A Ramsey Type Problem

H.L. Abbott

Department of Mathematics
University of Alberta
Edmonton, Alberta, T6G 2G1
Canada

and
M. Katchalski

Department of Mathematics
The Technion
Haifa
Israel

ABSTRACT. Ramsey’s Theorem implies that for any graph H
there is a least integer r = r(H) such that if G is any graph of
order at least r then either G or its complement contains H as
a subgraph. Forn < 7 and 0 < e < 3n(n — 1), let f(e) =1 if
every graph G of order n and size e is such that either G or G
contains H, and let f(e) = 0 otherwise. This associates with
the pair (H,n) a binary sequence S(H,n). By an interval of.
S(H,n) we mean a maximal string of equal terms. We show
that there exist infinitely many pairs (H,n) for which S(H,n)
has seven intervals.

Let H be a finite graph with no isolated vertices. Let o(H) denote the
order of H and let 7(H) be the Ramsey number of H; that is, r(H) is the
least integer 7 such that if G is any graph of order at least r then either
G contains H or G, the complement of G, contains H. We suppose that
3 <o(H) < r(H).

For n > o(H) we define a function fy,» on {0,1,2,...,(3)} as follows:

1 if every graph G of order n and size e is such that
fun(e)= either G or G contains H
0 otherwise.
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We shall often write f instead of fu » if there is no danger of confusion.

I‘(H) n S(H,n)

H
I:;.-4 7 6 (6,1,2,1,6)
::;,_;._5_. 7 6 5,2,2,2,5)
v——{-—-‘-—' 7 6 (5,2,2,2,5)
«::I::: 9 8 (12,1,3,1,12)
I:::r::: 9 8 (12,1,3,1,12)
[:::r-—'-‘ 9 8 (12,1,3,1,12)
P L 9 8 (12,2,1,2,12)

10 (20,1,4,1,20)

| 9 (16,1,1,1,1,1,16)

Table 1

Let S = S(H,n) = (£(0), (1), £(2), ..., f((3))) be the sequence of values
of f. By an interval of S we mean a maximal set of consecutive integers
on which f is constant. It is clear that for n > r(H), S has one interval.
Since f(e) = f((3) —e€), S has at least three intervals for o(H) < n < r(H)
and the number of intervals of S is odd. The question naturally arises as to
whether S may have more than three intervals. We began our investigation
of this question by examining some small graphs. For the purposes of
this discussion, a small graph is one with at most six edges. The Ramsey
numbers of the 113 small graphs with no isolated vertices are known and
are given in the survey article of Burr [1]. We found that for many (we did
not examine all of them) of these small graphs H, S(H,n) does indeed have
three intervals. However, we found several pairs (H,n) for which S(H,n)
has five intervals and one pair for which S(H,n) has seven intervals. Some
of these are shown in Table 1. If S(H,n) has m intervals, we write it as
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an m-tuple; the entries represent the lengths of the intervals. For example,
1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1) is written as (6,1,2,1,6). Among the
small graphs H for which S(H,n) has three intervals for o(H) < n < r(H)
are K3, K4, C4, Cs and K;,; for 3 <1 < 6. Table 2 shows S(K4,n) for
4 <n <18 =7(Ky).

S(K4,n)
(1,5,1)

(2,7,2)

(3,10,3)
(5,12,5)
(7,15,7)
(9,19,9)
10 | (14,18,14)
11 | (19,18,19)
12 | (26,15,26)
13 | (33,15,33)
14 | (41,10,41)
15 | (50,6,50)
16 | (60,1,60)
17 | (68,1,68)

© 00U

Table 2

These results suggest the following question. Is it true that for each odd
positive integer k > 3 there exist infinitely many pairs (H,n) for which
S(H,n) has k intervals? The main purpose of this paper is to show that
this is so for k = 3, 5 and 7. We do not know the answer for k¥ > 9 and
do not know of any pair (H,n) for which S(H,n) has more than seven
intervals.

There are relatively few infinite families of graphs for which the Ramsey
numbers are known, One such family is the family of stars. Here it is known,
and easy to prove, that r(K1,21) =4l —1 and (K1 214+1) =4l +2, We shall
prove that in this case S has three intervals. ’

Theorem 1. Let 4 <1+1 < n <r(Ky;) and let t = [J—J" "2" 1. Then
S(Kii,m) =, (3) —2t+1,8).

For | > 3, let H, be the graph obtained from K;; by joining two vertices
of degree 1. Hs, Hy and Hj are the first, fifth and last graphs shown in
Table 1. It is known, and also easy to prove, that r(H;) = 2l+1. Our main
result is the following theorem.

