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ABSTRACT. In 1974, G. Chartrand and R.E. Pippert first de-
fined locally connected and locally n-connected graphs and ob-
tained some interesting results. In this paper we first extend
these concepts to digraphs. We obtain generalizations of some
results of Chartrand and Pippert and establish relationships
between local connectedness and global connectedness in di-
graphs.

1 Introduction

The connectedness in graphs and digraphs, one of the most important prop-
erties that a graph or digraph can possess, has been extensively studied (see,
for instance, the surveys [1] and [5]). In 1974, G. Chartrand and R.E. Pip-
pert [3] first defined locally connected and locally n-connected graphs and
obtained some. interesting results, among which are the following:

Theorem A. Every connected and locally n-connected graph (n > 1) is
(n + 1)-connected.

Theorem B. Let G be a graph of order p such that for every pair z,y of
vertices

4
degz +degy > §(p -1).
Then G is locally connected.

Theorem C. Let G be a graph of order p such that for every pair x,y of
vertices

deg z +degy >§(p+ E—;—%), wherel <n <p-2.
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Then G is locally n-connected.

Following [3], a variety of research [6-11] has been devoted to locally con-
" nected graphs. In the present paper we first extend the concept of local
connectedness to digraphs. We obtain generalizations of the above the-
orems and establish relationships between local connectedness and global
connectedness in digraphs.

2 Definitions

We follow the standard terminology and notation. A digraph D = (V(D),
A(D)) is a finite nonempty set V(D) of vertices together with a (possibly
empty) set A(D) of ordered pairs of distinct vertices of D called arcs. An
ordered pair (u,v) € A(D) is also called an arc from u to v. A digraph D is
said to be weakly connected if its underlying undirected graph is connected.
If there is a dipath from u to v for any pair u and v of vertices in D, then
the digraph D is said to be strongly connected, or simply said to be strong.
The subdigraph induced by a nonempty subset W C V(D) is denoted
(W)p. Let u,v € V(D). We say u is a neighbor of v if (u,v) € A(D) or
(v,u) € A(D). The set of neighbors of v in D is denoted Np(V). The
induced subdigraph (Np(V))p is said to be the neighborhood of v. The
outdegree of v is denoted as od v and the indegree of v is denoted as id
v. Let S and T be two disjoint proper subsets of V(D). We use (S,T)p
to denote the set of arcs (s,t) in D with s € S and t € T. When there
is no confusion, we may simply use (W), (N(v)) and (S,T) to denote the
corresponding (W) p, (Np(v))p and (S,T)p, respectively.
Recall the following definitions from [3]:

A graph G is locally connected if the neighborhood of every vertex of G
is connected (where the neighborhood of a vertex v is the subgraph induced
by all the vertices in G adjacent with v).

A graph G is locally n-connected if the neighborhood of every vertex of
G is n-connected.

Now let us extend these definitions to digraphs.

Let n > 1. A digraph D is said to be n-strong [n-arc-strong, resp.] if the
removal of fewer than n vertices [arcs, resp.] always results in a nontrivial
strong digraph. Clearly, every n-strong digraph is n-arc-strong. Every n-
strong [n-arc-strong, resp.] digraph is also m-strong [m-arc-strong, resp.]
for 1 < m < n. It should also be noted that D is 1-strong iff D is 1-
arc-strong iff D is a nontrivial strong digraph. The trivial strong digraph
consisting of a single vertex is the only digraph that is strong but not 1-
strong (or not 1-arc-strong).

We define D to be locally strong [locally n-strong, locally n-arc-strong,
resp.] if the neighborhood of every vertex of D is strong [n-strong, n-arc-
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strong, resp.).
For other terminologies not defined here we refer the reader to the book

[2].

3 Main results

Theorem 1. Any weakly connected and locally n-arc-strong digraph is
(n + 1)-arc-strong.

To prove Theorem 1, we need the following lemma.

Lemma 1. A nontrivial digraph D is n-arc-strong if and only if (S, S)pl| >
n for every nonempty proper subset S of V(D) (where S = V(D) — S).

The proof of Lemma 1 is easy and so omitted.
Now the proof of Theorem 1 goes as follows.

Proof of Theorem 1: Suppose D is weakly connected and locally n-arc-
strong but not (n + 1)-arc-strong. Then by Lemma 1, there is a nonempty
proper subset S of V(D) such that |(S, S)| < n. We distinguish the follow-
ing two cases.

