Some Joint Distributions Concerning Random Walk in a Plane

Jagdish Saran and Sarita Rani

Department of Statistics
Faculty of Mathematical Sciences
University of Delhi
Delhi - 110007, India

Abstract. This paper deals with the joint distributions of some characteristics of the
two-dimensional simple symmetric random walk in which a particle at any stage moves
one unit in any one of the four directions, namely, north, south, east, and west with equal
probability.

1. Introduction.

In this paper we consider a random walk in a plane (that is, the 2-dimensional
simple symmetric walk) in which a particle starting from the origin moves at any
stage one unit in any one of the four directions, namely, north, south, east, and west
with equal probability. In this random walk, since every path of length d in the
plane has the probability (1/4)¢, we can determine the distribution of any char-
acteristic of the random walk when the particle starting from the origin reaches a
fixed point (a, b) after d steps, if we know the number of paths corresponding to
the characteristic under consideration and the number of all paths of length d from
the origin to (a, b). DeTemple and Robertson (1984) and DeTemple, Jones, and
Robertson (1988) have derived distributions of some characteristics of this random
walk. Later Cséki, Mohanty, and Saran (1990) have derived distributions related
to the boundaries y — 2 = k; and y + z = k such as touchings, arrivals, cross-
ings, etc. In this paper we consider the above mentioned 2-dimensional simple
symmetric walk and derive, using combinatorial methods, the joint distributions
of some characteristics related to the boundary y — z = k(k > 0), namely, ar-
rivals, touchings, crossings, steps above the boundary, index of the ith arrival, and
index of the ith touch.

2. Notations.

We introduce the following symbols.
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Eqbd : apath of length d from (0, 0) to (a,b)

N(a,b;d; k,7) : the number of E, ;4 paths reaching the line
y — z = k exactly r times, that is,
having exactly r arrivals.

N=(a,b;d; k,T) : the number of E, 3,4 paths never crossing the

line y — z = k and reaching it from below
exactly r times.

N*(a,b;d; k,7) : the number of E, 3.4 paths reaching the line
y — = k from above exactly r times
(known as positive arrivals).

N*(a,b; d; k, 1) : the number of E, 3.4 paths crossing the line

y — = = k exactly r times.
N(a,b;d; k,734,d1) : the number of paths of type N(a, b; d; k, )
where the ith arrival occurs in d; steps.

N—(a,b;d; k,7;1,d1) : the number of paths of type N~(a, b; d; k, 7)
where the ith touch occurs in d; steps.
N*(a,b;d; k,7;1,d1) : the number of paths of type N*(a, b; d; k, 1)
where the ith positive arrival occurs in d; steps.
N*(a,b;d; k,7;1,d;) : the number of paths of type N*(a, b; d; k, 1)
where the ith crossing occurs in d; steps.
M*(a,b; d; k,r,m1) : the number of E, ;.4 paths having exactly

r arrivals and r; positive arrivals
ontheliney — z = k.
M*(a,b;d; k,7,71) : the number of E, 3,4 paths reaching the line
y — = k exactly r times and crossing the line
y — = = k exactly r, times.
M**(a,b;d; k,r,71,7) : the number of paths of type M*(a,b; d; k,r,71)
having exactly j crossings of the line y — z = k.
M?29*(a,b; d; k,7,71) : the number of paths of type M*(a,b; d; k, 7, 71)
having exactly 2 g steps above the liney — z = k.
M?%9**(a,b;d; k,r,71,7) : the number of paths of type M**(a, b; d; k,7,71,7)
having exactly 2 g steps above the line y — = = k.

3. Some auxiliary results.

Some basic results needed in the sequel are quoted from Cséki, Mohanty, and
Saran (1990) and others are easily derivable.

