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Abstract. In this paper, we prove that if G is a 3-connected planar graph and contains
no vertex of degree 4, then G is edge reconstructible. This generalizes a result of J. Lauri
).

In this paper, we will follow the notation and terminology of [BM]. All graphs
G = (V(@), E(G)) considered will be finite and simple. The number of vertices
and edges of G are denoted by n(G) and m(G), respectively. Forv € V(G), a
neighbor of v is denoted by N(v). We use dg(v) to denote the degree of vertex
vinG. If d(v) = g, we say that v is a g-vertex. The set of g-vertices is denoted
by S;. The minimum degree of graph G is denoted by §(G). The path C[a, b]
is denoted by av; ... b and the vertices vy, ... , v are called internal vertices of
Cla, b]. A family of paths in G is said to be internally disjoint if no vertex of G is
an internal vertex of more than one path of the family. If a = b, C[a, b] is called
a circuit.

The connectivity (or vertex-connectivity) k(G) of a graph G is the minimum
number of vertices whose removal results in a disconnected graph or in the trivial
graph.

A set S is said to be a separating set of G if the deletion of the vertices of S
from G disconnects G. We shall use the following well-known theorem:

Theorem A (Menger). If G is a k-connected graph, then for any pair of vertices
u and v of G, there are k intemally disjoint paths from u to v.

Let G be a 2-connected planar graph that is embedded in the plane E and let "
beacircuit of G. Then T partitions E—T" into two open regions, the interior of ",
Int(I"), and the exterior of I, Ext(I"), the unbounded region. If I" is g-circuit
such that In(I") NG = ¢ (or Ext(T"') NG = ¢), then Int(T) (or Ext(T)), is
called a g-face.

A graph G is said to be edge reconstructible if it can be determined uniquely,
up to isomorphism, from the collection (edge-deck) D(G) = {Ge: Ge = G — e,
e € E(QG)} of edge-deleted subgraphs of G. The edge form of the reconstruction
conjecture states that every graph with at least four edges is edge reconstructible.
We know the following recognizing theorem.
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Theorem B [F). A connected graph of order at least 7 and minimum degree at
least 3 is planar iff every edge deleted subgraph is planar.

In this paper, by restricting our attention to 3-connected graphs, we extend the
following result by allowing the presence of 3-vertices.

Theorem C [J1]. Every planar graph of minimum degree at least 5 is edge re-
constructible.

Our main theorem is:

Theorem. Let G be a 3-connected planar graph such that G has no vertex of
degree 4. Then G is edge reconstructible.

In order to prove this result, we need several Lemmas.

Lemma 1. Let G be a simple graph such that G has no (6(G) + q) -vertex and
(8(G) + 1) -vertex (¢ > 1). Let G have a (6(G) + k) -vertex w such that w is
adjacent to at least k — q vertices of degree §(G), where k > q. Then G is edge
reconstructible.

Proof: We use induction on k. First assume that k = g + 1, then there exists a
vertex w such that dg(w) = § + k. And w is adjacent to at least k — g = 1 vertex
v of degree §. Lete = wv € E(G). Thendg (w) =8§+k—1=56+¢gand
dg,(v) = § — 1. Since G has no such vertices, and since the degree sequence of
G is edge reconstructible, we can uniquely reconstruct G by adding e = wv.
Now suppose that k > ¢ + 1. We assume that our conclusion is true for k — 1.
Since w is adjacent to at least k — g vertices of degree §, there exists a §-vertex
v such that e = wv € E(G). Obviously, dg,(w) = 6§ + k — 1 and dg,(v) =
& — 1. We claim that G can be uniquely reconstructed from G, by adding e = wv.
Otherwise, let H be an edge reconstruction from G, such thate ¢ E(H). Since
the degree sequence of G is edge reconstructible, and G has no § + 1-vertex, it
follows that w is adjacent to at least k — 1 — g vertices of degree §. By induction,
H is edge reconstructible. This contradiction shows that our claim is true. This
proves Lemma 1. ‘ |
As a consequence of Lemma 1, we have that

Corollary 1. Let G be a planar graph. If G has no 5-vertex and §(G) = 4, then
G is edge reconstructible. If G has no 4-vertex or 5-vertex, and 6(G) = 3, then
G is edge reconstructible.

