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Abstract. Let K(n | t) denote the complete multigraph containing n vertices and
exactly t edges between every pair of distinct vertices, and let f(n; t) be the minimum
number of complete bipartite subgraphs into which the edges of K(n | t) can be de-
composed. Pritikin [3] proved that f(n;t) > max{n — 1,t}, and that f(%;2) = n
ifn = 2,3,5,and f(n2) = n— 1, otherwise. In this paper, for ¢ > 3 using
Hadamard designs, skew-Hadamard matrices and symmetric conference matrices [6],
we give some complete multigraph families K'(n | t) with f(n;t) = n— 1.

1. Introduction.

Graham and Pollak [1] proved that n— 1 is the minimum number of complete bi-
partite subgraphs into which the edges of K, can be decomposed. In [5] Tverberg
gave a simple proof of that result.

Let [1, 7] denote the integer interval including 4 and j. Let K(n | t) (or K(A |
t)) denote the complete multigraph with the vertex set [ 1, n] (or A), containing
exactly t edges between every pair of distinct vertices (but containing no loops).
For two disjoint subsets S, T of [1,7] (or A) let K(S,T) denote the complete
bipartite subgraph of K(n | t) (or K(A | t)) having partite sets S, T'. Let f(n; t)
be the minimum number of complete bipartite subgraphs into which the edges of
K (n | t) canbe decomposed. Using Tverberg’s [5] technique, Pritikin [3] proved
that f(n;t) > max{n— 1,t}, and thatif n = 2,3,5, f(m 2) = n; otherwise
f(m2) = n— 1. In this paper, fort > 3 we give some complete multigraph
families K (n | t) with f(n;t) = n— 1. Our results are Theorems 3.2, 3.8, 3.15,
3.16, and 3.17.

For terms and notations not defined on the block design see Hughes and Piper
[21.

2. Preliminaries.
We need the following result by Pritikin [3].
Lemma 2.1. f(n;t) > max{n—1,t} forn> 1.

Lemma 2.2, If f(m;t) = m— 1 fori = 1,2, then f(m + m — 15t) =
n + my — 2;in particular, f(2m; — 1;t) =2m—2 fori=1,2.

Proof: Let K(m; | t) be decomposed into ny — 1 complete bipartite subgraphs
K(S1,T1),... ,K(Sp—1,Tn-1). Without loss of generality, we may assumce
that the single vertex set {m, } is exactly contained in T}, ... ,T. Let T = [m; +
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1,4 +m —1]. Then K(m; +m —1 | t) canbe decomposed into K (TU{m} | t)
and the following n; — 1 complete bipartite graphs:

K(S1,ThuT),...,K(Sk, Tt UT), K(Sk+1,Ths1), -+ , K(Spy—1,Tny-1)-

Since |TU{m }| = m and f(m;t) = m—1, K(TU{m } | t) canbe decomposed
into my — 1 complete bipartite graphs. Therefore, K(ny + m — 1 | ) hasa
decomposition of n; +n, —2 complete bipartite graphs, that is, f(m +m —1;1)
=m + m — 2 by Lemma 2.1. [ |

Corollary 2.2.1. If f(m;t) = m—1 for k= 1,2, then f(i(m — 1) + j(m2 —
D+ 1Lt)=i(m —1) +j(m —1) wherei,j=0,1,....

Corollary 2.2.2. If f(n;t)=m—1fori=1,2,and m — 1 and my — 1 are
relatively prime numbers, then f(m;t) = n— 1 whenever n> (m —2)(m —
2) + 1.

Proof: A well known result by Sylvester says thatevery n—1 > (m —2)(m —2)
is a combination, with nonnegative integral coefficients of ny — 1 and np — 1. Now
apply Corollary 2.2.1. 1

Lemma2.3. If K(n|t) canbedecomposed into ncomplete bipartite subgraphs
K(8:1,T1),... ,K(8a,Ts), and for any vertex of K(n | t) there exist exactly t
partite sets T; ’s containing it, then f(n+1|t) = n.

Proof: In fact, K(S1 U {n+1},T1),...,K(Sa U{n+ 1},T,) form a decom-
positionof K(n+ 1 | t). 1

3. Construction.

In this section, using Hadamard designs, skew-Hadamard matrices, and symmet-
ric conference matrices [6], we shall give some multigraph families K (= | t) with
f(nt) =n—1.

First let H be any 2-(4k — 1,2k — 1, k — 1) Hadamard design, and let B( H)
be the complement design of H. Then B(H) is a 2-(4k — 1,2k, k) symmetric
design. It is widely conjectured that Hadamard designs exist forall k > 2.

Lemma 3.1. Ifa2-(4k — 1,2k — 1,k — 1) design H exists, then f(4k —
1;2k) <4k-—1.

