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Abstract. Primal graphs and primary graphs are defined and compared.
All primary stars, paths, circuits, wheels, theta graphs, caterpillars and
echinoids are found, as are all primary graphs of the form K,, with
n < 927.

1. Introduction

If G is a graph and k is a positive integer, let kG denote the union of k
vertex-disjoint copies of G; we shall call it a multiple of G. Dewdney [3]
introduced the class of primal graphs, which is defined inductively as
follows: a simple graph G with no isolated vertices is primal if it cannot
be expressed as an edge-disjoint union of distinct primal graphs different
from G. The twelve primal graphs with at most seven vertices are listed
in [2]. They are Kz, 2K2, K1.2’ 2K1'2, K1'4. Kz’z, K2.4, C5UK2, PUKz,
AuUK,, Y and S35 (see Figure 1), where U denotes disjoint union.

Chinn and Lin [1] introduced another class of graphs with a similar
inductive definition: a simple graph G with no isolated vertices is primary
if it cannot be expressed as an edge-disjoint union of multiples of distinct
primary graphs different from G. So a primary graph can be used more
than once in the decomposition of G, provided that all its occurrences are
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Figure 1. The graphs P, A, Y and S;.
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totally disjoint (vertex-disjoint). According to [1], the ten primary graphs
with at most seven vertices are K, K 5, K 4, K5 = C4, K34, Cs, C7, P,
A and Y. We now compare and contrast these concepts.

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

1.7

(1.8)

(1.9)

Primary decompositions, like primal decompositions, are not
generally unique. For example, the graph consisting of C, and Cjs
with an edge in common can be decomposed into the primary
subgraphs Cs, K, » and K;, or into C4, K ; and two copies of K.
It is easy to see that all primary graphs are connected. However,
many primal graphs are not connected.

It is easy to see that K, is the only primal graph with an odd
number of edges. However, there are arbitrarily large primary
graphs with an odd number of edges (see (1.5) below).

The only primary paths are K, and K, ,; every other path can be
decomposed using these. This is the same result as for primal
paths.

The circuit C, is primary if and only if n is not a multiple of 3 [1].
This is because the only primary proper subgraphs of C, are the
paths K, and K| ,, and it is quite different from the result [2] that
C, is the only primal circuit.

It is easy to see inductively [1] that the star K, , is primary if and
only if n is a power of 2. This is the same result as for primal
graphs [2], and it holds because n can be expressed as a sum of
distinct powers of 2 smaller than n if and only if n is not itself a
power of 2.

The wheel W, with four vertices has a primary decomposition into
C, and two copies of K,. Andif n > 5 and 2* < n—1 < 2¥*! then
W, can be decomposed into K;,+ and a graph whose primary
decomposition cannot use K »+. Thus there are no primary wheels.
The same argument shows also that there are no primal wheels.

The theta graph 6, , . consists of three internally disjoint paths of
lengths a, b and c joining the same pair of vertices. If not all of a,
b and ¢ are multiples of 3, then 6, , . is the union of a primary
circuit C, and a path whose primary decomposition cannot use C,.
If all of a, b and c are multiples of 3, then 6, , . is the union of the
primary graph Y and a graph whose primary decomposition, if it
uses Y at all, cannot use it in a position where it touches the first Y.
Thus there are no primary theta graphs. There are also no primal
theta graphs, but that seems to be harder to prove.

It is stated in [2] that K, , is primal if and only if n is a power of
2. Pace [1], the analogous result does not hold for primary graphs.
In Section 3 we shall determine the primary graphs of the form
K, , for n < 927.
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(1.10) In the next section we shall characterize the primary caterpillars
and echinoids; there are only finitely many of them apart from the
infinite families mentioned in (1.6) and (1.5). The corresponding
problem for primal graphs seems to be harder and is still open.

We are indebted to the referee for drawing our attention to references [1]
and [4]). Theorem 1 below (the characterization of primary caterpillars)
was given with a different proof in [1], and Theorem 3 below corrects an

error in [1].

2. Caterpillars and echinoids

A caterpillar is a graph such that the removal of all end-vertices leaves a
path; equivalently, it is a tree that does not contain Y (Figure 1) as a
subgraph. We propose to use the term echinoid for a graph such that the
removal of all end-vertices (if any) leaves a circuit. The echinoids include
the suns from [2].

