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Abstract. In this paper, we present a new generalization of the self-complementary
graphs, called the t-sc graphs. Various properties of this class of graphs are studied
generalizing earlier results on self-complementary graphs. Certain existential results
on t-sc graphs are presented, followed by the construction of some infinite classes of
t-sc graphs. Finally, the notion of t-sc graphs is linked with the notion of factorization.
This leads to a generalization of r-partite self-complementary graphs.

1. Introduction and definitions.

The class of self-complementary graphs has been extensively studied by many
people, among others by C.R.J. Clapham [2], R.A. Gibbs [8], S.B. Rao [10],
G. Ringel [11], and H. Sachs [12], and many problems have been solved for this
class of graphs, such as the hamiltonian problem and the characterization of poten-
tially and forcibly self-complementary degree sequences (see the references given
in [10]). This interesting class has also been generalized into the class of multi-
partite self-complementary graphs by T. Gangopadhyay and S.P. Rao Hebbare [S].
Several important notions such as path-lengths, range of diameters have already
been studied for the generalized class (see [6], [7]).

In the present paper a new generalization of the self-complementary graphs, the
class of t-sc graphs, is presented and various properties of this class of graphs are
studied — generalizing earlier results of Ringel [11] and Sachs [12]. In Section 2
of this paper, we study some structural properties of stable complementing permu-
tations. In Section 3, we study certain existential results on t-sc graphs. In Section
4, we construct infinite classes of t-sc graphs having a stable complementing per-
mutation. In conclusion, we define the notion of t-rpsc graphs which constitutes a
generalization of r-partite self-complementary graphs, extensively studied in ([5],
[6]). For all undefined terms we refer to Harary [9].

Given an integer t, the ¢-tuple G = (G1,Ga,... ,Gy) is called a t-sc graph if
there exists a complete graph G such that:

i) each G; is a spanning subgraph of G;

ii) E(Q) is the disjoint union of E(G1), E(G2),...,E(Gt);

iii) G;,G,,...,G; are all isomorphic graphs.
At-scgraph G = (G1,G>, ... ,Gy) is called connected if G is connected.

Let (G1,G3,...,Gt) be a t-sc graph. Let o; be an isomorphism from G; to
Gi+1,1 € 1 < t — 1, and let o; be an isomorphism from G; to G1. Then the
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t-tuple (o1,02,...,0¢) is called a complementing permutation class (cpc) for
(G1,Ga2,...,Gy).

Let 7 be a cycle of ;. We denote by || the length of m, that is, the number of
points of G; contained in . We say  is a fixed point if || = 1.

Clearly, if t = 2 then G2 = G and G is a self-complementary graph in the
usual sense. Also, if (o1, 02, ) is a cpc for (G1,G2) then oy is a complementing
permutation for the self-complementary graph G, in the usual sense of the term.

Let (01,02,...,0¢) be acpc for a t-sc graph. If o1 = 02 = ...0¢ = o (say)
then o is called a stable complementing permutation (scp) for (G1,Ga,... ,Gt).
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@o1=02=03=(123) (b) oy =(2) (13), o2 = (3) (12), o3 = (1) (23).
Figure 1

Figure 1 shows the only 3-sc graph on 3 points. Clearly, (a) o = (123) is an scp
and (b) ((2)(13), (3)(12), (1)(23)) is acpc for the 3-sc graphs.

1 ql 1
od 4 & 4
2 20 ~»3 20 o3 2

€ Gy, Gy Ky

o1 =03 = o3 = (1) (234).
Figure 2

Figure 2 shows a 3-sc graph on 4 points with o = (1)(234) as an scp.

Figure 3 depicts a 3-sc graph on 6 points with an scp o = (123456) and a cpc
((126)(345),(123)(456),(156)(234)).

Figure 4 depicts a 6-sc graph on 4 points witha cpc (o1, 02,03, 04, 05, 06 ) Where
each o; is as given in the figure.

