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Abstract. Let G be a graph with r > 0 special vertices, by , .. ., by, called pins. G can
be composed with another graph H by identifying each b; with another vertex a; of H.
The resulting graph is denoted H o G. Let I1 denote a decision problem on graphs.
We consider the problem of constructing a “small” minor G® of @ that is “equivalent”
to G with respect to the problem I'T. Specifically, G* should satisfy the following:

(Cl) G has the same pins as G.

€2) TI(H oGt) = I1(H oG) for every H for which H o G is defined.

(C3) |V(GY)| + |E(G*)| < c- p, where p is the number of pins of G,
and c is a constant depending only on IT.

(C4) G*isaminorofG.

We provide linear-time algorithms for constructing such graphs when IT stands for
either series-parallelness or outer-planarity. These algorithms lead to linear-time algo-
rithms that determine whether a hierarchical graph is series-parallel or outer-planar and
to linear-space algorithms for generating a forbidden subgraph of a hierarchical graph,
when one exists.

1. Introduction

Graph composition has been recently studied by several researchers [3, 6, 8, 9,
11, 12, 13]. The following definition is adapted from [9, 11, 13]. Let G denote a
graph with r > 0 distinguished vertices, by , . . ., b,, called pins. The pins of G are
used to glue G onto other graphs as follows:

Definition 1: Let H be a graph, and let L = [(a1,b1),...,(ay,, b,)] be alist of
pairs where a1, . .., a, are distinct vertices (not necessarily pins) of H. L is called
agluing list,and H and L are said to be compatible withG. The graphJ = Ho G
is the result of gluing G onto H using L. If L is empty, J is the disjoint union of G
and H. Otherwise, J is obtained by identifying a; and b; for 1 < ¢ < r. The pins
of J are those of H. We will omit gluing lists in situations where no confusion
can arise.

For any graph G, let Env(G), the environment of G, be the set of all graph and
gluing list pairs ( H, L) such that H and L are compatible with G. Clearly, two
graphs have the same environment if and only if they have the the same pins.
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Let IT denote a decision problem on graphs. In this paper, we study the prob-
lem of finding, for a given graph G, another graph G® that satisfies the following
properties:

(C1) Env(G®) = Env(G).

(C2) Foreach(H,L) € Env(G),TI(H o, G*) =T1(H o, G).

(C3) |V(GYH|+|E(GY| < c-p, where p is the number of pins of G, and
c is a constant that depends only on IT.

(C4) G"isaminorof G.

Conditions Cl and C2 state that G and G® are replaceable [13] with respect to
the problem IT. Replaceability is an equivalence relation, and is denoted G* ~ g
G. Condition C3 states that, in some sense, G® is a small replacement for G. The
ability to find a small replacement for G in polynomial time has been exploited
by Lengauer [8, 9] and Lengauer and Wanke [13] to obtain polynomial-time algo-
rithms for various problems on hierarchical graphs, a model for succinctly repre-
senting graphs.

Condition C4 arises from our interest in problems of the form: Given a finite
family F of forbidden graphs, I1x(G) is true if and only if G' contains no sub-
graph homeomorphic from a member of F (see Section 2 for definitions). Thus,
if conditions C1-C3 hold and I1x( H o G) is false, then H o G® must contain a
subgraph F** homeomorphic from a member of . Furthermore, if C4 holds, then
F® must be a minor of some subgraph F of H o G.

The case where F = { K's, K3 3 } (planar graphs) was studied earlier by Lengauer
[9]. Lengauer showed that it is possible to construct in linear time a graph G® sat-
isfying properties C1-C3, leading to a linear time algorithm for planarity testing
on hierarchical graphs. However, since the graph G? constructed by Lengauer’s
method will not, in general, satisfy C4, his approach is not suitable for generating
forbidden subgraphs, if they exist.

In this paper, we consider two families of forbidden graphs, { K4} and {K,,
K3 3}, which define, respectively, series-parallel and outer-planar graphs. For
F = {K4}, we denote the problem ITx by SP, and for F = { K4, K> 3 }, we denote
ITr by OP. Lengauer ’s ideas [9] can be combined with techniques by Asano [2] and
Liu and Geldmacher [14] to obtain linear-time algorithms that, given G, generate a
graph G® satisfying C1-C3 for problem SP or OP. These results lead to linear-time
tests for series-parallelness and outer-planarity of hierarchical graphs. The main
contribution of this paper is a proof that it is possible to construct in linear time
a graph G® that satisfies condition C4, in addition to C1-C3, for problems SP and
OP. These algorithms can be used to obtain linear-space hierarchical algorithms
for generating subgraphs homeomorphic from K4 and K 3, when they exist.

This paper is organized as follows. Section 2 presents the basic terminology
used throughout the rest of the paper. Section 3 presents preliminary results on
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series-parallel and outer-planar graphs, edge contractions, and edge deletions. In
Section 4, we describe how to obtain a graph G satisfying C1-C4 when G is
biconnected. These results are then built upon in Section 5 to obtain G? in the
general case. We also describe implementations of these algorithms that operate
in time linear in the size of the input graph. Section 6 summarizes our results, and
discusses their application to hierarchical graphs as well as possible extensions
and open problems.