A vertex in a caterpillar or echinoid will be called a junction if it has
degree at least 3. Two junctions in a caterpillar are consecutive if the
unique path connecting them contains no other junction. An end-path in a
caterpillar C is a segment P of a longest path in C such that P connects an
end-vertex of C to the nearest junction. A 0(3)-path is a path whose
length is congruent to 0 (modulo 3). We shall sometimes find it
convenient to represent parts of caterpillars and echinoids by diagrams
such as —o—e—=x—e—, in which the symbols ~, 0, o and e denote vertices
with, respectively, degree 1, degree 2, degree at least 3 (a junction) and
unspecified degree.

We shall now determine the primary caterpillars and echinoids.

Theorem 1. A caterpillar is primary if and only if it is a primary star
K, 2+ or one of the four graphs H,, H,, Hy and H, shown in Figure 2.

Proof. We start with some observations that will dispose of all caterpillars
that do not have H, as a subgraph, and we then use a general argument for
the caterpillars that contain H,.

Hy: T A 11
VALV

Hy: I‘ ]' Hg:

Figure 2. Four primary graphs.
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2.1)

(2.2)

(2.3)

2.4)

2.5)

(2.6)

2.7

(2.8)

(2.9)

A primary caterpillar cannot have an end-path of length greater
than 3. For, if it does, remove the end three edges of this path, and
observe that a primary decomposition of what is left can easily be
extended to these three edges using K, and K 5.

A primary caterpillar G cannot have an end-path of length 2, as in
the diagram l—eog—g- For, in a primary decomposition of G—e, it

cannot be essential for e’ to be covered by K, (since there is at
least one other end-edge at v, which can be interchanged with e’),
and so e can be covered by K,.

A similar argument shows that two consecutive junctions in a
primary caterpillar G cannot be connected by a 0(3)-path. For, if
they were, then there would be a primary decomposition of G in
which the second edge of this path was covered by K.

Stars and double stars. Primary stars were classified in (1.6). By a
double star we mean a caterpillar G of diameter 3 with two
junctions, with degrees a = b, say. The decomposition of K; , into
primary stars uses at least one primary star that is not used in the
decomposition of K, ;,_;; thus we can join these two decomposed
stars so as to form a primary decomposition of G. Hence there are
no primary double stars.

Caterpillars with one junction. By (2.1) and (2.2), a primary
caterpillar G of this type is a star or a star with one or two paths of
length 2 adjoined at end-vertices. It is easy to see that if G is not a
star then G has a primary decomposition unless two paths of length
2 are adjoined to K 3, which gives the primary graph H,.

A double star with a path attached. By (2.1) and (2.2), a primary
caterpillar G of this type consists of a double star with a path of
length 2 adjoined at an end-vertex. If both junctions have degree 3
then we have the primary graph H,; if not, then G has a primary
decomposition using H,.

Two stars with an end-vertex in common. Such a graph G is easily
seen to be non-primary unless both stars are of the form K »* for
the same integer k; k < 2 gives no problem, k =2 gives the
primary graph H,, and if k¥ > 2 then G has a primary decomposition
using H,.

Caterpillars of diameter 4. The case where there are fewer than
three junctions has been dealt with in (1.4), (2.5), (2.6) and (2.7).
If there are three junctions with degree 3 then we have the primary
graph H;; otherwise there is a primary decomposition using H;.
Two stars connected by a path. In view of (1.4), (2.4), (2.5) and
(2.7), we may suppose that there are two junctions connected by a
path of length /= 3. It is not difficult to see that a primary
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decomposition of the central /-2 edges of this path can be
extended to a primary decomposition of the whole graph. (This is
easy unless one of the junctions has degree 3. But then at least one
of the three ways of decomposing its incident edges into a X, and a
K, , must work.)

(2.10) Caterpillars not containing H, as a subgraph. In view of (2.2), a
primary caterpillar G of this type is a path with a star, a double star
or nothing at each end. In view of (1.4) and (2.4)—(2.9), it remains
only to consider the case when there is a double star at one end and
a star or double star at the other. Remove H, from G. The
primary decomposition of what is left cannot use H, in a position
where it touches the first H,, by (2.3) and the absence of H, as a
subgraph. Thus there are no new primary caterpillars of this type.

It remains to consider the case where G is a caterpillar having H, as a

proper subgraph. We shall show that G is not primary. Suppose it is.