Proof: Let S; be a block of H, and T; a block of B(H) such that S; N T; = 0,
wherei=1,...,4k— 1. Then the complement of K (S;, T;) in K441 is acopy
of Kogp_1 UKagfori=1,...,4k—1. Since the 4 k — 1 copies of K251 U K2
form a decompositionof K(4k—1|2k—1), K(S1,T1),... , K(Sax-1,Tax-1)
form a complete bipartite decomposition of K(4k — 1 | 2k). |
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Theorem 3.2, Ifa2-(4k—1,2k—1,k—1) design H exists, then f(4k;2k) =
4k—1,and f(i(4k— 1)+ 1;2k) =i(4k—1) wherei=1,2,... .

Proof: Following the notation in the proof of Lemma 3.1, we note that the repli-
cation number of the design B( H) is 2 k, so the first result holds by Lemma 2.3.
And the latter is from Corollary 2.2.1. 1
Next we consider the skew-Hadamard matrix. The following Definition 3.3,
Definition 3.4, and Lemma 3.5, are from p. 292 of [6].
Definition 3.3: A skew-Hadamard matrix H of order h =0 (mod 4), has every
element +1 or —1, and is of the form H = S + I where S is skew-symmetric,
SST = (h — 1) I and I is the identity matrix.
Definition 3.4: The core of a skew-Hadamard matrix H of order A is that matrix
W of order h — 1 obtained from H by first multiplying the columns so that the
first row has only +1 elements and then multiplying the rows so every element in
the first column (bar the first) is —1; then H becomes

0 e
[—eT W]+I’
wheree=[1,1,...,1]isa 1l x (h — 1) matrix.

Lemma 3.5. If W of order h — 1 is the core of a skew-Hadamard matrix, then
W satisfies

wwl=h-1)I-J, WIi=0, Wi=-w

where J has every element +1.

We also give the following definition.

Definition 3.6: If S; and T are the blocks of symmetric 2-(v, k1, \;) design A
and 2-(v, ka, \2) design B with the same vertex set, respectively, where i =
1,2,...,v;andif $;NT; = @ fori = 1,2,...,v, then we call them a pair
of block-disjoint designs.

For example, a symmetric design and its complement form a pair of block-
disjoint designs.

Let a matrix W of order 4k — 1 (k > 2) be the core of a skew-Hadamard
matrix. It is obvious by Lemma 3.5 that 1 (J + W — I) and 3 (J — W — I) are
incidence matrices of a pair of block-disjoint 2-(4 k— 1,2 k—1, k— 1) Hadamard
designs.

Lemma 3.7. Ifaskew-Hadamard matrix of order 4 k exists, then f(4k—1;2k—
1) <4k-1.

Proof: Let S; and T; be the blocks of above two block-disjoint 2-(4k — 1,2k —
1, k— 1) designs, respectively, where S;NT; = §,andi = 1,... ,4k—1. Thenthe
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complement of K (S;,T;) in K4x—1 is a copy of Koy UK24-1 UKy 452 fori=
1,...,4k—1 where K 4> isastar. Note that4 k — 1 copies of K31 UK2—1
form a decomposition of K(4k — 1 | 2k — 2), and 4k — 1 copies of K1 4x—2
form that of K(4k — 1 | 2). Therefore, K(S1,T1),... , K(Sak-1,Tar-1) form
a complete bipartite decomposition of K(4k — 1|2k — 1). 1
Theorem 3.8. If a skew-Hadamard matrix of order 4k(k > 2) exists, then
f(4k;2k—1) =4k —1,and f(i(4k — 1) + 1,2k — 1) = i(4k — 1) where
i=1,2,....
Proof: This is analogous to that of Theorem 3.2. 1
Now we consider the symmetric conference matrix. The following Definition
3.9, and Definition 3.10, are from p. 293 of [6].
Definition 3.9: A symmetric conference matrix N of ordern =2 (mod 4) has
every element +1 or —1, and is of the form N = R + I where R is symmetric,
and RRT = (n— 1L
Definition 3.10: The core of a symmetric conference matrix N of order n is that
matrix W of order n — 1 obtained from N by first multiplying the rows and
columns so that the first row and column has only +1 elements; then N becomes

0 e
[eT W] +1,

wheree =[1,1,...,1]isal x (n— 1) matrix.
Lemma 3.11. If W of order n— 1 is the core of a symmetric conference matrix,
then W satisfies

WWT=(n—1DI-J, WI=0, WT=w.

Proof: See p. 306 of [6], or [4]. |
Definition 3.12: If a design D has the property that its blocks can be arranged in
disjoint pairs so there is a vertex missing from each pair and each vertex is omitted
just once from a disjoint pair, then D is called a block pair disjoint design.