2. Terminology

We use V(G) and E(G) to denote, respectively, the vertex and edge sets of an
undirected graph G. A loop is an edge whose endpoints are not distinct. We allow
graphs to have loops, and also allow multiple edges with the same endpoints. The
latter are called parallel edges. An edge'is redundant if it is parallel to another
edge. A vertex v € V(Q) is isolated if its degree is zero, a leaf if its degree is
one, and a series vertex if its degree is two.

An edge e = (u,v) € E(Q) is contracted by deleting e and identifying its
endpoints to create a new vertex denoted uv. The resulting graph is denoted G/e.
A minor of G is a graph obtained from a subgraph of G by a sequence of edge
deletions and contractions. Let IT be a graph problem. Since we are interested in
maintaining replaceability as edges are deleted and contracted, we introduce the
following notation:

Definition 2: An edge e € E(G) is Il-contractible if G/e ~n G, and is I1-
removable if G — e ~11 G.

A graph H is homeomorphic from G, denoted G <, H, if H can be obtained
from G by a sequence edge subdivisions [S]. We use G C,, H to denote that H
contains a subgraph homeomorphic from G. H is homeomorphic to G if H and
G are homeomorphic from some common graph.

Foru,v € V(@) ,G+(u,v) is the graph obtained by adding an edge connecting
v and v, even if such an edge already exists. If, however, one or both of u and v are
not vertices of G, then G + (u, v) is obtained from G by adding any appropriate
new vertices, and then adding an edge connecting u and v.

A vertex v of G is a cutpoint if G — v has more connected components than G.
G is said to be biconnected if it is connected and has no cutpoints. A biconnected
component (block) of G is a maximally biconnected subgraph of G. The bicon-
nectivity forest (bc-forest) [13] of G, denoted be(G) , is a forest with two types of
nodes: b-nodes and c-nodes. Corresponding to each b-node b is a unique block
B(b) of G, and corresponding to each c-node c is a unique cutpoint x(c) of G.
Nodes u and v of bc(G) are adjacent if and only if u is a b-node, v is a c-node,
and x(v) € V(B(u)). The blocks, cutpoints, and biconnectivity forest of a graph
@ can be found in linear time [15].

The following definitions are from Hopcroft and Tarjan [7]. Let G be a bicon-
nected graph and S = {a, b} a pair of vertices of G. Partition E(G) into equiva-
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lence classes E1, E2,..., En, called separation classes, such that two edges are
in the same class if and only if they lie on a common path in G containing no
vertex of S except as an endpoint. If m > 2, the pair S is called a separation pair
unless (1) m = 2 and one class contains a single edge, or (2) m = 3 and each
class contains a single edge. G is triconnected if it is biconnected and contains
no separation pairs.

Let S = {a, b} be a separation pair of G. Split G into graphs G; and G,, each
having at least two edges, such that E(G) is the union of some of the separation
classesof G, E(G1)NE(G>) = 8, V(G1)NV(G7) = S,and V(G))UV(G,) =
V(G). Let G; be obtained by adding virtual edge (a,b) to G;. The two virtual
edges are called a companion pair, and G and G, are called split graphs of G
with respect to S. The splitting process is continued separately on G’} and G until
no more splits are possible. The resulting graphs are called the split components
of G. Each split component is a triconnected graph, a triangle, or a triple bond
(two vertices connected by three parallel edges).

“Two split components sharing a companion pair are merged by deleting the
companion edges and appropriately identifying their endpoints. The triconnected
components of G are obtained by merging all polygons (i.e., cycles) that share
companion pairs, and merging all bonds that share companion pairs. Thus, the
triconnected components of G consist of tri-connected graphs, polygons, and mul-
tiple bonds. Each edge of G belongs to exactly one triconnected component, and
is called a real edge of that component. The triconnected components of G have
a total of at most 3 - |[E(G)| — 6 edges [7]. The triconnectivity tree [7] of G,
denoted tc(QG), is a tree in which each vertex v corresponds to a unique tricon-
nected component 7(v) of G. Two nodes u and v of tc(G) are adjacent if and
only if 7(u) and 7(v) share a companion pair. The triconnected components and
the triconnectivity tree of G can be found in O(|V(G)| + |E(G)|) time [7].

3. Preliminary Results

Here we shall prove various results to be used in subsequent sections. We first
dispose of the cases where G is not series-parallel or not outer-planar.

Theorem 3.1. If G is not series-parallel, then in linear time we can construct a
graph G, satistying CI-C4.

Proof: Liu and Geldmacher’s O(maz(|V(G)|, |[E(G)|)) algorithm [14] can be
used to test if G is series-parallel. If it is not, the same procedure will find a
subgraph J of G that is homeomorphic from K. Now, delete from G all edges
in E(G) — E(J) and then delete all isolated non-pin vertices in the remaining
graph. Call the resulting graph H. Finally, G® is obtained from H by repeatedly
contracting edges incident on non-pin series vertices, until no such edges exist.
This process can be implemented in linear time. It is clear that G® satisfies Cl, C2,
and C4. G® also satisfies C3, since it has at most p + 4 vertices and p+ 6 edges,
were p is the number of pins of G. |
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Theorem 3.2. If G is not outer-planar, then in linear time we can construct a
graph G\, satisfying CI-C4.