The notion of t-sc graphs is intimately linked with the notion of factorization.
For instance, if G = (G1,G2,... ,Gy) is a t-sc graph with the property that G
is regular with degree d, then G constitutes a d-factorization of K, where n =
V(G|

This relationship is strongly reflected in Section 3, where we repeatedly invoke
the following.
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o1 = (1)(23)(4) = 03, 02 = (3)(14)(2), 0s = (H(12)(3),
os = (12)(34), o6 = (2)(13)(4).
Figure 4

Theorem 1.1. (See Harary [9]). The graph K3 ,.1 can be factored into n span-
ning cycles.

Proof: Let V(Kam1) = {u1,u2,..., %241 }. We construct n paths P; on the
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points u1,u2,... ,u2, as follows:
Pi = 01 181 %2 - o« Yisn1 tin.

Thus, the jth point of P; is uy, where k = i + (—1)7*![j/2] and all subscripts
are taken as the integers 1,2,... ,2n (mod 2n). The spanning cycle C; is then
constructed by joining u;,.; to the end points of F;.

We also make use of Beineke’s [1] construction in which K>, is factored into
n hamiltonian paths. [ ]

2. Fundamental properties of stable complementing permutations.

In this section, we study the properties of an scp of a t-sc graph and establish
analogues of some well-known theorems on self-complementary graphs.

Lemma2.1. Let(ay,07,...,0t) beacpcfor (G1,Ga2,...,Gy). Then foreach
i€{1,2,...,t}, 001 ...05_1 is an autormorphism for G;.

Proof:

uv € BE(G} 0i(u)0i(v) € E(Giv1)
4 0i0i+1(1) 0i0i+1(v) € E(Gis2)
& ... & 0i0i+1 ...0t_1(8) 0041 ... 0—1(v) EE(GY)
& 05...0¢10t(u)o;...oi_10¢(v) EE(Gy)
& 0i0i41 ...0101(2) 030441 ...0101 (v) EE(G))
& 0i0i1 ...0t0102 ...0i-1(8)0;041 ...0¢0102 ...05-1(v) EE(G1).

This proves the Lemma. |

Lemma 2.2. Let o be an scp for (Gh,... ,Gy). Then o' is an automorphism
foreach G;,i=1,2,...,t.
Proof: This follows by substitutingo; = o Vi=1,2,... ,t. 1

The existence of an scp is a very desirable property for a t-sc graph. The fol-
lowing Lemma gives a sufficient condition for the existence of an scp.

Lemma 2.3. Let (01,02,...,0:) beacpc for a t-sc graph (G1,G2,... ,Gy).
If i = a3 =...= 011 = o (say), then o is an scp for (G1,G2,...,G¢).

Proof: Itis enough to show that o is an isomorphism from G to G, . This follows
since uv € E(G:). © uv € E(G;) foreachi = 1,2,...,t — 1. & o(uw)
o(v) ¢ E(G;) foreachi=2,3,...,t. & o(u) o(v) € E(G1). [ ]
Corollary 2.4. Let G be a sc graph and o a complementing permutation of G.
Then o is an scp for the 2-sc graphs (G,G).

The following corollary now directly follows from Lemma 2.2 and Corollary
24,
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Corollary 2.5. Let G be a sc graph with a complementing permutation o . Then
o2 is an automorphism of G.

Lemma 2.6. Let o be an scp for a t-sc graph (G, G4, ... ,Gt). Then o has at
most one fixed point.

Proof: Let m = (u), w2 = (v) be two fixed points in o. Let uv € E(G;). Then
o(u) o(v) € E(Gi+1). Buto(u) = m(u) = v and o(v) = m(v) = v. So
uv € E(Gjs1). Thus, uv € E(G;) N E(G;41), a contradiction. This proves the
Lemma. [ |

Theorem 2.7. If a t-sc graph (G1,Ga2,... ,Gt) on n points has an scp o then
n=0o0r1 (mod t). If n=0 (mod t) then all cycles w of o have |r| = 0

(mod t). If n = 1 (mod t) then o has exacly 1 cycle of length 1, all other
cycles w having |n| =0 (mod t).