Case 10 < |(S,5)| < n. Let (z,y) € (S5,5). Then N(z) NS # @ and
N(y)NS # 0. We claim that N(z) NS = 0. If not, then by Lemma
1, |(N(z) n §,N(z) N S)| > n since (N(z)) is n-arc-strong. Note that
(8,8) 2 (N(z)nS, N(z)NS)U(z,y) and that (z,y) & (N (z)NS, N(z)nS).
Then we have |(S,'S)| > n+1, which is a contradiction. Thus we have shown
N(z)NS=0,ie, N(z) CS. Similarly, we can show that N(y) NS = 0,
ie., N(y) C'S. Thus we have N(z) N N(y) = 0.

‘Since y € N(z) and (N(z)) is n-arc-strong, we have N () —y # 0 and
(y, N(z) — y) # 0. This implies that N(y) N N(z) # 0, a contradiction.

Case 2 |(S,5)| = 0. Since D is weakly connected, there exists an arc
(y,z) € (5,5). Then, as in Case 1, N(z) NS # @ and N(y) N S # 0.
We also have N(z)NS =0, i.e, N(z) C S. (Otherwise, since (N(z)) is
n-arc-strong, [(N(z) NS, N(z) NS)| > n by Lemma 1. This contradicts the
condition |(S, S)| = 0.). Similarly, we have N(y) NS = 0, i.e., N () € S.
Then, N(z) N N(y) = 0 and the same argument as in Case 1 also leads to
a contradiction.

This completes the proof of Theorem 1. a

Theorem 2. Any weakly connected and locally n-strong digraph is (n+ 1)-
strong.

Proof: Suppose D is weakly connected and locally n-strong but not (n+1)-
strong. Then there exists a minimal set T of k (> n) vertices of D such
that D — T is not strong or D — T is a single vertex. If D — T is a single
vertex, then D has only k + 1 vertices, implying that the neighborhood
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of a vertex of D has at most k < n vertices and that, consequently, no
neighborhood is n-strong. Thus, D — T is not strong. Let D,=D-T.
Then certainly D, is not 1-arc-strong. By Lemma 1 there is a nonempty
proper subset S of V/(D;) such that (S, V(D1) — S)p, = 0. Note that D is
strong by Theorem 1. Hence T is not empty. Let v € T, S; = Np(V)N S
and S; = Np(V) N (V(D;) — S). By the choice of T, T is a minimal set
of D such that D — T is not strong. So we must have S; # 0 and 5; # 0.
Notice that

Np(V) = Np(V)NT = $1US1,(S1,51)npwyy E (S, V(D1) = S)p, =0,

and |[Np(v)NT| < |T—V| < k—1 <n—1. Then (Np(v)) is not n—strong
This contradicts the assumption that D is locally n-strong.

Theorem 3. Let D be a digraph of order p > 2 such that for every pair
x,y of distinct vertices

odz+idy> %(p—l).

Then D is locally strong.

Proof: It is obvious for p = 2. Now we assume that p > 3.

Suppose D satisfies the hypothesis of the theorem but D is not locally
strong. Then there is a vertex v such that (N(v)) is not strong. Clearly,
(N (v)) is a nontrivial digraph which is not 1-arc-strong. By Lemma 1, there
is a nonempty proper subset S of N(v) such that there is no arc coming out
from S to N(v) — S in (N(v)). Let u € S, w € N(v) — S, and let a = ||
and b= |N(V) — S|. Then it is easily seen that od v+ id v < 2(a+ b), od
u<p—(b+1)and idw <p—(a+1). Thus, (od v +id v) + 20d u + 2id
w < 4(p—1). That is, (od v+id w)+ (od u+id w)+(od u+idv) < 4(p— 1)
This contradicts the given inequality in the hypothesis.

Similarly, we can prove the following

Theorem 4. Let D be a digraph of order p > 3 such that for every pair
x,y of distinct vertices

odz+idy>§-(p+n—;—3), wherel1 <n<p-2.

Then D is locally n-strong.

It is easy to see that Theorems A, B and C follow from Theorems 2, 3 and
4, respectively. Also, we may obtain the following corollary from Theorem
1, which is parallel to Theorem A.

Corollary 1. Every connected and locally n-edge-connected graph mn>1)
is (n + 1)-edge-connected.
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