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Abstract. We investigate searching strategies for the set {1, ... ,n} assuming a fixed
bound on the number of erroneous answers and forbidding repetition of questions. This
setting models the situation when different processors provide answers to different tests
and at most k processors are faulty. We show for what values of k the search is feasible:
and provide optimal testing strategies if at most one unit is faulty.

Introduction.

The problem of coping with erroneous information in discrete search procedures
has recently attracted attention of several authors (cf. [10, 8,9, 4, 5, 6, 1, 2]). It
is usually formulated in terms of a two-person game between the Questioner and
the Responder. The latter chooses an element z € {1,...,n} unknown to the
Questioner who has to find it by stating questions of a prescribed form: most often
either comparisons, that is, questions of the form z < a? fora € {1,...,n} or
arbitrary yes-no queries, that is, questions of the formz € T? forT C {1,...,n}.
The Responder gives answers some of which can be erroneous; the number of
errors, however, is limited in a given way. The problem is to find an optimal
winning strategy of the Questioner.

Two further points have to be specified in order to make the rules of the game
complete. The first is the way of limiting errors: their number can be either
bounded for the entire game (cf. [8, 9, 4, 1, 2]) or may depend on the number
of questions; the latter is the case when a bound on the fraction of errors is im-
posed (cf. [5]) or when the Responder lies with a given probability (cf. [7, 5]). The
second point which should be made precise is the influence of previous answers
on subsequent queries: the search can be either carried out interactively (that is the
Questioner knows the answer to a query at the moment of stating the next one and
is able to modify his behaviour accordingly) or non interactively (all the questions
have to be stated at once, then all the answers collected and the unknown number
detected).

The above described game models a situation in processing and sending infor-
mation which can be altered by some kind of “noise”. The aim of constructing
optimal strategies of the Questioner is to find the most efficient way of recover-
ing original information in spite of this possible deterioration. An information
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channel alters messages with a given (usually small) probability. This setting was
studied in [7, 5). For very small values of this probability it may be reliably as-
sumed that no more than k errors will occur during the entire transmission which
justifies interest in the version of the game with a fixed bound on the number of
errors. It is well known (cf. for example, [6]) that non-interactive search with
arbitrary yes-no queries assuming at most k errors is equivalent to finding k-error
correcting codes. Actually, optimal Questioner’s strategies in this version of the
game yield shortest k-error correcting block codes of a given size. Finding such
codes is considered to be the main problem of coding theory (cf. [3]).

In the above model each erroneous answer is counted separately even if the
same query was repeated many-times. This is explained by the fact that the actual
answers are assumed correct, they are just sometimes altered during transmission,
each of them independently. Thus, a simple (though usually far from optimal)
questioning strategy is to repeat each question sufficiently many times and to take
the majority answer.

Suppose, however, that erroneous answers are not due to noisy transmission
but to faulty hardware units responsible for providing them. In this situation, of
course, we cannot expect that repeating the same query can help detecting the
truth: a processor which gave a wrong answer once may keep repeating the error
all the time. It is, thus, reasonable to assume a bound on the number of bad units
rather than limiting erroneous answers.

This assumption can also be modelled by the above described searching game-
between the Questioner and the Responder; however, the rules of stating queries
need to be suitably modified. We assume that each test of the type z € T?
(T c {1,...,n}) is processed by a unit at most k of which can be faulty. Since
information obtained from the tests 7" and {1,... ,n} \ T is equivalent, we as-
sume that both such tests are processed by the same unit but tests providing non-
equivalent information (that is, different and non-complementary) — by different
units. This is translated into the rules of our searching game in the following
way: the Questioner can ask questions of the type z € T'? with all sets T" pair-
wise different and non-complementary. Throughout the paper such queries are
called non-repetitive tests. As before, at most k lies are possible among answers.
We study both the interactive and non-interactive version of search characterizing
when it can be performed and establishing optimal searching strategies in special
cases.

It should be noted that if repeating questions is forbidden, limiting them just to
comparison form makes the search impossible. Indeed, even with one faulty unit,
comparison search in {1, ... ,n} for n > 1 cannot be carried out. This justifies
allowing arbitrary tests of the form z € T°?

Feasibility of search.
As opposed to the situation of questioning with admissible repetitions, when



each fixed number of errors can be overcome, a large number of possibly faulty
units can make successful searching entirely impossible. The following proposi-
tion gives an exact bound on the number of errors which do not jeopardize non-
repetitive testing.