Proof: Since §(G—Ss) < 5, thereisa (4+ k)-vertex w adjacent to atleast k— 1
vertices of degree 4. By Lemma 1, G is edge reconstructible. This proves the first
conclusion. The proof of the second one is similar. |

Lemma 2. Let G be a simple graph containing no (6 + 1) -vertex. Suppose that
e=uv € E(G),dg(u) =8+ k,and dg(v) =6+ h where k > 2 and h > 2.
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If u is adjacent to at least k — 2 vertices of degree & and v is adjacent to at least
h — 2 vertices of degree 8, then G is edge reconstructible.

Proof: Note that dg,(u) = 6§ + k — 1 and dg,(v) = § + h — 1. We claim that,
in order to reconstruct G from G, the only choice is to add edge e = uv. In
fact, since G contains no (8§ + 1)-vertex and the degree sequence of G is edge
reconstructible, it follows that the reconstruction H from G, must be isormorphic
to G. Otherwise, H has the property that at least one of the vertices u and v has
degree § + k' (where k' = k — 1 or h — 1) such that it is adjacent to k' — 1 vertices
of degree §. By Lemma 1, H is edge reconstructible. This is a contradiction. The
proof is finished. [ |
By Lemma 2, we have that

Corollary 2. Let G be a planar graph containing no 4-vertex. Andlet §(G) >3
and §(G — S3) = 5. Suppose that there are two vertices v and v such that
both v and v are 5-vertex in G — S3 and uwv € E(G — S3). Then G is edge
reconstructible.

Proof: Letdg(u) = 3+ k and dg(v) = 3+ h. Since both v and v are 5-vertices

in G — 83, it follows that u is adjacent to at least k — 2 vertices of degree 3 and

v is adjacent to at least h — 2 vertices of degree 3 for some k and some h. Then

the edge uv satisfies Lemma 2. 1
Denote by S§ the set of 5-vertices of G — S3.

Lemma 3. Let G be a 3-connected planar graph containing no 4-vertex. And let

S3 USs be an independent set in G and S§ be also an independent setin G — Ss.
If (G — 83) = 5, then G has a vertex v satisfying the following conditions:
(1) v is a 5-vertex in G — S3; (2) the faces incident to v in G are either 4-face
or 3-face; (3) if v is incident to a 4-face F, then the unique non-adjacent vertex
must be 3-vertex in G on F.

Proof: We prove the lemma by assuming that G does not satisfy our requirement
and construct another graph G* from G which is planar such that 5(G*—S3) > 6.
Therefore, we get a contradiction.

Suppose that G is embedded in the plane so that no vertex of degree 5 in G — S3
satisfies our requirement. Then each 5-vertex of G — S3 occurs on some k-face
FinG withk > 4.

If v is a unique 5-vertex of G — S3 on F, then there is some vertex z on F' to
which v is not adjacent. Since S; is an independent set in G, we can choose z
such that dg(z) # 3. Clearly, z is not adjacent to v since G is 3-connected. But
then, we can obtain a graph G* from G in which the degree of v in G* — 83 is 6,
by joining v to z.

If F has at least 2 non-adjacent 5-vertices of G — S on its boundary, then we
can join them by one or several edges to increase their degree in G*. This can be
done because Sj is an independent setin G — S3.
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It is easy to see that §(G* — S3) > 6, this contradiction completes our proof.
|

Lemmad. Let G be a 3-connected planar graph containing no 4-vertex. Let both

S3 U Ss and S be two independent sets and §(G — S3) = 5. Suppose that v is
a vertex of S satisfying the conclusion of Lemma 3. Then there exists an edge
e Incident to v such that G, is 3-connected.

Proof: Let the faces incident to v be Fo, Fi,... , F;. Let the edges incident to v
be ey = vup,e1 = vvy,...,e; = vy, such that e; is incident to the faces F_;, F;
(modulo t + 1). If F; is a 4-face, then there is a 3-vertex of G on F; which is not
adjacent to v. Denote this vertex by z;.