Proof: Let 7 = (v1,v2,... ,vksr) beacycleof o withr < tand kt + r > 1.
Clearly, viv2 € E(G;) for some i. Without loss of generality, let viva € E(G1).
Then since o is an scp we have

viv2 EE(G1) = v2v3 € E(G2)
= oS Utls] GE(Gg) = v v2 €EE(GH)
= V2 ve3 EE(G2) = ... = v2v2141 EE(GY)

= Y(k-1)t+1V(k-1)t+2 € B(G1) = v(k-1yte2V(k-1)1+3 € E(G2)
= ... => ViVkts1 € B(Gr) = Vite1vkee2 € E(Gh)
= Vkt42Vkt+3 EE(G2) = ... = Vkter—1Viktsr EE(Gr-1)
= Vt+rv1 € E(Gy) = v1v2 EE(Gre1).
Thus, it follows that » + 1 = 1, thatis, » = 0. Thus, every cycle = of ¢ with
|| > 1 has length=0 (mod t).

Using Lemma 2.6 we now obtain that either (a) every cycle « of o has x| = 0
(mod t) or (b) o has exactly one fixed point and every other cycle w of o has
|w] = 0 (mod t). It now easily follows that if (a) is true thenn = 0 (mod t)
and if (b) is true then n =1 (mod t). This proves the theorem. [ ]

Lemma 2.8. Let p be a prime number such that for some r > 1, p" divides t.
Ifforn>1,(G1,Ga,... ,Gy) ist-scon n-points then n=0 or 1 (mod p").
In particular, if p= 2 then n=0 or 1 (mod 2™*!),

Proof: This follows since n(n— 1) /2¢, being the number of edges in G, has to
be an integer and p divides = if and only if p does not divide n— 1. [ |
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Corollary 2.9. If p is a prime number and (G’ 1 Gz y+ -+, Gp) is p-scon m points
thenn=0 or 1 (mod p).

Corollary 2.9 is stronger than Theorem 2.7 in that it does not need the exis-
tence of an scp. In Figure 4, we have already exhibited a 6-sc graph on 4 points.
This is possible since the graph does not have an scp. Thus, the example also
demonstrates that not every t-sc graph has an scp.

Corollary 2.10. Let r > 1 and 27 be a factor of t. If o is an scp for the t-sc

graph (G1,Ga, ... ,Gy) and w is acycle of o then |n| =0 or 1 (mod 2)™!,

unless |w| = 1.

Proof: Let H; be the subgraph of G; induced by the points of «. Then ( H;, H>,
., Hy) is t-sc on || points. So by Lemma 2.8 |x| =0 or1 (mod 27!). §
The following is a theorem on self-complementary graphs.

Corollary 2.11. (Ringel [11], Sachs [12]). Let G be self-complementary and
o a complementing permutation of G. Then either |V(G)| = 0 (mod 4) and
all the cycles of o have lengthof =0 (mod 4), or |[V(G)| =1 (mod 4) and
all but one cycle of o have lengths = 0 (mod 4), the remaining cycle having
length one.

Proof: Let 7 be a cycle of ¢. Since o is an scp of the 2-sc graph (G, G), by
Corollary 2.10, either [r] = 1 or |7 = 0 or1 (mod 4). By Lemma 2.6 there can
be at most one fixed point, proving the corollary. [ |
We conclude this section with a demonstration as to how, given a cpc (o, 02,
.., o) for the t-sc graph (G1, G2, ... ,G:) we can generate other cpcs from it.

Lemma 2.12. Let(o1,02,...,0:) beacpcforthet-scgraph (G1,Ga, ... ,Gy).
Then there exists an integer v > 1 such that forall 1 = 1,2,... ,tand s < r,
(03,041 ...0¢01 ...04—1)" = identity and (0;,0441 ...0t01 ...04-1)° ¥ identity
(where suffixes are taken modulo t).