Proposition. It is possible to find an unknown z € {1,... ,n} by non-repetitive
testing assuming k errors if and only if k < 2™3

Proof: Since we do not care at present about efficiency of search but only its fea-
sibility, there is no difference between the interactive and non-interactive case:
we may use a maximal family of non-repetitive tests. Clearly, it is possible to
complete the search assuming k errors if and only if each pair of integers z,
y € {1,...,n} is separated by at least 2k + 1 tests of such a family. (A test
Tissaidtoseparate zandy ifz € Tandy ¢ Torif x ¢ Tandy € T. Each
such test contributes 1 to the Hamming distance between z and y in the respective
binary encoding). Take any maximal family F' of non-repetitive tests and fix a
pair of distinct integers z and y. There are 2™! sets separating z and y: each of
the form {z} UA or {y} UA forall A C {1,...,n} \{z,y}. Each {z} U A has
acomplement {y}U{1,...,n} \{z,y}\ 4 and, consequently, exactly one from
each such pair of complements is in F. Therefore, there are 2™~2 tests in F' sepa-
rating z and y. This gives the necessary and sufficient condition 2k + 1 < 22

for the feasibility of search with k faulty units, which is equivalent to k < 22,
This completes the proof. |

Interactive searching strategies.

In this section we discuss optimal non-repetitive interactive searching strategies
assuming at most one error. In the setting which admitted repetitions the mini-
mal number of questions sufficient to find =z € {1,... ,n} in the interactive case
was obtained by Pelc [4]. Our next result shows that the same efficiency can be
achieved with non-repetitive questioning provided that n > 3. For n < 3 non-
repetitive search with one error cannot be carried out, as implied by the Proposi-
tion.

Theorem 1. The minimal number of interactive non-repetitive tests sufficient to
find z € {1,... ,n} forn> 3, assuming at most one error, is equal to:

min{k:n(k + 1) < 2%}, if niseven;

min{k:n(k + 1) + (k — 1) < 2*}, if nisodd.
Proof: We first recall some terminology from [4]. With each stage of the game,
when the turn of the Questioner comes, we associate a state of the game which is a

pair (a, b) of integers. The first of them is the size of the truth set: the set of those
elements of {1, ... ,n} which satisfy all answers given previously. The second
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integer is the size of the lie set: the set of those elements of {1,... ,n} which
satisfy all but one answer. We define the weight of a state (a, b) correspoding to
a stage of the game at which j questions remain. This is

wj(a,b) =a(j+ 1) +b.

Any question asked in the state (a, b) yields two states (a1,b1) and (a2, b2) cor-
responding to answers “yes” and “no”, respectively. The question “Is the unknown
number in the subset A of size x of the truth set or in the subset B of size y of the lie
set?” is noted as [ z, y]? and the resulting answers are represented schematically

(a,b)
[z, y]?
/\

(a1,b1)  (a2,b2)

with answer “yes” to the left and answer “no” to the right. For every state (a, b)
we define its character

ch(a, b) = min{k: wi(a,b) < 2*}.

In [4] an optimal (possibly repetitive) questioning strategy was described whose
first two steps are the following (depending on divisibility of n by 4):

l.n=4m (4m, 0)
t2m, 037

N

(2m, 2m) (2m, 2m)

Cm, rJ? [m, m1?

(m, 2m) (m, 28) (m, 2m) (m, 2m)

2.n=4m+1 (4m+1, 0)

[2m+1, 03?2

e

(2m+1, Zm) (2m, 2m+1)

Im+1, m-[%)]? Im, m+13?

(me1, 2n-t53) (m, 2merf341) (m, 2m#1) (m, 2m)

wherep=ch (2m + 1,2m).
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3.n=4m+2 (42, 0)
2r+1, 012

(2m+1, 2m+1) (2m+1, 2m+1)
tmel, m-[33+4132  [m+l, n-031+13?

(m1, 20-1§041) (m, 2avi3201) (w1, 20-03341) (i, 2me1§341)

whereg=ch (2m+ 1,2m + 1).

4. n=4m+3 (4m3, 0)
t2m+2, 032

(2m+2, 20+1) (2m+1, 2m+2)
1, m#132 tn+1, m-53412?

(w1, 2me2)  (mel, 2mel)  (med, zm-t;m (m, zm[;m)

wherer=ch (2m+ 1,2m+ 2).