Proof: Analogous to the proof of the preceding result. In this case, we may use
Asano’s algorithm [2] to find a subgraph of G homeomorphic from K 3 when G
has no subgraph homeomorphic from K. [ |

Note that it is possible to test whether a graph is series-parallel or outer-planar
in linear time (Liu and Geldmacher [14], Asano [2]). From now on, we shall
concentrate on the cases where G is either series-parallel or outer-planar.

The proofs of the following two lemmas are straightforward.

Lemma 3.1. Let e = (u,v) be and edge in a series-parallel graph G. Then, e is
SP-contractible if u or v is a non-pin series vertex.

Lemma 3.2. Let e = (u,v) be and edge in a series-parallel graph G. Then, e is
OP-contractible if u or v are non-pin series vertices.

Lemma 3.3. Let F be any family of graphs having no redundant edges. Then,
any redundant edge e of a graph G is Ilx-removable. In addition, G — e is bi-
connected if G is biconnected.

Proof: Clearly G — e is biconnected if G is biconnected. Consider any (H,L) €
Env(@). Since e is redundant in G, e is redundant in H o;, G. Then, since no
member of F has a redundant edge, ITx((H oy, Q) — e) = IIx(H o, G). The
lemma follows since (H o, G) —e= H oy, (G —e). R

The next lemmas examine replaceability among connected graphs having two
pins.

Lemma 3.4. Let G be the set of all connected graphs with two pins u and v. The
following are the ~sp-equivalence classes of G:

(SP1) Graphs G such that K4 Cp, G.
(SP2) Graphs G suchthat K4 €y G, but K4 Cp G + (u,v).
(SP3) Graphs G such that K4 €, G+ (u,v).

Proof: Figure 1 shows representatives from each equivalence class. Itis clear that
SP1, SP2, and SP3 partition G, and that graphs from different sets of the partition
are not replaceable. It remains to show that any two graphs from the same set of
the partition are replaceable.

Let J be any graph, and let L = [(v/, u), (v/,v)], where u' # o' are vertices of
J. For G € SP1, J oy, G is never series-parallel. For G € SP2, K4 C J o, G if
and only if K4 Cj, J,or v andv' are connectedin J. ForG € SP3, K4 C, Jo .G
ifandonly if K4 Cp J or K4 Ci J + (u',v"). Thus, SP1, SP2, and SP3 are the
~gp-equivalence classes of G. [ ]
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Lemma 3.5. Let G be the set of all connected graphs G having two pins u and v.
Let s and t be vertices not in any G € G. The following are the ~op -equivalence
classesof G:

(OP1) Graphs that are not outer-planar.

(OP2) Outer-planar graphs G such that G + (u,v) is not outer-planar.

(OP3) Graphs G such that G + (u,v) is outer-planar, but G + {(u, s),
(s,v)} is not outer-planar.

(OP4) Graphs G such that G+ (u,v) and G+ {(u,s), (s, v) } are outer-
planar, but G + {(u, 8),(s,v),(u,t), (t,v)} is not outer-planar.

(OP5) Outer-planar graphs G whose only paths from u to v are single
edges.

SP1 SP2

SP3

Figure 1: Equivalence classes for Lemma 3.4.
Gray lines indicate edges outside of G.

Proof: The proof is similar to that of Lemma 3.4, and is left to the reader. Figure
2 shows representatives from each equivalence class. |

Finally, we prove a technical lemma. Suppose G is a biconnected graph sepa-
rated by {u, v} C V(QG). If G has no parallel edges with endpoints u and u, then
there exist distinct vertices z, y € V(G) — {u, v} such that every path connecting
z and y passes through either v or v. We say that {u, v} separates z from y.

Lemma 3.6. Let G be a biconnected graph with a non-redundant edge e = (u,v)
such that {u, v} does not separate G. Then, G /e is biconnected. Furthermore, for
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any graph A, if G/e contains a subgraph homeomorphic from A, then so does
G.

Proof: Clearly, if G/e contains a subgraph homeomorphic from A then so does
G. G/ e can have no cutpoint other than the vertex uv. Since G is biconnected and
e is not redundant, G/e has no loops. Let z,y € V(G) — {u,v}. Since {u, v}
does not separate G, = and y are connected by a path in G avoiding u and v. This
path avoids uv in G/e. Thus, G/e is biconnected. ]

OP1

oP2 or3

Oor4

Figure 2: Equivalence classes for Lemma 3.5.
Gray lines indicate edges and vertices outside of G.

4. Contractible Edges in Biconnected Graphs

We now consider the case where the graph G is biconnected. This section is
devoted to proving the following results:
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Theorem 4.1. Let G be a biconnected series-parallel graph, and let e = (u, v) €
E(Q) be a non-redundant edge such that u and v are non-pins and {u,v} does
not separate G. Then, e is an SP-contractible edge of G.

Theorem 4.2. Let G be a biconnected outer-planar graph, and let e = (u,v) €
E(G) be a non-redundant edge such that u and v are non-pins and {u,v} does
not separate G. Then, e is an OP-contractible edge of G.

We shall then use these results to obtain algorithms for problems SP and OP that
reduce a biconnected graph G to a biconnected graph G® satisfying C1-C4.