Proof: Let r be the smallest integer > 1 such that (o107 ...0¢)" = identity. Let
1 > 1 and let s be the smallest integer > 1 such that (o3, 0441 ... 001 ...04_1)° =
identity. We shall prove that s = r. Now,
05,0441 +.. 0 = 03, Oi41 ... 0¢(01 ...0¢)7
= (0;,04+1 ... 0t01 ...0;_1)"  OiOis1 ...0¢.
So, (0;,0441 ...0¢01 ...05_1)" = identity = (o}, Gis1 ...0¢01 ...0;-1)°. Thus,
by definition of s, it follows » > s. Again,
05,0541 - .. T = (04, 0541 « - . 0401 ... T4_1) 0§04+ ... 0t
= 0;04+1 ... (0102 ...0¢)°.

So (0102 ...0¢01 ...04-1)° = identity = (0202 ...0¢)".
Now by definition of s, it follows that s > r. It now follows that r = s.
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Theorem 2.13. Let (o1,03,...,0t) beacpe forthe t-sc graph (G1,Ga, ... ,Gy).
Let r be as in Lemma 2.12. Then for all 3,1 < s < r — 1, the permutations
(0i05+1 ...0t0102 ...04_1)° o; constitute r — 1 distinct isomorphisms from G;
10 Giy1.

Proof: By Lemma 2.1, 0;04+1 ...0t0102 ... 051 is an automorphism of G;. So
(0i0i+1 ...04i-1)° o; is an isomorphism from G; to G;,1. Suppose now for s, t,
1<s<t<r—1

(0i0i41 ...0i-1)®  0i = (0i041 ... 05-1)" ;.

Then (00441 ... U,'_l)t"’ = identity.
Butt — s < r. So by definition of r, ¢ = s. This proves the theorem. [ ]

As an illustration for Theorem 2.13, we consider the graph in Figure 3. If oy,
02, 03, are as in 3(b), then o1 02 03 01 = 02 03 01 02 = 03 01 02 03 = (153)
(264). Thus, (153)(264) is an scp of (G1,G2,G3). Alsosince (o1 03 03)2 =
identity, r = 2.

3. Existence of t-sc graphs for every inteqer t.
We begin with a construction of t-sc graphs for every integer t.

Theorem 3.1. Forevery integer t, there is a t-sc graph on 2t points with an scp
o consisting of a single cycle.

Proof: The proof uses the construction given in Beineke [1]. Let G = (G1, G2,
..., Gt) where G; is the path

Uithi 1 Use 1 UG 2 Ui 2 i3 oo Uug—1 Uit

constructed on the points ug, uz, ..., ;.
Then, clearly, o = (u1u3 ...us;) is an scp for G, proving the theorem. 1

For odd integers t, our construction of a t-sc graph requires only ¢ points as
shown below in
Theorem 3.2. For every odd integer t, there is a t-sc graph on t points.

Proof: Lett = 2n+ 1. Consider K31 . Ithas n(2n+ 1) edges. Let V(Kape1) =
{u1,u2,... ,4241}. By Theorem 1.1, it follows that K5, is the union of n
spanning cycles. Let these cycles be Ci, C,,...,Cy. Then as in the proof of
Theorem 1.1 C; contains the edge u;u;_1,1=1,2,...,n Define

Dy =C1 —uiuzg
D; = C; — u;ui_y, 1=2,3,...,n
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Then each D; can be split into two paths of length n each, say P; and P;. Now

let G;; be the graph with
V(G) =V(Kap1) i=1,2,...,1
E(Gy) = E(Py) i=1,2,...,n

= E(Pi_w)

i=n+l,n+2,...,t-1

i=1t.

n
= {u2aum} U | (J{uj-145}
j=2

Note that E(Gy) is the path u3, uju; ... u, which is also a path of length 7.
Clearly, G1,G3, ... ,G are all isomorphic graphs. So G = (Gy,Ga,...,G:)
is a t-sc graph on ¢ points. This proves the theorem. [ ]
We illustrate the construction described in Theorem 3.2 in the figure below for
t=17. o o
o

ou

[o] ou.,
Uz

u4 u4
G
1 G
3 Gy
Y,
ou 1
u, o0 1 )
7 u70 ‘ul -
e}
6————>0U u
Yo 2 6
U o ou,
o ou,
E——( u5 2
Ug 9 3 ug
4 Ll4 u3 JJ
G2 u G Uy
4 G6
u
7 o u2
Yo
u50 u’) .
G, oy, Figure 5

The next theorem tells us that if ¢ is a power of an odd prime number then the
construction given in Theorem 3.2 gives us a minimal t-sc graph.
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Theorem 3.3. Let t = p", where p is an odd prime. Then every t-sc graph has
at least t points.