(i) Fora>?b

_ —b d d
N~ (a,b;d;0,0) = ad (d-a—b) (d—a+b)
=2 =
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whered > a+bandd—a—b=0 (mod 2).
(ii)

_ 1 (d-1 d
wienson =7y (%) ()

= the number of paths of length d from (0, 0) to (a, a)
lying entirely below the line y =z except at the end point.

(iii) Fora>b—k,k>0andr>1
- a—b+2k+r—1 d—r+1 d
N7(a,b;d; k,7) = I—rr1 (d-a+b_§rk-2r+z) (d—;—b)-

When k = 0, the starting point is counted as a touch.
(iv) Fora>b—k,k>0andr > 1

N(a,b;d; k,7) = 2" 'N~(a,b; d; k, 7).

When k = 0, the starting point is counted as an arrival.
(v) Fork>Oandr>1

k+1+2r [ d+1 d
N*(z,k+ z;d; k,7) = a+1 (d—k—Zr) (d—k—Zz) .
2 2

(vij Fora>bandr>1

a—b+1+2r d+1 d
N*(a,b;d;0,7) = T R (d—a+b—2r) (d—o—b) .
2 2

(vii) Forr>1

4(r+1
N*(a,a;d;0,7) = (rd ) (4-257 +1)> (d$a>'
=z

4. Joint distributions.

Theorem 1.

@ Fora>b—k,k>0,r>1,di—k>2(i—1) andd—d, —(a—b+k) >
2(r—1)

e _(k+i—-D(r+a—-b+k—1) (di—i+1
N~ (a,b;d; k,7;1,dy) = (di—i+D(d—di—r+0) (d,—lc;Z—Za

1)
( d—d;—r+1 ) ( d )
“\ d—dj—a+ bz—k—2 r+24 d—;-—-b .
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() Fork=0,a>br>1,d >2iandd—dy —a+b>2r—i)

_ o . _ i(r—i+a—0>b) dy —1
N7 (a,b;d;0,7;4,d)) = (@ —Dd—di—r+9) ( d|~2—2;>

(d—d] —’r+i) ( d )
“\ d=4 —a-;b—2r+2t' d—;—b .

Proof: Let the path, as envisaged in (1), touch the line y — = = k for the ith time
at the point (z, k+ =) in d; steps, whered; —k =0 (mod 2). Then the required
number of paths is given by

N‘(a,b; d; ,C,'I';‘i,dl)
=) N (z,k+zdis ki) N (a—z,b— k—z3d—d1;0,7 — 1)
T

@

di—K)/2 )
“E’/ k+i—1 ( d )(dl—i+l)
= 7 | di—k=2z dj—k—2i+2
z=—(di+K)/2 dy—i+1 2 2

r—ita—b+k ( d—d —'r+i.) ( d—d )
d— dl —r+i d—d; —a+b2—k—2r+2t d—d) —a;b+k+2z )
by (iii) of Section 3. Since d; — k is a multiple of 2, therefore, on putting u =
(d1 — k) /2, the above expression reduces to
N~ (a,b;d; k,7;1,dy)
_(k+i—D(r+a—b+k—1) (d —i+1
T di—i+ D)(d—di —r+i) \ Gk
d—di—r+i 2": k+2u) [ d—k—-2u
| d=d, —a+52-lc—2r+25 w—1z d—za—b —u+z /)’
z=—(u+k)
which on using the convolution identity

2 ()22

z=0
leads to (1). Proceeding in a similar manner, as for £ > 0, one can easily prove
). i
Deductions:

(i) Summing (1) overd,,wegetfora >b—k,k>0andr > 1
d—a+b-27r+2i-k

(k+i—=1(r+a—-b+k—1)
E (di—i+1)(d—dy —r+1)

N~ (a,b;d; k,1) =

dy=k+2i-2
dy—k=0 (mod 2)

(dl—i+l)(d—d1—r+i)( d )
| di—k=2i+2 d—dy—a+b—k-2r+2i d—a—b
2 2 2
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which on putting u = (d; — k) /2 gives

[ )_“"“*“‘g“‘"’/z (k+i—1)(r+a—b+k—i)
@06 5, 7) = = (k+2u—i+1)(d—k—2u—r+1)

.<k+2u—i+1)<d—k—2u—r+;‘)< d )
u+ k d—2k—2u—2a+b—2r+Zs d—;—b .

