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ABSTRACT. A generalization of (binary) balanced incomplete
block designs is to allow a treatment to occur in a block more
than once, that is, instead of having, blocks of the design as
sets, allow multisets as blocks. Such a generalization is referred
to as an n-ary design. There are at least three such general-
izations studied in the literature. The present note studies the
relationship between these three definitions. We also give some
results for the special case when n is 3.

1 Introduction

A balanced incomplete block design (BIBD) with parameters (v, b, 7, k, A) is
an arrangement of v treatments in b blocks (i.e. sets) each of size k, such
that every treatment occurs 0 or 1 times in a block, every treatment occurs
r times in the design and every pair of distinct treatments occurs A times
in the design. A BIBD (v,b, 7, k, \) can be represented by a v x b matrix,
N = [nyj], called the incidence matriz of the design, where n;; is 1 when
treatment 7 (for some ordering of the treatments) is an element of block j
(for some ordering of the blocks), and 0 when treatment  is not an element
of block 7. Each row sum of N is r, each column sum of N is k and the
inner product of any two distinct rows of N is A.

In 1952 K.D. Tocher [5] suggested the study of designs where elements
could appear more than once in a block. His suggestion lead to what are
today referred to as n-ary designs. (Here and throughout the paper n is
assumed to be a positive integer greater than or equal to three.) Although
in Tocher’s original definition the requirement of constant replication was
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not required, today the most accepted definition (for example see [2]) of a
balanced n-ary design with parameters (V, B, R, K, A) is an arrangement of
V treatments in B blocks (i.e. multisets) each of size K, such that every
treatment occurs 0,1, 2, ...,or n—1 times in a block, every treatment occurs
R times in the design and every pair of distinct treatments occurs A times
in the design. We refer to this definition for n-ary designs as Definition 1.
For a Definition 1 n-ary design, the entries of the corresponding incidence
matrix are 0’s, 1’s, ..., and n — 1’s.
Example 1:

210

N=|1 0 2

0 21
is the incidence matrix of a Definition 1 ternary design with parameters
(3,3,3,3,2). Note in the case where n = 3 the design is referred to as a
ternary design rather than a 3-ary design.

The literature contains at least two other interpretations of Tocher’s sug-
gestion to relax the restriction in a design on the number of times a treat-
ment can appear in a block. In [4] an n-ary block design is defined to
be a design whose incidence matrix has entries mo,my,...,ms_1 Where
0<mpg<m; <mg < - < Mmp_1 and m; = i(my —mg) + mg. We refer to
this definition for n-ary designs as Definition 2. Every Definition 1 n-ary
design is a Definition 2 n-ary design.

Example 2:
3 4
N = 4 2
4 2 3
is the incidence matrix of a Definition 2 ternary design with parameters
(3,3,9,9,26).

The definition of n-ary design is sometimes taken even one step further
(see for example [1] or [3]) and any set of n distinct nonnegative integers is
allowed as the entries of the incidence matrix. We refer to n-ary designs of
this type as Definition 3 n-ary designs. Every Definition 2 n-ary design is
a Definition 3 n-ary design.

Example 3:
3 5 2
N=|5 2 3
2 3 5

is the incidence matrix of a Definition 3 ternary design with parameters
(3,3,10,10,31).

The purpose of this paper is to show how the two “more general” defini-
tions of n-ary designs (Definitions 2 and 3) relate to the standard definition
(Definition 1). ,
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Throughout the remainder of the paper n-ary design refers to any design
whose corresponding incidence matrix contains exactly n distinct entries
and design implies an incidence matrix with constant row sum, constant
column sum and constant inner product of any two distinct rows.

