j$ and $v = w_k$ this proof is similar to Case 1 and Case 3, respectively, in the proof of Theorem 4.1.

We consider the remaining cases below: Suppose $u \in V(G_i) - \{u_0\}$ and $v = w_j$. Then

$$uV \in E(G'_i)$$

 $\Leftrightarrow u \in v(\pi) \text{ for some } \pi \in \sigma \text{ with } |\pi| > 1 \text{ and } v = w_i$
 $\Leftrightarrow \sigma'(u) \in V(\pi) \text{ for some } \pi \in \sigma \text{ with } |\pi| > 1 \text{ and } \sigma'(v) = w_{i+1}$
 $\Leftrightarrow \sigma'(u)\sigma'(v) \in E(G'_{i+1})$

Further if $u = u_0$ and $v = w_i$ then $\sigma'(u) = u_0$ and

$$uv \in E(G'_i) \Leftrightarrow v = w_i \Leftrightarrow \sigma'(v) = w_{i+1}$$

$$\Leftrightarrow \sigma'(u)\sigma'(v) \in E(G'_{i+1})$$

This covers all cases and proves our claim.

Finally, if G_i is connected and non-trivial then it is trivial to see that by construction G_i' is also connected. This proves the theorem completely.

Conclusion.

The class of t-sc graphs exhibit many interesting properties. In separate papers, ([3], [4]), we construct a canonical stable complementing permutation for all t-sc graphs, and generalize a construction of Gibbs [8] for self-complementary graphs.

In conclusion, we would like to introduce the notion of a generalized factorization. A *t-factorization* of a graph G is a *t*-tuple $G = (G_1, G_2, \ldots, G_t)$ where:

- i) each G_i is a spanning subgraph of G;
- ii) $E(G_i) \cap E(G_j) = \emptyset \ \forall i \neq j;$
- iii) $E(G) = \bigcup_{i=1}^t \dot{E}(G_i);$
- iv) G_1, G_2, \ldots, G_t , are all isomorphic.

If G is a complete graph then G becomes a t-sc graph. Similarly, another interesting class is obtained by taking G to be a complete r-partite graph. For such a G, the t-tuple is called a t-rpsc (t-r partite self-complementary) graph. In a separate paper [4.a] we study the properties of this class of graphs.

Acknowledgement.

The author is indebted to the referee for his comments and suggestions.

References

- 1. L.W. Beineke, *Decompositions of complete graphs into forests*, Mat. Kutato Int. Kozl. 9 (1964), 589-594.
- 2. C.R.J. Clapham, *Hamiltonian arcs in self-complementary graphs*, Discrete Math. 8 (1974), 251–255.
- 3. T. Gangopadhyay, On the construction 3-sc graphs. (to be submitted).
- 4. T. Gangopadhyay, On the existence of a Canonical stable complementing permutation for t-sc graphs. (to be submitted).
- 4 a). T. Gangopadhyay, On a generalization of r-psc graphs. (to be submitted).
 - 5. T. Gangopadhyay and S.P. Rao Hebbare, Multipartite self-complementary graphs, Ars Combinatoria 13 (1982), 87-114.
 - 6. T. Gangopadhyay and S.P.Rao Hebbare, *Paths in r-partite self-complementary graphs*, Discrete Math. 32 (1980), pp 229–244.
 - 7. T. Gangopadhyay and S.P.Rao Hebbare, r-partite self-complementary graphs—diameters, Discrete Math. 32 (1980), 245–256.
 - 8. R.A. Gibbs, Self-complementary graphs, J. Combin. Theory Ser. B, 16 (1974), 106–123.
 - 9. F. Harary, "Graph Theory", Addison-Wesley, Reading, 1969.
 - 10. S.B. Rao, Explored, semi-explored, and unexplored territories in the structure theory of self-complementary graphs and digraphs, Proceedings of the Symposium on Graph Theory, in "I.S.I. Lecture Notes 4", Ed. A.R. Rao, MacMillan Co.
 - 11. G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963), 354-358.
 - 12. H. Sachs, Über Selbstkomplementäre Graphen, Pub. Math. Debrecen 9 (1962), 270–288.