4.1. Series-parallel graphs
We shall first prove Theorem 4.1. We need the following result:

Lemmad.1. Let G bea biconnected graph with a non-redundant edge e = (u, v)
such that {u, v} does not separate G. For 1 < i < m, let H; be a connected graph
with pins x; and y;, and assume that for any v € V(H;), H; has a simple path
from z; tov to y;. Let L; = [(a;, =), (b;, yi)] be a gluing list for gluing H; onto
G, and assume a;, b; ¢ {u,v}. Then, for each i:

1. F; = (---((G oy, H1) or, H3) o, --- oy, H;) is biconnected and not

separated by {u, v},
2. F{=(---(((G/e) o1, H1) oy, H3) o, --- oy, H; is biconnected, and
3. SAF;) =SRF)) if G is series-parallel.

Proof (induction on 1):

i=1: By Lemma 3.6, G/e is biconnected. It follows from the properties of H;
that i and FY are biconnected. Since H; is connected and {u, v} does not sepa-
rate G, {u, v} does not separate F;. Thus, parts 1 and 2 hold.

Assume G is series-parallel. By Lemma 3.6, G/ e is also series-parallel. We can
rewrite Fi as Hioy, G and F{ as Hy oy, (G/e),where N1 = [(z1,a1), (y1,b1)].
Thus, we need only show that G and G /e belong to the same ~sp-equivalence
classes (assuming their pins are a; and b;). Since G and G/e are series-parallel,
neither belongs to SP1. We show G € SP2 if and only if G/e € SP2.

Suppose G ¢ SP2. Then, G € SP3 and, hence, G + (a3, b;) is series-parallel.
Clearly, G/e + (a1, by) is also series-parallel. Thus, G/e ¢ SP2.

Suppose G € SP2. Then, K, C; G + (a1,b;). Since G is biconnected and
series-parallel, it must contain a subgraph F' as shown in Figure 3, where wavy
lines represent paths of one or more edges. Suppose the path in F' labeled p con-
sists only of the edge e. Then, since {u, v} does not separate G, there is a path in
G connecting a; and b; that avoids u and v.

Thus, K4 Cj G, a contradiction. Therefore p # e, and hence K4 C, Fle+
(a1,b1). Since F/e C G/e, it follows that G/e € SP2.

Therefore, G and G/e belong to the same ~sp-equivalence classes, and hence,
SP(F1) = Sp(Fy)
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Figure 3: Example used in the proof of Lemma 4.1

i > 1: By the induction hypothesis, F;_; and F]_, are biconnected and F;_, is
not separated by {u,v}. Then, by the same argument as used in the basis, F; =
F;_10p,H;and F| = F|_, oy, H; are biconnected and F; is not separated by {u, v}.
Assume G is series-parallel. Then, by the induction hypothesis, SP(F;_1) =
SP(F}_,). If F;_; and F/_; are not series-parallel, then neither are F; and Fy.
Suppose F;_; and F}_, are series-parallel. Since a;,b; ¢ {u, v}, we can express
F; as H; oy, Fi_1 and F] as H; oy, F_,, where N; = [(zi,a:), (s, b:)]. By
applying the same argument as used in the basis, it follows that F;_; and F}_,
are in the same ~gp-equivalence class (assuming their pins are a; and b;). Thus,
SP(F;) = SP(F)). |
'We can now prove our main result concemning contraction and replaceability.

Proof of Theorem 4.1: Suppose G has r > 0 pins. We shall show that for every
(H,L) € Env(QG),SP(H o1, G) = SP(H oy, (G/e)). Recall that u and v are the
endpoints of e.

If H is not series-parallel, then neither are H oG and H o (G/e). Assume H is
series-parallel. Suppose r = 1. Then, G is a block of H o G. By Lemma 3.6, G /e
is biconnected and series-parallel, and hence, is a block of H o (G/e). Since K4
is biconnected, a graph is series-parallel if and only if each of its blocks is series
parallel. Thus, SP(H o Q) = SP(H o (G/e)) = TRUE.

Assume r > 1. G is a subgraph of some block A of H o G, and every other
block of H o G is a block of H. It can be easily verified that {u,v} does not
separate A. Then, by Lemma 3.6, A/e is a block of H o (G/e) and, hence, G/e
is a subgraph of A/e. Since we need only consider the blocks A and A/e, we can
assume H o G is biconnected without loss of generality.

Let R be the set of pins of G. Assume that H o G is formed by identifying each
pin z of G with a vertex =’ of H. Let R’ be those vertices of H to be identified
with pins of G. Consider the tree T in Figure 4(a) whose leaves, z', y', and 2/, are
the only vertices of R’ in T'. We consider two cases, depending on whether or not
H contains a subgraph such as T'.

Case 1: H contains T'.
Since G is biconnected, it contains one one of the two graphs shown in Figure
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(2) x y

(®)

Figure 4: Examples used in the proof of Theorem 4.1

4(b). Then, K4 Ci H o G. Since u,v ¢ R,G/e also contains one of these two
graphs, and therefore, K4 Cy H o G/e.

Case 2: H contains no such subgraph T'.
Recall that H is assumed to be series-parallel. We show that H can be decomposed
into series-parallel graphs hy,...,h, suchthatforeach1 <1 < s:

(P1) h; contains two vertices of R/, say z/ and y!,

(P2) h; and hj(i # j) have at most one common vertex, which must be
a vertex of R'.