Theorem 2.

(a) S(Ha-1,4l —2) has five intervals for each 1 > 2.
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(b) S(Hai—1,4l — 3) has seven intervals for each | > 3.

(c) S(Hgi—1,n) has three intervals for | > 2,2l <n < 4l —
(d) S(Hai,n) has five intervals for | > 2, n=4l—1 or 4l.
(e) S(Ha,m) has three intervals for | > 2,21 +1<n <4l -

We use the following notation. If G is a graph then §(G) and A(G)
denote the minimal and maximal degrees of G. If there is no danger of
confusion we write § and A instead of §(G) and A(G). If z is a vertex of
G then N(z) is the set of neighbors of z and T'(z) is the set of vertices of
G (other than z) not adjacent to z. If U is a set of vertices of G then G[U]
denotes the subgraph of G induced by U.

Proof of Theorem 1: Observe first that if G is a graph of order n with
e < t edges, then 6(G) <n —1 —1 so that A(G) >l and hence G contains
Ki,. Thus f(e) =1 for 0 < e < t. We next show that for ¢ < e < 1%,
f (e) = 0. The theorem will then follow. To do this we need to show that
there is a graph G with n vertices and e edges such that neither G' nor G
contains K1,;. We give the details only in the case where n is odd and [ is
even, say n = 2s+1 and | = 2u. The other cases may be handled in a similar
manner. Note that since 7(K1 24) = 4u—1, we have 2u+1 < 25+1 < 4u—2
so that u < s < 2u — 2. We first construct two auxiliary graphs I'; and
Ts. The vertices of these graphs will be 2s + 1 equispaced points on the
circumference of a circle. The edge set of I'; is obtained by joining each
point to its 2u — 2 nearest neighbors and adding a maximal matching. Ty
has n — 1 vertices of degree | — 1 and one vertex of degree | — 2. The
conditions on u and s imply that I'; has more than 3(}) edges and that
neither I'; nor Ty contains K7 ;. The edge set of I'; is obtained by joining
each point to its 2(s —u+1) nearest neighbors and then deleting a maximal
matching. Ty is a subgraph of I’y and it has n — 1 vertices of degree n — !
and one vertex of degree n — l + 1. It therefore has ¢ edges. It is easy to
see that neither 'y nor 'y contains K 1,1- Let E be the set of edges of '
that are not edges of I's. Then for ¢ < e < (3), we may, by adding to
I's a suitable subset of E, obtain a subgraph G of Iy with n vertices and e
edges such that neither G nor G contains Kj ;.

Proof of Theorem 2:

(a) Let G be a graph with 41 —2 vertices and e < |3 (*;%)] = 412 —51+1
edges. We show that except when e = 412 — 6l + 2, either G or G
contains Hy_1. Let v be a vertex of G of degree A. If A > 2l then
either G[N(v)] contains an edge, in which case G contains Hy._ 1, or
N(v) is an independent set, in which case G contains Hy_;. We
may therefore suppose that A < 21 — 1. If § < 21 — 3, then A(G) >
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(b)

(c)

2! and the argument just used shows that either G or G contains
Hy_1, We may therefore suppose that § > 2l — 2. Suppose that
A =2l —1. If G[N(v)] has an edge then G contains Hy—;. Thus we
may assume that N(v) is an independent set. If some vertex of N (v)
is not joined to some vertex of T'(v) then G contains Ho;—1. Hence we
may suppose that each vertex of N(v) is joined to each vertex of T'(v).
The condition A = 2/—1 then ensures that T'(v) is an independent set.
It then follows that e = A+ |[N(v)| [T(v)| = 2l -1+ (21 -1)(21 -2) =
412 —41+1. However, this is false. Thus § = A =21-2. Gisa (21-2)
regular graph and e = (41 —2)(2! —2) = 412 -6l +2. Since the graph
consisting of two vertex disjoint copies of Ky;_; is such neither it nor
its complement contains Hg—1 we have that f(412 — 61 +2) = 0 and
f(e) =1 for all other e satisfying 0 < e < 412 —5[+1. This establishes
(a). In fact, S(Hy—1,41 —2) = (412 — 61 +2,1,21 —2,1,41% — 61 + 2).