Further, making the substitution ; = u — i + 1 and using the convolution
identity in Mohanty (1979, p. 25), we get

— -1 —
N'(a,b;d;k,'r)=a b+2k+1r ( d—r+1 )( d )

d—1r+1 d—a+b—%k-—2r—2 d—;-—b
which is equivalent to (6) in Csaki, Mohanty, and Saran (1990) for k > 0.
(ii) Summing (2) over d;, we get (6) in Csdaki, Mohanty, and Saran (1990).
Theorem 2.
@ Fora>b—k,k>0andr>1

. (k+2i—1)(a—b+k+2r—2i+1)
* o e . -—
N*(a,b;d; k,7;1,dy) = @+ @4+ D

(d1+1 )( d—dy+1 )( d )
“\ di—k-2i+2 d—d; —o+62—k--2r+21 d—;—b .
2
3)

. 2r—i+ )(k+2i—1)
* o Je . —_
N*(a,a+ k;ds k,734,dy) = (di + )(d—dy)

di+1 d— d; d
| 4 —k;2i+2 d;d,-zzr+2s-z d=lot |-

() Fork>0andr>1

@
€) Fora>bandr>1 .
. 29(a—b+2r—2i+1) dy
* o e . — .
N*(a,b;d;0,7;4,dy) = G- 7D (4_2 )
(5)
( d—d;+1 ) < d )
|\ d=d -—a-;b—z r+21 d-g—b .
@ Forr>1
44i(r —
N*(a,a;d;0,7;14,d;) = dir—i+ 1 _‘z
“di(d—di)
(6)
d—d; d
(d—d|—22r+25-2) (422a>
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Proof: Let the path as envisaged in (3) cross the line y — = k for the ith time at
the point (z, k + x) in d; steps where d; — k =0 (mod 2). Then the required
number of paths is given by

N*(a,b;d; k, 734, d1)
=Y N*(z,k+ zidisk,i—1)-N*(a—2,b—k—z3d—di30,m —1)
z

k+1+2(i-1) (ddl-iz-(l))( d )
———— | d—k-2i-1 d—k—2z
g=—(d1 +K)/2 d +1 2 2

.a—b+k+l+2(r—i)< d—dy +1 )( d—d; )

—dy — —2(r— —dy —a—
d—d + 1 d—d a+bz—l: (r—i) d—d 02b+k+2:c

(d—k) /2

by (v) and (vi) of Section 3, leading to (3) after simplification. Proceeding in a
similar manner, one can prove (4) to (6). 1
Deductions: Summing (3) to (6) each over d;, we get (11) to (14), respectively,
in Cséki, Mohanty, and Saran (1990).

Theorem 3.

@ Fora>b—k,k>0,r>1,di—k>2(i—1)andd—d; —(a—-b+k) >
2(r—1)

N(a b d: k.7, dy) = 21 iz D(a—bt k4 r—i) (dl —i+ 1)

(di—i+ )(d—di—r+i) \4=k22

(d—dl—r+i>( ) @
‘\ d=dj—at+b—k-27+23 d—a—=b |-
2 2
() Fora>b,r>1,d >2iandd—dy —(a—b) >2(r—1)
i _ 2 Y(a—b+r—1) dy —i
N(a)b,dyoy'r”ydl)_ (dl—i)(d—dl—'r"'i) (él;_z’) (8)

(d—dl—r+i) ( d )
‘ d—d) —a+2 b—2r+24 d—(zz—b .