(P3) foreach v € V(h;), h; has a simple path from z} to v to y}.

Consider any z', y' € R'. Suppose H has a simple path p that connects z’ and
y' and contains no vertices of R’ except for =’ and y'. Let h ;s be the subgraph
of H containing z', ', and all such paths p. Together, all subgraphs h, s of this
form constitute a decomposition of H satisfying Pl and P3. If V(H) = R/, then
P2 is also satisfied. Assume v € V(H) isnotin R'. Since H o G is biconnected,
thereexist z’,y' € R’ such thatv € V(hy ). However, since H does not contain
the tree T, every path from v to any 2’ € R'— {7/, y'} must contain z' or y'. Thus,
P2 is satisfied.

Let hy,..., h, be the decomposition of H as specified. We can rewrite H o G
as Go hy o--- o h,, where each h; is glued onto G by its two unique vertices of
R'. Then, by Lemma 4.1, it follows that SP(H o G) = SP(H o (G/e)). 1
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Figure 5: Examples used in the proof of Theorem 4.2

4.2. Outer-planar graphs

Proof of Theorem 4.2: Since every outer-planar graph is also series-parallel, given

our results for K4, we need only concern ourselves with K3 3. Assume G contains
r > 0 pins. We prove that for every (H, L) € Env(G),0P(H o, G) = OP(H oy,
(G/e)). ,

If H is not outer-planar, the result follows. Assume H is outer-planar. By an
argument similar to that given in the proof of Theorem 4.1, the result holds when
r = 1. Assume r > 1. If H o (G/e) is not outer-planar, then neither is H o G.
Suppose H o G is not outer-planar, but H o (G/e) is outer-planar. By Theorem
4.1, we may assume K23 Cp H o Gbut K4 ¢, H o G. We shall arrive at a
contradiction. Since K 3 is biconnected and H is outer-planar, we may assume
that H o G is biconnected without loss of generality. By Lemma 3.6, G/e is
biconnected, and, hence, so is H o (G/e).

Consider J C H o G homeomorphic from K, 3. We can assume such a J
exists for which e € E(J), for otherwise K23 Cp (H 0G)/e = Ho(G/e),a
contradiction. J has two degree 3 vertices that we call corners. By assumption,
K>3 £ J/e. Thus, an endpoint of e (assume u) is a corner of J, and J must
be of the form shown in Figure 5(a). Since u and v are not pins of G, the graph
T shown in Figure 5(b) must be a subgraph of G. Thus, both corners of J are
vertices of G.
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G is biconnected, outer-planar, and not separated by {u,v}. Although G can
be biconnected in many ways, the reader can easily verify that in order for G to
satisfy all three properties, it must contain a subgraph of the form shown in Figure
5(c) (symmetrically, the path s could connect b and c instead of a and c). Since s
connects a and c, the path p in J cannot be entirely contained in G, for otherwise
G is not outer-planar. Thus, H completes a path from b to ¢ that avoids u, v, and
a. Therefore, K4 Cy H o G, a contradiction. 1

4.3. Contracting a biconnected graph

‘We consider series-parallelness first. Let G be a biconnected graph. If G is not
series-parallel, a graph G satisfying C1-C4 is constructed as in Theorem 3.1. Oth-
erwise, G is constructed by applying the following operation:

SP-Reduce: Repeat the following step until it no longer applies:

If G contains a redundant edge, delete it. If G contains an edge e =
(u, v) such that (i) u or v is a non-pin series vertex, or (ii) e is not
redundant, u and v are non-pin vertices, and {u, v} does not separate G,
then contract e.

Lemma 4.2. G ~sp G*.

Proof: Follows from Lemmas 3.1, 3.3, and Theorem 4.1, since the edges deleted
are SP-removable and the edges contracted are SP-contractible. 1

Lemma 4.3. |[V(G")| + |E(GY| < c - r, where r is the number of pins of G,
and c is a constant independent of G. '

Proof: Let T = tc(G?). Eachv € V(T) corresponds to a triconnected compo-
nent 7(v) of G*. By assumption, G® is series-parallel. Thus, every triconnected
component of G* is either a bond or a polygon [2]. Let P be the vertices of T
that correspond to polygons. Given the definition of SP-Reduce, G® contains no
redundant edges and no contractible edges. Therefore, it follows that:

1. Every leaf of T corresponds to a polygon.

2. Every non-pin of a polygon is the endpoint of a virtual edge.

3. Every real edge of a polygon has an endpoint that is a pin.

4. Every edge of G® whose endpoints are not pins belongs to a bond.

The two vertices of each bond are repeated in each of its neighboring polygons.
Thus, |V (G*)| is bounded above by the sum of |V (7(v))| overall v € P.