Proof: Suppose a t-sc graph has n points. By Lemma 2.8 it follows thatn = 0 or
1 (mod p)™. Son>p" =1t. |

Theorem 3.4, If t is even then no t-sc graph on t points exists.

Proof: Let G be a t-sc graph on ¢ points. Then ¢(¢t — 1) /2t has to be an integer,
implying ¢t — 1 is even, a contradiction. Hence, the theorem. |

The next theorem tells us that if ¢ is a power of 2 then the construction in The-
orem 3.1 gives us the minimal t-sc graph.

Theorem 3.5. Let t = 27. Then every non-trivial t-sc graph has at least 2t
points.

Proof: Let n be the number of points of a t-sc graph. Then 27! = 2¢ divides
n(n— 1), hence,n=0 or (mod 2t). Hence, n > 21t. [ |

The next theorem gives a sufficient condition for the existence of t-sc graphs on
less than ¢ points.

Theorem 3.6. Lett=2",s, withr > 1 and s > 3. If s divides either 27! — 1
or 2,,1 + 1 then there exists a t-sc graph on 2™ points oron 2™ + 1 points,
respectively.

Proof: Suppose 27! — 1 is divisible by s. Let n= 27*!, Then by Theorem 1.1,
K41 is the union of 27 spanning cycles each of length 27! + 1. Let these cycles
be C1,C,, ... ,Cor.

Let K1 = {u1,42,...,un1 }. Each C; contains exactly 2 edges incident
with u,,; . Let D; be the path of length 27*! — 1, obtained by deleting these two
edges from C;. Split D; into s edge-disjoint paths of length (27! — 1) /s.

Let these paths be P;;, P2,...,P;,s. Let Gy be the graph with V(Gy) =
{u1,u2,...,u,}and E(G;) = E(Py),k=1,2,...,s,i=1,2,...,2". Then
clearly, Gu N Glz, cee ,G],, G21 ,Gzz, eos ,Gz,, ceey G2'l N Gzrz ,Gzra, are all iso-
morphic graphs. So G = (Gu1, G1z2,... ,Gan), is a t-sc graph on n(= 27+1)
points.

Suppose 2™ + 1 is divisible by s. Letn = 2! + 1. Then by Theorem 1.1,
K, is the union of 2" spanning cycles each of length 27+! + 1. Let these cycles be
C1,Ca,... ,Cyr. Split each G; into s edge-disjoint paths of length (27! + 1) /s.
Let these paths be P;;, P;,... , P;,. Then define Gy as the graph with V(Gy) =
V(K,) and E(Gix) = E(Py). Clearly, G1,G12, ... ,G1s,Gu,Gn, ... ,Ga,,
..t yG2n,G2n, ... ,Gan are all isomorphic. So G = (Gi1,G1z2,... ,Gan isa
t-sc graph on n (= 27! + 1) points. ]

Corollary 3.7. Let t = 27-3. Then there exists a t-sc graph on 2™+ points or
oneon 2™! + 1 points.
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Proof: Follows from Theorem 3.6 since s = 3 divides either the 27+! — 1 or
2m+1 41, 1

Figure 6 illustrates the construction described in the proof of Theorem 3.6 for
t=6andt=12.

The next theorem tells us that the graphs constructed in Theorem 3.6 are mini-
mal.