Draw G with a longest path horizontal, and let H denote the leftmost copy

of H, in G with six horizontal edges. Then a primary decomposition of

G- H must use a copy H’ of H, on the right of H and touching H. Note

that there is no H, to the left of H, by (2.3) and the fact that H is the

leftmost copy of H; in G. Note also that a caterpillar of diameter at most

3, which we shall refer to as a PDDS (for possibly degenerate double

star), certainly does not use H, or H, in its primary decomposition. Thus

we can deal with the juxtaposition of H and H’ as follows. Let vy be the

central vertex of H, so that part of G has diagram -«—e—e—e— Then v,
Ug Uy VU Uy

must have degree 2, since otherwise we could replace H by a copy of H,
and a PDDS containing the edge v,vs. Also, v, must have degree 2, since
otherwise we could turn up the rightmost edge of H at v, so that H is
separated from H’ by a PDDS. Now v; must have degree 2, by (2.3).
Thus the diagram of G continues in the form ~~—o0—o0—o0—e—e—=—, where

Ug Uy Uy Uy U Ug U4

vg is the central vertex of H’. Now v, must have degree 2 for the same
reason as v;. And if vs did not have degree 2, then we could replace H’
by a copy of H, and a K, covering the edge vsuvy, unless this copy of H,
touched another to its right, in which case we could use instead a copy of
H, centred on vs with a PDDS separating it from the copy of H, on its
right, leaving on its left a graph that would not contain H;. Thus vs must
have degree 2. Now v, and vg violate (2.3). This contradiction completes
the proof of Theorem 1. 0O

Theorem 2. An echinoid is primary if and only if it is a primary circuit
or the graph A in Figure 1.
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Proof. Let G be a primary echinoid that is not a circuit but contains the
circuit C,. Evidently C, is not primary, so n is a multiple of 3. The
cases n = 3 and n = 6 are left to the reader; we suppose n = 9. We now
list the diagrams of various configurations that cannot occur within G.

(A) -c—e—o—e——_ For, if this occurs within G, let H be a copy of H,

v, Uy Uy U, Ug

centx‘edx on’ v; with six edges in C,, and consider a primary decomposition
of G-H. If this uses one or two copies of H; touching H on the left or
right or both, then we can turn up the leftmost or rightmost edge of H at
v; or vy or both, creating one or two PDDSs, to obtain a primary
decomposition of G with no two copies of H; touching.

(B) —=—o—o—, For, if this occurs, then G has a primary decomposition
using H;. (Note that, by (A), G cannot contain two touching copies of
Hj.)

(C) -o—e——0o—e—e—, If this occurs, let H be a copy of H; centred on
Uy Uy Uy U, Ug Vg

vy with six edges in C,, and consider a primary decomposition of G—H.
If this uses a copy H’ of H, touching H on the left of H, then we can turn
up the leftmost edge of H at v,, thereby creating a PDDS which separates
H from H’. If there is a copy of H, touching H on the right of H, replace
H by a copy H” of H, and a PDDS that contains the edge vsvs. This
gives a primary decomposition of G unless there is a copy of H, touching
H” on the left of H”, in which case we can turn up the leftmost edge of
H” at v, to create a PDDS and avoid the contact.

(D) -e—a . If this occurs, let the junctions closest to v; and v, on the

Uy U,
left and right be v{ and v; respectively, let the distance between v; and v;
along the junction-free path be [;, and let the first vertex after v; along

this path towards v; be vy’ (i = 1,2); &0~ + ~0—t—0—0~: -+ ~O0—0~,

vi o v, vy v v;

Then /; =2 3 by (B) and (C), and /; = 1 or 2 (mod 3) by the argument of
(2.3). If I, =5 = 1 (mod 3), then use a copy of H, centred on v,, a copy
of K, and (if {; > 4 or /, > 4) an equal number of additional copies of K,
and K ,, to decompose the segment from v{ to v3 in such a way that vy
is incident with a copy of K, and v3 is incident with a copy of K, or H,.
In a primary decomposition of the rest of G, it is not necessary for the
edge vivy to be covered by K,, nor for the edge vjv; to be covered by
K, or H, (as appropriate), by arguments that have been used several times
already, and so there exists a primary decomposition of G. If /; = 1 and
ly =2 (mod 3), or vice versa, then we use the same argument with an
additional copy of K,. And if /; = [, =2 (mod 3) then we use H,, K, ,
and two copies of K, (plus an equal number of additional copies of K, and
K, , if necessary) in an exactly similar way.
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We can now complete the argument as follows. Let H be a copy of H;
in G with six edges in C,, and consider a primary decomposition of G- H.
This gives a primary decomposition of G unless it uses a copy H’ of H,
that touches H. Suppose that H and H’ are centred on v and v’. By (A),
(D) and the argument of (2.3), v and v’ are separated by a path of six
edges that passes through exactly one other junction v”, which is at
distance 2 from v or v’. Thus we can avoid the contact between H and H’
by turning up the end edge of H or H” at v”, creating a PDDS. We can do
the same independently if there is a copy of H, touching H on the other
side of H, and so we obtain a primary decomposition of G. O