Letv € P, and assume 7(v) has I, virtual edges. The companion of a virtual
edgein a polygon is a virtual edge in a bond, and vice-versa. Thus, since T has one
edge for each companion pair, the sum of I, overallv € P equals |E(T)|. Let S,
be the pins of G* in 7(v) whose two incident edges are real. These vertices belong
to no other polygons and no other bonds. Thus, the sum of |S,| overallv € P isat
most r. Notice that every vertex in V(r(v)) — S, must be the endpoint of a virtual
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edge of 7(v). Thus, |V (m(v))| < |Sy|+ 2 - I, . Therefore, Y p [V(T(v))| <
r+2 . |E(D)|

It remains to show that T has O(r) edges. Let R be the set of pins of G°. Let
v be any leaf of T. Then, since 7(v) is a polygon with only one virtual edge, it
must have two real edges that share an endpoint, say z. Since no edge of G? is
incident on a non-pin series vertex, z is a pin. Furthermore, z belongs to no other
polygon or bond. Let R; consist of all such z € R, and let R, = R — R;. Then,
each leaf of T' can be matched with a unique member of R;.

Consider a path ¢ = v, v2,...,vm(m > 0) of series vertices in T'. One of
v; and v, belongs to P. Let it be v;. Since 7(v;) has only two virtual edges, it
contains a real edge, and therefore, a vertex in R,. If 1 + 4 > m, then ¢ has at
most 5 vertices, one of which can be matched with a unique vertex in R,. Assume
1+ 4 < m. Consider polygons 7(v;), T7(v4:2), and 7(v;4). Each contains a
real edge with an endpoint in R,. Since their real edges are distinct, at least two of
their endpoints in R, must be distinct. Thus, a unique vertex in R, can be matched
with at least every fifth vertex on g. Therefore, |V(T')| < 2 -|Ri|+5 - |Rs| < 57,
and hence, |[E(T)| < 5. 1

Next, consider outer-planarity. If G is not outer-planar, then G® is constructed
using Theorem 3.2. Otherwise, construct G® by using the following operation:

OP Reduce: Repeat the following step until it no longer applies:

If G contains a redundant edge, delete it. If G contains and edge e =
(u,v) such that u and v are not pins, and either (i) u and v are series
vertices, or (ii) e is not redundant and {u, v} does not separate G, then
contract e.

Lemma 44. G ~op G°.

Proof: Similar to the proof of Lemma 4.2 using Lemmas 3.2, 3.3, and Theorem
4.2, ' |

Lemma 4.5. |V (G?)| + |E(GY)| < c - r, where r is the number of pins of G
and c is a constant independent of G.

Proof: If r = 1, G® has at most two vertices. Assume r > 1. Then, G? is bi-
connected, outer-planar, and contains no OP-removable or OP-contractible edges.
Let H be the result of applying SP-Reduce to G. Every vertex of G? that is not
a vertex of H is a non-pin series vertex adjacent to two distinct pins. Let S =
V(G®) — V(H), and let R be the set of pins of G*. We show that |S| < |R| = r.
On the contrary, suppose |S| > .

Let J be the bipartite subgraph of G® that has bipartition R and S and contains
as many edges as possible. J has at least 2 + 1 vertices. Since each vertex of
S is adjacent to two vertices of R, J has at least 2(r + 1) edges. Therefore, J
contains a cycle C. Since J is bipartite, C has an even number of vertices, and
since G* has no redundant edges, |V (C)| > 4.

285



Suppose C contains all vertices of R. Since we assume |S| > r, there is some
v € § — V(C) adjacent to distinct pins z and y of C. But, since = and y are not
adjacenton C, J C G® is homeomorphic from K, 3, a contradiction.

Suppose R has a vertex v not on C. Since G® is biconnected, there are at least
two paths that connect v to C that are vertex disjoint except for v. These paths
must also end on pins of C since the non-pins in C are series vertices of Gb. Thus,
G" is not outer-planar, a contradiction.

Therefore, G® has at most r more vertices than H, which, by Lemma 4.3, has
O(r) vertices. 1

5. Contracting Non-Biconnected Graphs

We are now ready to tackle the general case where G may not be biconnected.
All graphs are assumed to be either series-parallel or outer-planar, depending on
the problem at hand.

We often find it convenient to rewrite a composition of graphs in the following
fashion. Let A be a block of a graph G. The coupling vertices of A are its vertices
that are pins or cutpoints of G. Notice that forany ( H, L) € Env(G), the coupling
vertices of A attach it to the rest of H o, G. Thus, H o;, G can be rewritten as
J o A, where J is the result of splitting off A from H oy, G, and A is glued onto
J via its coupling vertices. In this situation, the coupling vertices of A can be
viewed as its pins.

Definition 3: A block A of G is useless if A has no coupling vertices, or its only
coupling vertex is a cutpoint of G.

Lemma 5.1. Let F be a family of biconnected graphs, none of which is a single
edge, and let G be a graph such that T1x(G) is true (i.e., no subgraph of G is
homeomorphic to a member of F). Let G' denote the minor of G obtained by
first contracting all edges in useless blocks of G and then removing all isolated
non-pin vertices. Then, G' ~q1, G.

Proof: Trivial. |
The preceding result enables us to restrict our analysis to graphs with no useless

blocks. We shall consider series-parallelness and outer-planarity separately. In
both cases, we use the following definition:

Definition 4: A block-path of G is a sequence p = Ap, Az,..., Ay, of blocks
of G such that (1) each A; has exactly two cutpoints ¢;_; and ¢; of G, and (2)
V(Ai) N V(A1) = {C;} for each i < m. The block-path p is compressible if
m > 1 and the only pins contained in A;, A2,..., A, if any, are cpand c,,.