Theorem 3.8. Lett =2"s with r > 1 and s > 3. Then every t-sc graph has at
least 27! + 1 points. Further, if s divides 27 + 1 then every t-sc graph has at
least 27! + 1 points.
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Figure 6 (continued)

Proof: Let nbe the number of points of a t-sc graph. Now since n(n—1) /2 mlgis
an integer, it follows that either nor n—1 is divisible by 27*!. Son > 2"*1. Now,
ifn=271 thenn(n—1)/2"*'s = (n—1)/s andso s divides n—1 =21 —1.
Clearly, then s does not divide 27! + 1. Hence, if s divides 27! + 1, then
n> 27+1, This proves the theorem. ]

If G is a t-sc graph on n points then n(n — 1) /2¢ has to be an integer. In the
next few theorems we investigate some sufficient conditions for the existence of
t-sc graphs on n points.

Theorem 3.9. Let n= 2s+ 1. If t divides n(n— 1) /2 and s divides t then
there exists a t-sc graph on n points.

Proof: By Theorem 1.1, K,, is the union of s spanning cycles, say Cy,C,,... ,C;.
Lett = ks. Since t divides n(n — 1) /2 it follows that k divides n. Now divide
each C; into k edge-disjoint paths P;; , Py, ... , Py each of length n/ k. Define G;;
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to be the graph with V(Gy;) = V(K,) and E(Gy;) = B(Py).j = 1,2,... ,k,
i=1,2,...,s. Then the graphs Gi;, j = 1,2,... ,k,i = 1,2,...,s are all
isomorphic. Hence, G = (G11,... ,Gsk) is t-sC on n points. 1

Theorem 3.10. Let n= 2s. If t divides n(n— 1) /2 and s divides t then there
exists a t-sc graph on n points.

Proof: Consider Kp,+1. LetV(K2441) = {u1,2,... 824, 42,+1}. By Theorem
1.1, K341 is the union of s spanning cycles C1,(C,, ... ,C,. Let

P.‘=Cg'—U2,+1, 1= 1,2,... 8.

Then P; is apath of length2s—1. Now lett = ks. Then since ¢ divides s(2s—1)
it follows that k divides 2s — 1. Thus, we can split each P; into k edge-disjoint
paths of length (2s— 1) /k. Let these be P;;, Pia, ... , Pi. Now define G;; as the
graph with

V(Gy;) = {ul,uz,... , g} and E(Gyj) = E(F;)
j=1,2,...,k; i=1,2,...,s.

Then the graphs G;;,j = 1,2,...,k;i=1,2,..., s are all isomorphic. Hence,
G =(Gu,...,Gs) is t-sc on npoints. 1

Theorem 3.11. Let n = 2s. If 2t divides m then there is a t-sc graph on n
poins.

Proof: Letn= 2tk. By Theorem 3.1, thereis at-sc graph G = (G1,Ga,... ,Gy)
on 2t points where as in the proof of the theorem G; is the path

Uithi—] Ui U2 U2 Ui3 - .. Ugrt—1 Uit

constructed on the points u;, u2,... , u2;.

Notice that u; and u;,; (same as u;_¢) are both end points of G;. Let V( K,) =
{vij»7 =1,2,...,k;i=1,2,...,2t} (n= 2kt). Now form = 1,2,... ,t,
we define H,, to be the spanning subgraph of K, with v;;vy; € E(H,,) if and
only if either

(i) i=i=mori=i=m+tor

(i) usuy € E(Gn).
Then clearly, X = (H;, Ha,... , H;) is t-sc on n points. This proves the theo-
rem. 1

Figure 7(a) and 7(b) illustrates the constructions embodied in Theorem 3.1 for
t = 4 and Theorem 3.11 forn= 16 andt = 4.
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4. Construction of an infinite class of t-sc graphs.

In this section, we give an inductive procedure for constructing infinite classes of
t-sc graphs each with an scp.

Theorem 4.1. Let G = (G1,G2,...,Gt) be t-sc with an scp o. Let G =
(G},GY,... ,G,) where G is the graph with
V(G) = V(Gy) U{wi,wa,... , w}
E(G)) = E(G)U{wi, wis1 (mod 1 }UU{win}) weV(GY)
i=1,2,...,t.
Then G' is t-sc with ¢’ = o(wyws ... wy) as an scp.