Proof: Let the path as envisaged in (7) reach the line y — x = k for the ith time at
the point (z, k + z) in d; steps whered; — k =0 (mod 2). Then

N(a,b;d; k,r;4,d1)
=Y N(z,k+zdisk,i)-N(a —z,b—k—z;d—di;0,7 —4)
T

38



which on using (iv) of Section 3 leads to (7). Similarly (8) can be proved. [ |
Deductions:
() Summing (7) overd; fromk+2(i—1) tod—a+b—k—2(r —1), we get

N(a,b;d; k,1)
_2,_1a—b+2k+r—1 d—r+1 d
- d—7r+1 duatb-2k-2rs2 | | dogmb

which is equivalent to (10) in Cséki, Mohanty, and Saran (1990) fork > 0.
(ii) Summing (8) over d;, we get (10) in Cs4ki, Mohanty, and Saran (1990) for
k=0.

Theorem 4.
@ Fora>b—k,k>0,0<rn<r,r>landd—2k—a+b>2(r—1)

M*(a, b; d; k; 7, 7'1)

"”) a—b+2k+r—1( d—r+1 )( d )
_ r d—r+1 d—a+ b—% k—=2r+2 d—;—b (9)
- when r, Is even,

0 when ry is odd.

() Fork>0,0<m <r—1,r>1landd—k>?2r—1)
M*(a,a+ k;d; k,r,71)
_(r—=1\k+r—1 d d—r+1 (10)
- T1 d__,r_'_l d-jk_z_“ ﬂ_zz;"z
© Fora>b0<rn <r,r>1,d—a+b>2r
M*(a,b;d;0,7,71) .
_(rNa=b+r [ d—r d (11)
= ™ - d—r d—a-;b—Zr d—;—b
@ Fori1<m<r—1,r>landd>2r
M*(a)a;d;oar)'rl)

o (r=1\_r_(d=r\( d 12)
=2\ n o= \g ) (&

* d— d
M(a,a;d;0,7,0)=dr—r(d_2fr) (d—20>- (13)
- 2

and
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Proof: To establish (9), we observe that on reflecting the path segments lying
above the line y — = = k about this line itself, we get a path of length d from
(0,0) to (a,b),a > b— k, lying entirely below the line y — = = k and touching
it exactly r times. Thus,

M*(a,b;d; k,7,m) = (;)N-«z,b; d k1),

since 71 crossing points can be selected out of r arrivals in (:1 > ways, leading
to (9) on using (iii) of Section 3.

Proceeding in a similar manner, one can prove (10) to (12). In result (12), the
factor 2 appears due to the fact that the path may start either with a north/west step
or with a south/east step. |
Deductions:

(i) For the special case r; = 0, results (9), (10), (11), and (13) each reduce to

result (6) of Cséki, Mohanty, and Saran (1990).
(ii) Summing (9) to (12) each over r1, we get, results equivalent to (10) in Cséki,
Mohanty, and Saran (1990).

Theorem 5. Fora >b—k,k>0,0 <r <r—1,r>landd—a+b-2k >
2(r—1)
M?*(a,b;d; k,r,71)

_[r—=1\r+ta-b+2k-1 d—r+1 d (14)
“\n d—r+1 doatbodk-2rs) dosb | -

When k = 0, the starting point is counted as an arrival.

Proof: On reflecting the segments of the path lying above the line y — z = k about
this line, we get a path of length d from (0,0) to (a, b) lying entirely below the
line y — z = k and touching it exactly » times and the number of such paths is
given by N~(a, b; d; k, 7). Now since r; positive arrivals can be selected out of

(r — 1) arrivals in (T:l 1 ) ways, we get (14). ]

Deductions:
(i) For the special case r; = 0, result (14) reduces to result (6) of Csaki, Mo-
hanty, and Saran (1990).
(ii) Summing (14) over r; from 0 to r — 1, we get (10) in Csdki, Mohanty, and
Saran (1990).
(iii) Summing (14) over r fromr; + 1 to (d — a + b — 2k + 1) /2, making the

substitution j = r — v, — 1 and using the relation 22¢ (:‘) = ("_i 1 )