5.1. Series-parallel graphs

Letp = A;,..., Ay, be a compressible block-path of G. Consider the following
operation:
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SP-Compress: Find an i such that A; € SP2, where ¢;_; and C; are
considered the pins of A;. If no such 1 exists, let i = 1. For each j # 1,
contract all edges in the block A;.

Lemma 5.2. Let G be series-parallel and let G' be the result of applying SP-
Compress to a compressible block-path p= A,,...,An of G. Then,G' ~sp G.

Proof: Let A; be block chosen by SP-Compress, and let G, be the subgraph of G
represented by p. G, is attached to the rest of G by the cutpoints co and Cp,. G’
has a block A isomorphic to A; that is attached to the rest of G’ by co and Cpy,.
The graphs G — V(G,) and G' — V(A) are identical. Thus, we can view SP-
Compress as the substitution of A for Gy, in G. Consider any (H, L) € Env(G).
H o, G and H o, G' can be rewritten, respectively, as J oy Gp and J oy A, where
N = [(u,c), (v, cm)] for some distinct u, v € V(J). Thus, we need only show
that G, and A belong to the same ~sp-equivalence class, assuming their pins are
co and ¢y, .

Since G is series-parallel, G, ¢ SP1. G, € SP2 if and only if A; € SP2 for
some 1 < j < m. By the choice of the block A4;, it follows that G, and A both
belong to either SP2 or SP3. [ |

In addition to contracting useless blocks and compressing block-paths, we also
apply SP-Reduce to blocks of G. However, when we apply SP- Reduce to a block
A of G, the coupling vertices of A are considered to be its pins.

Lemma 5.3. Let G be a scﬁcs-pamllél graph and let A be any block of G. If
G' denotes the result of applying SP-Reduce to A, then G' ~sp G.

Proof: Let (H,L) € Env(G). We show that SP(H oy, G) = SP(H o, G'). Let
A’ be the block of G’ corresponding to A. Since A’ and A have the same coupling
vertices, H o;, G and H o;, G’ can be written, respectively, as J o A and J o 4/,
where A and A’ are glued onto J via their coupling vertices. Thus, we need only
show that A’ ~sp A. This follows immediately from Lemma 4.2. 1

We can now show how to construct G® from G. This process is implemented
by a function Bsp, called the series-parallel burner, shown in Figure 6. The result
of applying Bsp to G is denoted by Bsp(G)

Theorem 5.1. G* = Bsp(G) satisfies conditions CI-C4.

Proof: That G* satisfies Cl, C2, and C4 follows from Theorem 3.1 and Lemmas
5.1, 5.2, and 5.3. It remains to show that G* satisfies C3. Let p denote the num-
ber of pins of G. If G is not series-parallel, then by Theorem 3.1, G? satisfies
C3. Assume G is series-parallel. Since G? satisfies C1 and C2, G® must also be
series-parallel, and hence |E(G?) | = O(|V(G*)|). Thus, we need only show that
V(G| is O(p).

Let F' be the be-forest of G, An upper bound on [V(G?)| is the sum of
|V(B(z))| over all b-nodes z in F. By Lemma 4.3, |[V(8(z))| = O(s; + tz),

287



where s, is the number of pins in S(z) that are not cutpoints of G?, and ¢ is the
number of vertices of B(z) that are cutpoints of G®. The number of times that a
cutpoint of G® is repeated in blocks of G® is exactly the degree in F of its corre-
sponding c-node. The sum of the degrees of the c-nodes in F' is equal to |[E( F)|.
Thus, [V (G?)| = O(p + |E(F)|). Every leaf of F corresponds to a block of G®
containing a pin that is not a cutpoint of G®, and at least every fourth node on any
path of series vertices in F' corresponds to a block that contains a pin or to a cut-
point that is a pin. Thus, |E(F)| is O(p) and, hence, so is |V(G?)|. Therefore,
G® satisfies C3. [ |

function Bsp (G: graph):graph
begin
G =G,
if G has a subgraph J homeomorphic from K4 then
Delete from G® every edge not in J;
Delete from G* every isolated non-pin vertex;
while G® has an edge e incident on a non-pin series vertex do
G :=Gt/e
else
Contract all useless blocks from G?;
Apply SP-Compress to every maximal-length
compressible block-path of G*;
Apply SP-Reduce to every block of G?
end;
return G*
end

Figure 6: The series-parallel burner.

5.2. Outer-planar graphs

The procedure to construct G® is virtually identical to that used for problem SP.
The case in which G is not outer-planar is handled using Theorem 3.2. Assume
@G is outer-planar. First, all useless blocks are contracted. Then, the following
operation is applied to each maximal-length compressible path p = A;,...,An
of G (assuming the pins of each A; are the cutpoints ¢;_; and c;):

OP-Compress: Find an 1 such that A; € OP2. If none exists, find an 1
such that A; € OP3. If none exists, find an 1 such that A; € OP4. If none

exists, then for each j > 3, contract all edges of block A;. Otherwise,
for each j # 1, contract all edges in block A;.

Finally, OP-Reduce is applied to every block of G (again, assuming the pins of a
block are its coupling vertices). The result is the graph G®.
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Theorem 5.2. G® satisfies CI-C4.