Proof: We shall prove that for each i, ¢’ is an isomorphism from G} Gi,,. Let
u,v € V(G).
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Figure 7(b)

Case 1. u,v € V(G;). Then ¢'(u) = o(u) and ¢’(v) = o(v) and the result
follows since o is an isomorphism from G; to G, and since for all j, G; is the
subgraph induced by V(G}) in Gj.

Case 2. u € V(G;) and v = wi. Then

uv € E(G)) © v=w; ¢ o(u) € V(Gir1) and 0(v) = w1
% 0'(u)o'(v) € B(Giy1).
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Case 3. u = wj, v = wi. Then

uv € E(G)) € u = w;,v = Wi+1 (mod 1)
4 0'(4) = Wis1 (mod &) AN 0'(V) = Wis2 (mod 1)
% o'(u)d'(v) € B(Gy,,).

This covers all cases and, thus, the theorem is proved. [ |
We demonstrate Theorem 4.1 in the construction shown in Figure 7.

2 - 2 2
/o \0 )
[¢) 3
o0—  _©
l o . o5 1 . 1 - 3
1 2 u3
o = (123)
2 L 5
3 . 3
1
\
!
o
v o
w W, 3
1 2 Wy iy W
G/ '
1 G2

Figure 7. o' = (123)(wywyws).

The graphs generated by Theorem 4.1 are all disconnected. Our next theorem
inductively generates an infinite class of connected t-sc graphs.

Theorem 4.2. Let G = (G1,G2, ... ,Gt) be aconnected t-sc graph with an scp
o. Then there exists a connected t-sc graph G' = (G1,GY,... ,G}) where for
eachi=1,2,...,1,|V(G))| = |[V(G:)| + t. Moreover, o' = a(wiws ... w) is
anscp for G'.

Proof: By Theorem 2.7, o may have at most one fixed point and every other cycle
mhas |7 =0 (mod t). Letw = (u1,u2,...,uk) beacycle of o with [x| > 1,
and let (uo) denote a possible fixed point of o. Then we dfine the graph G; as
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follows:

V(G) = V(G) U{wr,wa,...,w}

k-1
E(G)) = B(G) U{w;, wir1 (moa n}U| | (U{usmw}) U {uow;}
L1 r=0
Is|>1
where the edge uow; is added to E(G}) only when o has a fixed point, namely,
‘uo’ and omitted otherwise.
We now prove that o is an isomorphism from G to G}, . Let u,v € V(G5).
If u,v € V(G;) orif u = w; and v = w;, this proof is similar to Case 1 and
Case 3, respectively, in the proof of Theorem 4.1.
We consider the remaining cases below: Suppose v € V(G;) — {uo} and
v = wj. Then

uV € E(G))
< u € v(n) for some w € o with |7| > 1 and v=w;
% d'(u) € V() for some 7 € o with |7 > 1 and o' (v) = w;s1
4 d'(v)d'(v) € E(G}yy)

Further if u = uo and v = w; then o’(u) = uo and

uv € BE(G)) & v=w; ¢ o'(v) = win
<+ d'(u)d'(v) € B(G,y)

This covers all cases and proves our claim.
Finally, if G; is connected and non-trivial then it is trivial to see that by con-
struction Gj is also connected. This proves the theorem completely. 1

Conclusion.

The class of t-sc graphs exhibit many interesting properties. In separate papers,
([31, [4]), we construct a canonical stable complementing permutation for all t-sc
graphs, and generalize a construction of Gibbs [8] for self-complementary graphs.

In conclusion, we would like to introduce the notion of a generalized factoriza-
tion. A t-factorization of a graph G is at-tuple G = (G1,G>, ... ,Gt) where:
i) each G; is a spanning subgraph of G;
ii) E(Gy) NE(G;) =0Vi#j;
iii) E(G) = UL, E(G:);
ivy G1,Ga,...,G}, are all isomorphic.
If G is a complete graph then G becomes a t-sc graph. Similarly, another interest-
ing class is obtained by taking G to be a complete r-partite graph. For such a G,
the ¢-tuple is called a t-rpsc (t-r partite self-complementary) graph. In a separate
paper [4.a] we study the properties of this class of graphs.
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