— (7:: } ), we get the following new result:
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Corollary. Fora >b—k,k >0 and r >0
N*(a,b;d; k,71)
a—b+2k+2r +1 d+1 d (15)
= d+1 (d—a+b—22r|—2k) <%) .
When k = 0, the starting point is counted as a positive arrival.
Theorem 6. Fora >b—k,k>0andr > 1
N*(a,b;d; k,7;4,dy)
(k+2i)(a—b+k+2r—2i+1) ds
= di(d—dy + 1) (4#)

( d—d; +1 )( d )
‘| d=dj—-2r+2i—a+b—k d—za—b .
2

Proof: Let the ith positive arrival occur at the point (z, k + ) in d; steps where
d; — k=0 (mod 2). Then the required number of paths is given by

N*(a,b;d; k,r;4,dy)
=Y (the number of paths from (0,0) to (z, k + z) of length dy
z

(16)

with 1 positive arrivals at y — z = k such that an
the ith positive arrival occurs at the point (z, k + ))
N*(a—z,b—k—z;d—d1;0,7— 1)
where
N*(a—z,b—k—md—dy; 0,7 —i) = a—b+k+2r—-21+1
d—di +1 (18)

( d— d1 +1 ) < d— d] )
| d=d —2'r+22i—a+ b—k d-dy —a;b—rk+2:¢ )
by (15) and, the first factor, under the summation sign, on the right-hand side of
(17) equals
N*(z,k+ z;d;; k, 1)
— [N*(z,k+ 2—1;d1 1, k, i)+ N*(z + 1,k + z;d1 — 1; k,9)]

k+2i [ d d
i di=k=2s d=k=2i )
(19)

by (15). Hence, on using (18) and (19), we get (16). [ |
Deduction: Summing (16) over d;, we get

a—b+2k+2r+1 d+1 d
N*(a,b;d; k,7) = (d—2k-22-r-a+b) (d—;—b)

d+ 1
which is equivalent to (15).
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Theorem 7.
@ Fora>b—k,k>0andr>1

M**(a,b; d; k,r,71,25) = (T]}_‘ll) (T‘].”)N-(a,b; dik,m).  (20)
() Fork>0andr>1

M*™(a,a+k;d: k,r,11,25) = (”‘1) (’“’"?‘1> N~(a,a+k; d: k,1),

Jj-1 J b
M**(a,a+k; d; k,r,71,2j—1) = (’j‘_‘ll) (’”‘jﬁl‘l ) N=(a,a+k;d; k7).
22

) Fora>bandr>1

e baonn 2= (120) (1T N enaon, @3

M*™*(a,b;d;0,7,7,2j — 1) = (3‘) ("j’_‘ n 1)N-(a,b;d;o,r). (24)

d Forr>1
M**(a,a;d;0,r,71,2j)

(G 757 () (2] e

N7 (e,a;d;0,1),

M**(a,0;d;0,7,71,2j—1)=2 (?_‘f) (T"jfl‘l> N-(a,0;d;0,7).
(26)
Proof: In order to prove (20), we observe that on reflecting the path segments
lying above the line y — = = k about this line, we get a path which accounts for

the factor N~(a,b; d; k, ). For other factors in (20), there arise the following
two contingencies:

(a1 ) the last return point is a crossing point,
(a3) the last return point is not a crossing point.

In case (a,), the path consists of j positive segments (that is, the path segment
between two consecutive crossings of the line y — x = k and lying above this
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line) which can be constructed out of r; positive arrivals in ( =) waysand

j—1
j negative segments (that is, the path segment between two consecutive crossings
of the line y — z = k and lying below this line) which can be constructed out of

the remaining r — r; arrivals (called negative arrivals) in (r ;:‘ 1_ 1 ) ways.
In case (a3 ), the path consists of j positive segments which can be constructed

1—1

out of r; positive arrivals in T] 1 ) ways and (7 + 1) negative segments which

-r -1

can be constructed out of (r — ) negative arrivals in (r ways. On

adding these two cases we get (20). Likewise other results can be proved. 1
Deductions:
(i) Summing results (a), (b), (), and (d), of Theorem 7, each over j generates
result (14) given in Theorem 5.