First suppose n > 8, hence m > 2. Itis easy to see that the above described
first two questions are always non-repetitive and, in fact, they are about sets whose
symmetric difference has size bigger than 2. However, the optimal strategy con-
structed in [4] includes repetitions in further stages. We may assume, without loss
of generality, that it does not contain questions z € T'? and z € {1,... ,n} \ T7?
because the second can be equivalently changed to a repetition of the first revers-
ing “yes” and “no” answers.

Our aim is to modify the strategy described in [4] into non-repetitive testing
by changing some questions without adding extra ones. This is enough to prove
the theorem because our formula for the minimal number of non-repetitive tests
coincides with that from [4] for questions with possible repetitions.

First observe that in view of optimality no question in the original strategy
could be repeated more than 3 times. Indeed, assuming only one lie the true an-
swer is certainly known after 3 repetitions and further repetitions are pointless.
Hence, if we show that after the first two questions at least two elements e, f
are ruled out, that is, are neither in the truth set nor in the lic set, we may easily
transform the original questioning strategy into a non-repetitive one. Indeed, let
T c {1,...,n} \{e, f}. Since the first two tests have symmetric difference of
more than two elements, at most one of them can be among sets U {e}, TU{f},
T U {e, f}. All further questions are of the form " C {1,...,n} \{e, f}. If
such a test T" occurs for the second time in the original searching strategy, change
it to the first of T U {e}, T U {f}, T U {e, f} not yet used; if it occurs for the
third time change it to the second unused of them. Clearly, the modified questions
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are equivalent to the original ones because the additional elements were ruled out
previously.

In each of the 4 cases described above consider the four states arising after two
questions and answers. Call the elements which are neither in the truth set nor
in the lie set, free, and consider the number of free elements in each of the four
resulting states.

Case 1. n= 4 m. The number of free elements is m in each of the four states.
Case 2. n= 4m + 1. The number of free elements is: m + [§], m — [§], m,
m + 1, respectively, where p=ch (2m + 1,2m).

Case 3. n= 4m + 2. The number of free elements is: m + [£], m — [£] + 1,
m+ [$],m — [£] + 1, respectively, where g = ch (2m + 1,2m + 1).

Case 4. n= 4m + 3. The number of free elements is: m, m+ 1, m + [§] + 1,
m — [%] + 1, respectively, where r = ch (2m + 1,2m + 2).

Since by our assumption m > 2, the number of free elements in Case 1 is
always at least 2. In Case 2 it is enough to prove

® m-[E]>2,
in Case 3 —to prove

(%x) m—[%]+122,
and in Case 4 — to prove

(k*xx) m-— [%] +12>2.

(%) follows from 2m — 2 > p which is in turn implied by the inequality
wim—2(2m+1,2m)=2m+1)(2m—-1)+2m < 22m-2 trye form > 5.
(x%) follows from2m > g which is in turn implied by the inequality w2 (2 m+
1.2m+1)=2m+1)2m+ 1) +2m+1) < 22mtrue for m > 3.
(#x+) follows from2m > r which is in turn implied by the inequality wy,,(2 m+
1,2m+2) = (2m+ 1)(2m+ 1) +(2m + 2) < 22™, true form > 3.

Hence, our result is proved:

- forn=4m,ifm>2,

- forn=4m+1,ifm >S5,

- forn=4m+2,ifm >3,

- forn=4m+3,if m > 3.
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It remains to be proved for4 < » < 7 and forn = 9, 10,11,13,17. For
n=9,10,11,13,17 we describe the first two tests carried out interactively in
such a way that there are at least two free elements in each of the four resulting
states. Moreover, the character of the resulting states is smaller by at most 2 than
the minimal number of tests sufficient at the beginning and they are all of the form
(a, b) with b > a. By an argument from [4] it is possible to complete a (possibly
repetitive) search in ch(a, b) steps starting from such a state (a, b). Thus, using
the free elements as before to modify some further questions if necessary, it is
possible to complete the entire search in an optimal and non-repetitive way.

n= 9, minimal number of questions: 7
(s,0)

5,03?

(5,4) (4,5)
[3,23? 2,332

(3.4) (2,5) (2,5) (2,4)
n= 10, minimal number of questions: 7
(10,0)

€ 5,03?

(5,5) (5,5)
13,232 13,217
(3,4) (2,6)

n= 11, minimal number of questions: 7
(11,0)

6,012

(6,5) (5,6)

ATAN

(3,6) (3,5)  (3,4) (2,7)
n= 13, minimal number of questions: 7

(13,0)

[7,02

(7,6) (6,7)
(4,237 [3,43?