3. The graphs (a, b,c).

Let (a, b, c) denote the union of K, ,,, and K ,.. with an independent set
of b vertices in common, labelled as in Figure 3. Then (0,5,0) = K; 5,
and every connected subgraph of K, , is either a star or a graph (a,b,c) for
some a, b and ¢ (b = 1). This section is devoted to a proof of the
following theorem.

Theorem 3. The primary graphs (a,b,c) with 1< b <927 are the

following:

(a) KZ.l’ Kz'z, K2‘4, K2.8 and (3, 1.3) = H4 (Figure 2),

(b) the fourteen graphs (13,37,13), (12,38,12), ..., (1,49,1), (0,50,0)
= K, 5o, each with 100 edges, and

(C) (0, 100, 0) = KZ,]OO'

We conjecture that in fact there are no more primary graphs (a,b,c)
with b < 1637, and that the 206 graphs (205, 1637, 205), (204, 1638,204),
..., (0,1842,0) = K; 134 are all primary.

We show first that each of the graphs in Theorem 3 is either primary or
contains a primary subgraph that is not listed there. For the graphs in (a),
this is easy and is left to the reader. For a graph G in (b), note that the
largest independent set of vertices in G has cardinality at most 63, and so

Figure 3. The graph (a, b, c).
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in a primary decomposition of G not both of v, and v, can be contained in
a copy of K, 3,. Suppose v, is not. Then every edge incident with v, is
covered by one of the graphs in (a) or one of the stars K;; = K,
Ki12=K;,, K14, K; g and K, ;6. But these graphs can cover at most 49
edges at v;, whereas v, has degree 50 in G. Thus either G is primary or
its primary decomposition uses a primary graph that we do not yet know
about. Since, for each graph G in (b), K, ;00-G = G, a primary
decomposition of K, 190 cannot use any of the primary graphs in (b), and
so a similar argument works for K, j50. A similar argument also shows
that each graph G in {(205, 1637, 205), ..., (0,1842,0) = K, 1345} is either
primary or contains a new primary subgraph. For, the largest independent
set in G has cardinality at most 2047, so v, (say) is not covered by
K, 1024; thus the primary graphs available to cover v, are the graphs in
Theorem 3 and the primary stars X ,,...,K 512, which can cover at most
1841 edges at v,, whereas v, has degree 1842 in G.

It remains to prove that there are no primary graphs (a,b,c) with
b < 927 other than those listed in Theorem 3. The following lemma will
help with this.

Lemma 3.1. The graph (a,b,c) has a prlmary decomposition into primary
stars unless a+b = 2%+x, b+c = 2% +y and x+y < b, for some non-
negative integers k, x and y.

Proof. Write a+b = 2¥+x and b+c = 2'+y, where k and ! are as large as
possible subject to &, /, x. and y being non-negative integers. If k = I,
w.lo.g. k > I, use K »* to cover 2% edges from v, including all edges from
vy to B; this is possible because 2' > 4(b+c) = b and 2% > 2/*! > p.
The remaining edges can now easily be covered by primary stars. If k = l
and x+y > b, partition B into sets B, and B, satisfying b—x < |B,| <

and b-y < |B,| < x, which is clearly possible, and use two copies of
K, 2+, one to cover 2* edges from v, including all edges from v, to B, and
none from v, to B, (which is pos51ble since |B,| sy<2'=2F=
a+b-x < a+|B,|) and one to cover 2* edges from v, including all edges
from v, to B, and none from v, to B,. As before, the remaining edges
can now easily be covered. O

We now complete the proof of Theorem 3 in seven cases, which are
exhaustive though not exclusive. Let G = (a, b, ¢).
Casel: b = 1 This case was dealt with in (2.7).
Case 2: 2 < b < 15. The reader is assumed to have verified that K, , is
primary and K2 4 and K, g have no primary decomposition into primary
graphs that we already know about (that is, the primary stars and the
graphs in Theorem 3(a)). If 2<b <3 and G # K, 5, then G-K, , does
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not contain K; ,, and so a primary decomposition of it can be extended to
G by using K, 5; thus G is not primary. It follows that K 4 has no new
primary subgraphs, and so it is primary. If 4 < b <7 and G # K3 4, then
G-K, 4 does not contain K, 4; thus G is not primary. It follows that K, g
is primary. If 8 <b < 15 and G # K, 5, then G—-K, g does not contain
K, g; thus G is not primary.