Without loss of generality, assume that dg(vo) > 3. If G, is 3-connected,
then we have nothing to prove. Therefore, assume that G — e has connectivity
2, so there exists a separating pair {z1,z2 } in G — eo which is not separating in
G. Clearly, {v,vo} N {z1, 2, } is empty, and also {z;, z; } separates v and vp in
G —eg, since {z1, z2 } is not a separating set in G. Therefore, {1, z2} = {v1,n}.

Now, let H be that component of (G — ep) — {v1, v¢} which contains the vertex
vp. Clearly, vp can notbe the only vertex of H, since its degree in G is greater than
3. Therefore, let w € V(H), w ¥ vo; w and v are separated in G by {vo,v1,v¢}.

Since G is 3-connected, there exist in G, by Menger’s Theorem, three internally
disjoint paths P,, P,, P3 joining w to v, and since {vo, v1, v} separate w and v,
we may assume that vi € V(P,), v: € V(P,),vo € V(P;). Also, we may
assume that ey , e;, eo, are edges of P;, P2, P3, respectively, and that if Fp (or F})
is a 4-face, then 2z v, (respectively, v;2;) is also an edge of P;.

We shall now show that G — e; is 3-connected. First we note that v; can not
have degree 3 in G. Otherwise Fy would have to be a 4-face (because if not, the
3-vertices v; and zo would be adjacent); but then the edges vovi, viv, viv2, and
the path P; would already give that v has degree at least 4.

Now suppose that G — e; is not 3-connected. Then, as above, there exists
a vertex w' such that v and w' are separated by {vo,vi,v2}. Also, we can let

1, P}, P} be three internally disjoint paths from w' to v such that vo € V(Py),
vo € V(P;),andv; € V(Pj). Also as above, we may assume that ez, eo, €1 are
edges of P|, P;, Pj, repectively, and that if Fp is a 4-face, then zovo is also an
edge of P;.

Nowlet @ = PLUP, —vand Q2 = P{UP; — v. Since G is planar,
V(Q1) NV (Q2) is not empty. Let g be the first vertex on Q; (as traversed in the
direction from v; to v, ) that lies also on Q, . The vertex p can not be zy (if Fp is
a 4-face), since zo is a 3-vertex. Then let Q} be that part of Q; between v; and g
(inclusive) and let Q5 be that part of Q2 between g and w' (inclusive). Therefore,
Q1 U Q5 U {e:} is a path joining w' to v, passing through none of the vertices
vo, v1, V2, & contradiction.

This completes the proof of Lemma 4. [}
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Now we are in the position to prove our theorem.

Proof of Theorem: The case that n(G) < 6 is easy. Therefore, we can assume
that n(G) > 7. Let G be a 3-connected planar graph containing no 4-vertex.
The planarity of G can be recognized from its edge-deck. We can assume that
83 U Ss is an independent set. Otherwise, the reconstructibility of G is trivial. If
8(G — 83) < 4, then G has a vertex w such that dg(w) = 3+ k (k > 3) and w
is adjacent to at least (k — 1) 3-vertices. By Lemma 1 (letting ¢ = 1), G is edge
reconstructible. Then we may assume that §(G — S3) = 5. By Corollary 2, we
can assume that S is an independent set. Now by Lemma 3, we can find a vertex
v such that: (1) v is a 5-vertex of G — S3; (2) v is incident to either 3-face or
4-face; (3) if v is incident to 4-face, then the unique non-adjacent vertex must be
a 3-vertex on that face in G. By Lemma 4, there is an edge e = wv such that G, is
3-connected. But a 3-connected planar graph has a unique planar representation
(Theorem 2.4.2 [O]). Claim that we can uniquely reconstruct G from G, by adding
wv. Infact, let dg(v) = 3 + k. Then, v is adjacent to (k — 2) vertices of degree
3. We observe that G has no (3 + k — 1)-vertex adjacent to (k — 2) vertices of
degree 3, otherwise, §(G — S3) < 5, a contradiction. So the reconstruction H
from G is to add an edge between v and the unique vertex w of degree bigger
than 3 on the face to which v is not adjacent.

This finishes the proof of Theorem. 1
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