AT

(4,5) (3,8)  (3,7) (3,6)
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(3,4) (2,6)

ch(3,4), ch(2,5), ch(2,4) 5 5

ch(3,4), ch(2,6) < 5

ch(3,6), ch(3,5), ch(3,4), ch(2,7) s 5

ch(4,5), ch(3,8), ch(3,7), ch(3,6) s 5



n= 17, minimal number of questions: 8
(17,0)

€ 9,017

(9,8) (8,9) ch(5,7), ch(4,10), ch(4,9), ch(4,8) s 6
t/s.sn o rz.s\n' '
(5,7 (\:.m) (4.9/) (4,8)
Hence, our proof is complete for n > 8.
Forn = 5,6,7, we simply give 6 non-repetitive tests all at once. In view of
[4] this cannot be improved even allowing repetitions. Hence, for those values of
n we provide at the same time an optimal non-interactive searching strategy.

n=>5

tests: {1},{2,3},{2,4}.{2,5}.{3,4}.{4,5}.

n=6

tests: {1,2,3},{1,4,5}.{1,3,5}.{3,4},{2,5}.{1,6}.

n=7

tests: {4,5,6}.{2,3,6},{1,3,5},{3.4,7},{2,5,7},{1,6,7}.

It remains to consider the case n = 4. In view of [4] the minimal number of
questions is now 5. We propose the following interactive non-repetitive strategy.
The firsttwo tests are {1,2}, {1, 3}. Any of the four sequences of answers results
in one element a in the truth set and two elements b, cin the lie set. Three additional
tests {a}, {b} and {c} complete the search. Thus, for n = 4 as well, there is a
non-repetitive strategy using the minimal number of 5 questions.

This concludes the proof of the theorem. In fact, not only did we show the
length of an optimal strategy, but an optimal algorithm itself was described in our
proof. |

Non-interactive searching strategies.

In this section we turn attention to non-interactive non-repetitive searching strate-
gies assuming at most one error. We are not able to decide if non-repetitive testing
can be as efficient as an optimal questioning strategy with repetitions allowed. The
reason is that optimal non-interactive strategies allowing repetitions are unknown
in general, even for one error: as mentioned in the introduction they are equivalent
to finding shortest 1-error correcting codes.

Nevertheless, we are going to construct optimal non-interactive non-repetitive
searching strategies supposing at most one error in the case when the size of the
search space is n= 2™. With repetitions allowed optimal strategies are given in
this case by Hamming codes (cf. for example, [3]).

Although these actually involve repetitions in general, we will describe a way
of constructing such codes which yields non-repetitive testing. In view of Propo-
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sition this cannot be done for m = 1. The case m = 2 will be handled later
separately, so we assume m > 3.

Theorem 2. Let n= 2™, for m > 3. The minimal number of non-interactive
non-repetitive tests sufficient to find = € {1, ... ,n}, assuming at most one error
is k(m) = min{k: k < 2¥-™}.

Proof: The lower bound in our theorem is equal to the length of a 1-error cor-
recting Hamming code with m information bits. These codes are shortest pos-
sible, hence, it is enough to show how to construct a matrix of such a Hamming
code which yields non-repetitive testing. More precisely the resulting code should
consist of such words ay,...,a, that a; = (a;1,... ,Gik(m))» a;; = 0,1, and
the family {Tj:j < k(m)}, T; = {a;:a;; = 1}, is composed of distinct non-
complementary sets. We will show that this is the case if the k(m) x (k(m) —m)
matrix generating the code satisfies some simple properties. Let this matrix be

given in the normal form M = [ Ta 5 — with the identity matrix corresponding

to verification bits in the lower part.
Claim:
The resulting code is as required above, provided that B satisfies the following
properties:
1. rows are distinct;
2. columns are distinct and non-complementary; ((c1,... ,¢c,) and (¢}, ...,
c,,) are complementary if ¢; = 1 — ¢; foralli).
3. each row contains at least two digits “1”;
4. each column contains at least two digits “1”.

(Note that properties 1. and 3. are usual requirements for a matrix generating a
Hamming code).