Case 3: 7< b <21, b odd. Remove H, and some of K, ,, K, 4 and K3 g
from G to leave (a+3,0,c+3), which does not contain any of the graphs
removed. Thus G is not primary.

Case 4: 10 < b <22, b even. Remove H, and some of K,,, K;4 and
K,g from G to leave (a+3,1,c+3), which can be decomposed into
primary stars by Lemma 3.1 unless a+4 = c+4 = 2* for some k. In this
last case, remove H4, K, and some of K ,, K 4 and K, g from G to
leave (a@+3,2,c+3), which can be decomposed using K; ,.+4 twice and
K, twice.

Case 5: 21 < b <35. Remove H,, K2, K5 4 and K, 3 from G to leave
(a+3,b-21,c+3), which can be decomposed by Lemma 3.1 unless

a+b-18 = 2F+x, b+c-18 = 2"+y and x+y<b-21. (1)
In this last case, let d be the unique even integer satisfying
b-21-x-y<d<b-20-x-y )

(note 0 < d £35-20 =15, so 2 <d < 14), and remove H, and some of
K33, K, 4 and K, g from G to leave G* = (a+3,b-21+d,c+3). Now

a+b—18+d = 2*+x’, b+c-18+d =2%+y’ and x'+y’ = b-21+d

by (2), since x’+y’ = x+y+2d. Thus we can decompose G’ into primary
stars by Lemma 3.1 unless both a+b—18+d > 2**! and b+c-18+d >
2¢*+1  But this is impossible, since it implies x” > 2, y* > 2* and

2614 x4y S x’+y +x+y = 2(x+y+d) < 2b-40
by (2), whereas (1) gives
2*1ix+y = (a+b-18)+(b+c—18) = 2b-36.

Case 6: 36 < b <50. The argument of Case 5 works as long as
b-20-x-y < 15, x+y = b—35. So we may suppose that

a+b-18 =2*+x, b+c-18=2%+y and x+y<b-36. (3)
Ifb=36thenx=y=0and 18 < a+b-18 =b+c-18 = 2% > 32; thus
a+b =b+c =25+18 < 2**! and 18+18 = b,
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whence G has a primary decomposition by Lemma 3.1.
If 37 < b < 50 and min (a,¢) < 50-b, say a < 50-b, then (3) gives

2*<a+b-18 < 32,

so 2<16 and x=a+b-18-2>b-34. Thus G has a primary
decomposition since (3) does not hold. It follows that none of the graphs
in Theorem 3 (b) has a primary subgraph that we did not already know
about, and so all these graphs are primary. Moreover, there are no other
primary graphs with 37 < b < 50, since if min(a,c) = 50-b then G has
the primary graph (50— b, b, 50-b) as a subgraph.

Case7: 51 <b<927. If 51 <b <99, then G-K, 5o does not contain
K, s0. and so G is not primary. Thus K, 100 does not have any primary
subgraphs that we did not already know about, and so it is primary. If
100 < b <199 and G # K; 109, then G—K, 190 does not contain K> 100»
and so G is not primary. Note that K, 49 is the edge-disjoint union of the
four graphs (3,47, 3), (2,48,2), (1,49, 1) and (0, 50,0) = K3 50, and K 506
is the edge-disjoint union of these four graphs and two stars, and so if
200 < b < 206+46 then we can remove these four graphs from G so as to
leave a graph that does not contain any of them. If 250 < b < 256 +46
then we can do the same by using K ;09 in place of K3 s0. It is now easy
to see that if

b<50+51+...+63+100+36 = 927

then we can remove from G some or all of the primary graphs in Theorem
3(b) and (c) so as to leave a graph (a’, b’,c’) with b’ < 36, which cannot
contain any of the graphs removed. Thus the next primary graph in the
family must have b > 928. This completes the proof of Theorem 3. [J
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