Let G be a graph with 4] — 3 vertices and e edges, | > 3,0 <e <
[% (4’; 3)] = 412 — 71 4+ 3. We shall show that either G or G contains

Hy_; except when e = 412 — 81 +4, 412 — 7] + 3. Let v be a vertex of
degree A and u a vertex of degree 6. If A > 2l then either G[N(v))
contains an edge, in which case G contains Hy—; or N(v) is an in-
dependent set, in which case G contains Hy_;. We may therefore
suppose that A < 2/ — 1. If § < 21 — 4 then A(G) > 2l and one
sees, by the argument just used, that G or G contains Hy;,_; Hence
we may assume that § > 2/ — 3. Suppose that § = 2l — 3. Then
|T(uw)| = 21 — 1. If G[T'(u)] is not Ky then G contains Hy_;. We
may therefore suppose that G[T'(U)] = Kg;—;. If some vertex of T'(u)
is joined to some vertex of N(u), G contains Hy;_; We may therefore
suppose that no vertex of T'(u) is joined to any vertex of N(u). The
condition § = 2/ — 3 then ensures that G[N(u)U {u}] = Ko;_3. Then
e= (¥3%) 4 (¥5) = 4% — 81 + 4, one of the exceptions noted above.
Since the union of Ko9;_o and Ky is such that neither it nor its
complement contains Hy 1, f(412 — 81+ 4) = 0. The only other case
left is 6 > 20 — 2. Thene > [3(41 —3)(20 —2)] = 4> - 71 +3. It
follows that e = 412 — 7l + 3 and that G is (2l — 2)-regular. Since
the graph whose vertex set consists of 4] — 3 equispaced points on
the circumference of a circle and whose edge set is obtained by join-
ing each point to its 2/ — 2 nearest neighbors is such that neither it
nor its complement contains Ho—1, f(41% — 71 + 3) = 0. This com-
plete the proof of (b). Note that we have shown that for [ > 3,
S(Hy-1,41 — 3) = (412 — 81 +4,1,1 — 2,1,1 — 2,1,412 — 81 + 4). In
case | = 2, the two exceptional values of e are consecutive and one
gets S(Hs,5) = (4, 3,4).

Let 4 < a < 2l and let n = 4l — a. We show that S(Hz;—1,n) has
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three intervals. Let t = [in(n—2l+1)] =412 - (3a—2)I+ ja(a—1),
Observe that, by Theorem 1,ift <e < 3 ( ) there exists a graph of
order n and size e such that neither it nor its complement contains
Ho;_ 1 and hence f(e) = 0, We show now that for 0 < e <t, f(e) =1.
Let G be a graph of order n with e edges. We must establish that G
or G contains Ho_;. Let u be a vertex of degree § and v a vertex of
degree A. We may suppose, as in (a) and (b), that A <2l —1 and,
since § < 2l —a—1 implies A(G) > 2!, that § > 2l—a. If § > 2l—a+1
then e > [3(4l —a)2l —a+1)] =412 - Ba - 2)l + Ja(a — 1) = ¢,
and this is false. Hence we may suppose that § = 2l — a. Note then
that |T(u)| = 21 — 1, If G[T'(u)] is not Kz;—1 then G contains Hop;_;.
We may therefore suppose that G[T'(u)] = Kg—1. If there is an edge
from T'(u) to N(u), G contains Hy;_;. We may therefore suppose that
there are no edges from T'(u) to N(u). The condition § = 2! — a then
ensures that G[T'(u)U {u}] = K2_a41. Thuse= (2"""'1) + (2' 1) =
412 — (2a + 2)l + 3(a? — a + 2). The condition e < ¢ then becomes
(a —4)l < —1. This is false since a > 4. Thus (c) is established.

We do not give the proofs of (d) and (e) since the arguments parallel
closely those for (a) and (c).

We conclude with some remarks concerning S(Kjy, n) and explain how the
information in Table 1 was obtained. Most of the work is done by others.
For 4 < n < 18 = r(K}), let e(n) denote the least integer e for which f(e) =
0, The values of e(n) forn = 4,5, ...,17 are 1,2,3,5,7,9,14,19,26,33,41,50,60,
68. For4 <n < 13 and n = 17, these values are given in the paper of Walker
[3] and the references given there. Walker also showed that e(14) > 40,
e(15) > 49 and e(16) > 58. Garcia (unpublished, cited in [2]) proved that
e(14) = 41, e(15) = 50 and e(16) = 60. One may deduce from these results
that S(Kj4, n) has three intervals. For example, in case n = 14, the graph in
Figure 1 is one which establishes e(14) < 41. Neither it nor its complement
contains K. One may add any subset of {ab, pz, qy, 7z} without forcing a
K. Thus f(e) =0 for 41 < e < 45 = 1(%). By Garcia’s result, f(e) = 1
for 0 < e < 40 and this suffices. Similar considerations apply for the other
values of n.
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Figure 1
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