Let the codewords ay,... ,as, Where a; = (a;1,... ,aikm)) be displayed as
rows of a n x k('m) matrix [a;;]. If the above defined sets T; contained an iden-
tical or complementary pair this would mean that two columns, p and g of this
matrix are identical or complementary. Since every binary sequence of length m
is an initial segment of some codeword (first m bits are information bits), it is im-
possible that p, ¢ < m. Suppose that p < m and ¢ > m and let go = ¢ — m. Take
the goth column [cy,... , cxm] of the matrix M and suppose thatc; = ¢; = 1.
We may assume without loss of generality that p # j. Take the codeword a, for
whicha, =0ifs=1,...,5—1,7+1,... ,mandas; = 1. The goth verification
bit for this codeword must be 1, hence, a¢ = 1. On the other hand, there certainly
exists a codeword a,, for which a,p, = ay, = 0, namely, the null sequence. This
shows that columns p and g of the matrix [ a;;] cannot be identical or complemen-
tary in this case. Suppose, finally, thatp, g > m. Letpo = p—mand go = ¢—m.
Consider the poth column [vy, ... , vk(m)] and the goth column [wy,... , Wkm)]
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of the matrix M. Since they are neither identical nor complementary, let 1 be the
position where they coincide and j where they differ. Take a codeword a; for
whichay,, =0 ifs=1,...,i—1,i+ 1,...,m and a; = 1 and a codeword a,
for whichay, =0ifs=1,...,7—1,7+1,...,mand a,; = 1. Clearly, the
poth and go th verification bits coincide in the first of those words and differ in the
second, that is a¢p, = at, and aup 7 aug. This shows, however, that columns p and
g of the matrix [a,;] cannot be identical or complementary in this case as well;
hence, our claim is proved.

We now show that a matrix B satisfying properties 1-4 can always be con-
structed. If 2m > k(m) this is obvious: as the first k(m) — m rows take
the square matrix [b;;] for which b;; = 0 iff i = j; complete the remaining
rows arbitrarily using distinct binary vectors of weight > 2. Hence, suppose
2m < k(m) and let r = k(m) — m. By definition r is the least integer s for
whichm < 2% — s — 1. It follows that

r>m>2" —(r-1-1
which implies
22 <r

and, hence, r < 3, thus, m < 2, contradiction. Thus, our proof is complete. I

It should be noted that for n = 2™, m > 3, the expression min {k: k < 2%¥-™}
from Theorem 2 coincides with the expression min {k: n(k + 1) < 2}, for even
n, in Theorem 1. Thus, for such n, non-interactive non-repetitive search requires
no more queries than interactive search with repetitions permitted — if at most
one error is allowed.

It remains to consider the case m = 2, left out in Theorem 2. Thus, n= 2™ =
4. Exhaustive verification shows that no set of 5 non-interactive non-repetitive
tests is sufficient to perform search in the presence of one error. On the other hand,
6 tests are clearly enough: {1,2}, {1,3},{1},{2}.{3}.{4}. is an example.

Thus, the case m = 2 (that is, n = 4) is an exception from the rule: if non-
repetitive non-interactive search is required, one more test has to be used than in
the case of non-repetitive interactive search or non-interactive search with repeti-
tions allowed.

Conclusions.

We described optimal non-repetitive searching strategies assuming one error: for
any search space in the case of interactive testing and for search spaces of size
2™ in the case of non-interactive testing. We are unable to provide such optimal
strategies for an arbitrary fixed bound on the number of errors or even to decide if
forbidding repetitions influences the efficiency of questioning in the general case.
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In the non-interactive setting the problem has an equivalent formulation with
purely combinatorial flavour: find a minimal size family of pairwise non comple-
mentary subsets of {1, ... ,n} such that each pair of integers 1 < i < j < nis
separated by at least 2k + 1 sets of the family. This is clearly equivalent to an
optimal non-repetitive non-interactive searching strategy assuming k errors.

It is obvious that many Hamming codes, even perfect ones, involve repetitions.
Reversing our argument used in the proof of Theorem 2 it is easy to show that if
the submatrix B of the generating matrix M = [%] contains identical columns
then the resulting code yields repetitive tests. Thus, for example, the matrix

[ 0011
1100
1110
1101
1111
1000
0100
0010

L 0001 |

generates a (perfect) (7,4) code which is not suitable for our purpose.

Let us finally observe that Theorem 1 and Theorem 2 remain true if only identi-
cal tests are forbidden and complementary ones allowed. This would be an appro-
priate assumption if distinct processors were responsible for providing answers to
distinct queries, even complementary. The maximal number of faulty units pos-
sible to handle in this setting is 2™2 — 1. The problem of finding an optimal
non-interactive questioning strategy assuming k faulty processors has a particu-
larly elegant combinatorial formulation in this case: find a minimal size family of
subsets of {1, ... ,n} such that every pair 1 < i < j < nis separated by at least
2k + 1 of them. This problem is open even for k = 1.
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