By Lemma 3.11, we easily obtain the following result.

Lemma 3.13. If W of order 4 k+ 1 is the core of a symmetric conference matrix,
then the (4k + 1) x (8k + 2) matrix

1 1
[f(‘“' w-1 E(J_W_ I)]
is the incidence matrix ofa 2-(4 k+ 1,2 k,2 k—1) design, and the design is block
pair disjoint.
We note that the 2-(4k + 1,2k, 2k — 1) design has 4 k + 1 pairs of blocks.
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Example: We give a symmetric conference matrix of ordefr 6

+1 +1 +1 +1 +1 +1
+1 +1 -1 +1 +1 -1
+1 -1 41 -1 +1 +1
+ 4+ -1 41 -1 +1
+1 +1 +1 -1 +1 -1
+1 -1 +1 +1 -1 +1

Jtscore WoforderS|+1 -1 0 -1 +1
4 +41 -1 0 -1

and the matrix [J(J+ W —1) $(J—W —D)]

0 0110 01001
00 01110100
10 0 0 1 010 10
1100 0 0 0 1 0 1
0110010010

Lemma 3.14. If a symmetric conference matrix of order 4k + 2 exists, then
f(A4k+1;2k) <4k + 1.

Proof: Let S; and T; be the blocks of two block sets of the block pair disjoint
2-(4k+1,2k,2k—1) designinLemma 3.13, wherei = 1,... ,4k+ 1; S;’s are
decided by 3(J + W — I),and Ty’s by (J — W — I); and S; N T; = §. Then
using the method from the proof of Lemma 3.7, we obtain that K(S;,T1), ...,
K(Sak+1,» Taks1) form a complete Dbipartite decomposition of
K(4k+1]|2k). 1

Theorem 3.15. If a symmetric conference matrix of order 4 k+ 2 exists, then
f(4k42;2k)=4k+ 1,and f(i(4k+1)+1;2k)=1(4 k+1) where i=1,2,....

Proof: We note that in each row of the matrix
Yagsw-n Xu-w-n
2 2

of Lemma3.13 1(J + W — I) has 2k +1’s, and so does 3(J — W — I). Then
following the notation in the proof of Lemma 3.14, we obtain that any vertex of
K(4k+ 1 | 2k) is contained in exactly 2k T;’s. By Lemma 2.3 and Corollary
2.2.1, the result holds. 1

Since 4 k—1 and 4 k+ 1 are relatively prime numbers, by Theorem 3.2, Theorem
3.15, Corollary 2.2.1, and Corollary 2.2.2, we obtain the following result:
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Theorem 3.16. Ifasymmetric conference matrix of order 4 k+2 and a Hadamard
matrix of order 4 k exist, then f(n;2k) = n— 1 whenever n= i(4k — 1) +
j(4k+1)+1(4,7=0,1,...), and, in particular, when n > 4k(4k — 2) + 1.

Remarks: For some known symmetric conference matrices, Hadamard matrices
and skew-Hadamard matrices, see Appendices of [6]; note that all of them are
infinite families. It is strange that for some k there are no symmetric conference
matrices of order 4 k + 2. (See p. 295 of [6].)

On the other hand, we point out that for every ¢ for which one has an np with
f(mo;t) = mp — 1 one gets an information on f(n;t) for all n. Writing n as
g(mo — 1) + r,with2 < r < mg one gets, by Corollary 2.2.1,

fmt) < fFUg+ Do — D+ 12) =(g+ D(mo—1) <n+mp —3.

(Clearly f is non-decreasing in = for fixed t.)
It can be checked that f(n; 3) > n—1 forn < 8. Besides, note that K (13 |3
can be decomposed into the following 12 complete bipartite subgraphs:

K ({1,2,3},{4,5,6,11,12,13}), K ({4,5,6},{7,8,9,11,12,13}),
K ({7,8,9},{1,2,3,11,12,13}), K ({1,4,7,11},{2,5,8,10,13}),
K ({2,5,8,11},{3,6,9,10,13}), K ({3,6,9,11},{1,4,7,10,13}),
K ({1,5,9,12},{2,6,7,10,11}), K ({2,6,7,12},{3,4,8,10,11}),
K ({3,4,8,12},{1,5,9,10,11}), K ({1,6,8,13},{2,4,9,10,12}),
K ({2,4,9,13},{3,5,7,10,12}) , K ({3,5,7,13},{1,6,8,10,12}) .

And by Theorem 3.8, £(8; 3) = 7. Therefore, by Corollary 2.2.1 and Corollary
2.2.2, we have

Theorem 3.17. If n = 7i+ 12j + 1 (i,j = 0,1,...), and, in particular, if
n> 67, then f(m3) =n—1.
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