Proof: Regarding condition C3, the proof is almost identical to that of Theorem
5.1 (using Lemma 4.5). Condition C4 holds by construction. The proof of re-
placeability follows along the lines of Lemmas 5.2 and 5.3 using Lemma 5.1. 1

5.3. Implementation

Let G be any graph. We shall show that a graph G® satisfying C1-C4 can be con-
structed in linear time for both the SP and OP problems. We limit our discussion
to series-parallelness since the procedure for outer-planarity is entirely analogous.

By Theorem 3.1, we need only consider the case where G is series-parallel.
Depth-first search [15] can be used to compress all useless blocks of G. Depth-
first search can also be used locate maximal length compressible block-paths. The
time required to compress a block-path is linear in the size of the corresponding
subgraph of G. Thus, the time required to compress all compressible block-paths
is linear in the size of G.

Applied to a block A of G, SP-Reduce deletes SP-removable edges and con-
tracts SP-contractible edges until no such edges exist. Let T" be the triconnectivity
tree of A. Since A is series-parallel, it has at most 2 - |V ( A)| — 3 edges [2]. Thus,
T has size O(|V(A)|) and can be found in O(|V'(A)|) time. We show that a
single post-order traversal of T is sufficient to implement SP-Reduce.

Every redundant edge of A belongs to a bond corresponding to leaf of T", and
every contractible edge belongs to a polygon. Let v be the vertex of T" currently
being visited. We consider whether or not 7(v) is a bond or a polygon.

Suppose 7(v) is abond. If v is an interior vertex of T, then 7(v) is not changed.
If v is a leaf, we delete all but one of the real edges of 7(v), and then merge it
with its neighboring polygon.

Suppose T(v) is a polygon. We traverse its edges in cyclic order, contracting
a real edge e if either (1) the next edge f in 7(v) is real and e and f share an
endpoint that is not a pin, or (2) both endpoints of e are not pins. If v is aleaf ora
series node of T" (i.e. 7(v) has at most two virtual edges), then these contractions
may reduce 7(v) to a bond. Assume that is the case. If v is a leaf, it is handled as
any other leaf whose triconnected component is a bond. If v is a series node, we
merge 7(v) and its two neighboring bonds, and delete any redundant real edges
of the resulting bond.

Therefore, SP-Reduce has an implementation that operates on O( |V (A)]) time
and, hence, G® can be constructed in linear time. Thus, we have:

Theorem 5.3. For both series-parallelness and outer-planarity, a graph G® satis-
fying conditions CI-C4 can be constructed in linear time from G.

6. Discussion

We have presented linear-time algorithms that, given a graph G containing pins,
find small replacements that preserve series-parallelness or outer-planarity. Our
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algorithms rely on the existence of rules that allow us to determine which edges of
G can be contracted (deleted) so that for any (H,L) € Env(G),II(H o, G) =
II(H oy, (G/e))(II(H o, G) =1 (H oL, (G — ¢€))), where IT is SP or OP,

We now briefly discuss the application of our results to hierarchical graphs
[11,13]. A hierarchical graph " = (G1,....,G,) is a finite list of simple graphs
(i.e., graphs having no loops and no parallel edges) called cells. For each i, V (G;)
is partitioned into pins, terminals, and nonterminals. G; has p; pins whose names
are the integers 1, ..., p;. Each nonterminal of G; has a type, which is a symbol in
theset{G1,...,G;_1}. A nonterminal of type G; has degree p;, and each incident
edge is labeled with the name of a unique pin of G;. Edges between nonterminals
are not permitted. I" is the description of a potentially much larger graph X (I"),
referred to as the expansion of I' . X (T') is defined recursively as follows. For
1<i<nletl = (Gy,...,Gy). T is a hierarchical graph, whose expansion
X (T) is constructed according to the following rules:

e If G; has no nonterminals, then X (I3) = G;.
o If G; has nonterminals, then X (TI;) is the graph that results from doing the
following operation for each nonterminal v of G;:

Suppose v is of type G;. Let v(1),...,v(p;) be the vertices of G;
adjacent to v where, for each m, edge (v, v(m)) has label m. Then,
set G; equal to the result of the composition (G; —v) o, X (T;), where
L= [(v(l)) 1);---;(”(1’1‘);?;‘)].

X(T') is the same as X (I',). The attractive feature of hierarchical graphs is
that the graph X (T") can be exponentially larger than its description I" thus en-
abling hierarchical graphs to model certain facets of VLSI design [12]. The results
of the previous sections can be used together with Lengauer’s techniques to pro-
vide linear-time algorithms to test the series-parallelness or outer-planarity of the
expansions of hierarchical graphs (note that the running times are linear in I", not
in X(T")). We omit the details of these algorithms, since they are quite similar
to those presented in [9]. Given that the replacement graphs that our algorithms
produce satisfy condition (C4), we are also able to provide linear-space algorithms
to generate forbidden subgraphs, if they exist.

Series-parallel and outer-planar graphs are partial 2-trees (Amborg et al. [1]).
A problem of interest is to determine the contractible / removable edges of k-
trees for k > 3. Another open problem is to determine which edges are con-
tractible/removable for planar graphs, and whether such edges can be found effi-
ciently. Lengauer’s hierarchical planarity test [9] determines in linear time whether
the expansion of a hierarchical graph is planar, but does not rely solely on the con-
struction of minors.
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