(ii) Summing results (a), (b), (c), and (d), of Theorem 7, each over r; generates
results (9) to (12) given in Theorem 4.

Theorem 8. Fora >b—k,k >0 andd—2g—(a+b—2k) >2(r—r —1)
M?*$*(a,b; d; k,7,71)

_ rm(a—b+2k+r—m—1) r—1 2g—'r1)
T (2g-m)(d-2g-r+m+1) \ T g @27
(d—2g—’r+r1+l)( d )
°\ d=2g—a+b=2k-2(r—11—1 d—a—b | -
2 2
When k = 0, the starting point is counted as an arrival.

Proof: To prove (27), we divide the requisite path into two parts, namely,
(a) by combining together the path segments of total length 2 g lying above the
line y — = = k end to end, in order, and
(b) by combining the path segments of total length d — 2 g lying below the line
y — z = k end to end, in order.
Supposing the coordinates of the end point of the path obtained in (a) above to
be (z, x), the required number of paths is given by

M29*(a,b; d; k,7,71)

J r—1
= Z ( . )N"(z,z;Zg;O,n)
" z=(at+b—d+2g)/2 !
-N(a—z,b—x5d—29;k,71—11),
which on using (iii) of Section 3 leads to (27). 1
Deduction: Summing (27) over g, we get (14) given in Theorem 5.
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Theorem 9.
@ Fora>b—k,k>0,andd—2g—a+b-2k>2r—r —1)

M?29**(a,b;d; k,7,71,25) = (’]1_“11) (T_],”).A (28)

(b) Fork>0,andd—2g—a+b—2k>2(r—m —1)

M*»**(a,a+ ki d; k,7r,7,2)) = (r}:11> (T—T} - 1) ‘A (29)

J J
M29+*(a,a+ k;d; k,'f','rl,2j 1) = (TI _11) (T—’Z 1—1) A
7 (30)
(¢) Fora>b,r>1l,andd—2g—a+b>2(r—m)
M29**(a,b;d;0,7,1,2)) = (:1_—11> (“”) B 31)

Mz"**(a,b;d;O,r,n,Zf—1)=(Tj’)(r_n 1) B (3

(d Forr>1,andd—2g >2(r—m1)
M?%**(a,0;d;0,7,71,25)

LG0T 5,

M***(a,a;d;0,7,7,2j — 1) = 2 (’-‘_‘f) (T_-T_‘ 1 1) c 69

J J
where
go _nle—b+2k+r—m -1 (2g—n>
(2g—m)(d—2g—r+mr +1) g

(d—29—r+'r‘1+1>< d )

‘| d—2g—a+b—2k-27+21r1+2 d—zo—b )

2

B= r(a—b+r—m) (2g—'rl)
(29g—m)(d—2g—1+m) 9

(d—2g—’r+rl>( d )
|\ d=2g—a+b-2r+21 d—a-b |
2 2

C= ri(r—rm1) (2g—r1>
(2g—r)(d-2g—7r+m) g9

(d——29—r+n>< d >
: d-2g-2r+2n d-220 .
2

44



The result follows on using similar arguments as used in proving Theorem 7 and
Theorem 8.

Deductions:

(i) Summing results (a), (b), (c), and (d) of Theorem 9 each over g and using the
convolution identity (Mohanty (1979), p. 25) generates the corresponding
results in Theorem 7.

(ii) Summing results (a), (b), (c), and (d) of Theorem 9 each over J generates
the result given in Theorem 8.
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