We say two n-ary designs D;, with incidence matrix N;, and Dp, with
incidence matrix Ny, are equivalent if there exists a one to one map f,
from the entries of N; to the entries of No such that a permutation of
the rows and columns of f(N;) yields Na. Equivalent n-ary designs have
the same number of treatments and blocks, but their respective incidence
matrices may well have different row sums, column sums and row inner
product value. Examining the examples above we see that all examples
are equivalent To show Example 1 equivalent to Example 2 let f(0) = 4,
f(1) = 3, and f(2) = 2. To show Example 1 equivalent to Example 3 let

f(0)=2, f(1) =5, and f(2) =3.

2 The relationship of Definition 1 and 2 designs

The following theorems show that for every Definition 2 n-ary design there
exists an equivalent Definition 1 n-ary design and vice versa. Thus, Defini-
tion 2 is not a true generalization of Definition 1.

Theorem 2.1. Every Definition 1 n-ary design is equivalent to an infinite
number of Definition 2 n-ary designs.

Proof: Let D be a Definition 1 n-ary design with parameters (V, B, R, K, A)
and incidence matrix N; = [n;;]. Assume a is a positive integer and b a
nonnegative integer. For ¢ = 0,1,...,n —1 let m;; = nija +b. We claim
Ny = [myj] is the incidence matrix of a Definition 2 n-ary design with
parameters (V, B,aR + bB, aK + bV, a?A + 2abR + b%B).
The replication number:

Since for i =1,2,...,V, Zf;l ni; = R, we get for

B B
i=1,2,...,V,Y (nja+b)=a| ) ny| +bB=aR+bB.
j=1 j=1

The block size:
Since for j =1,2,..., B, E,Y=1"ij = K, we get for

v v
j=1,2,...,B,Z(n,~ja+b)=a(Znij) + bV =aK +bV.

i=1 i=1
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The index:
Since for i # j in {1,2,...,V} we have Ei=1 NimNjm = A, we get for

m=1

B B
+ ab (Z nim) + ab (Z n,.,,,) +b2B = %A + 2abR + a®B.

m=1 m=1

B B
i#37in{1,2,...,V} Z (anim + b)(anjm +b) = a? (Z n.-mnjm)
m=1

O

Theorem 2.2. Every Definition 2 n-ary design is equivalent to a Definition
1 n-ary design.

Proof: Let D be a Definition 2 n-ary design with parameters (V, B, R, K, A)
and incidence matrix N;. From the definition of a Definition 2 n-ary de-
sign we see that N; can be written uniquely as [n;ja + b], where we are
assuming that incidence matrix N; has entries 0 < b < b+a < -+ <
b+ (n — 1)a and that n;; is in {0,1,...,n — 1}. We claim N; = [n;;]
is the incidence matrix of a Definition 1 n-ary design with parameters
(V,B,(R—-bB)/a,(K —bV)/a,(A — 2abR — b2B)/a?).

The replication number:

Since for i =1,2,...,V, Z;.il(nija + b) = R, we get for

B
i=1,2,...,V,) nj=(R-bB)/a.
j=1

The value (R — bB)/a is a positive integer since each n;; is a nonnegative
integer with at least one of them being greater than 0.

The block size:
Since for j =1,2,..., B, E:;l(nija+b) = K, we get for

\4
i=12,...,B,) ni=(K-bV)/a.
i=1

The value (K — bV)/a is a positive integer since each n;; is a nonnegative
integer with at least one of them being greater than 0.

The index:
Since for i # j in {1,2,...,V} we know Zz=1 (anim +b)(anjm+b) = A,
we get for

B
i#5in{1,2,...,V} > nimnjm = (A — 2abR — b°B)/d’.

m=1
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This value is a nonnegative integer since each n;, and nj, is a nonnegative
integer. Since n > 3 and since we have shown above that column sums in
Ny are constant and positive, it must be the case that some column of Np
has at least two nonzero entries. Thus, (A — 2abR — b2B)/a? is in fact
positive. O

3 The relationship of Definition 1 and 3 designs

We use Example 4 to show that Definition 3 is a true generalization of
Definition 1 (i.e. we exhibit a Definition 3 design that is not equivalent to
any Definition 1 design).

Example 4:

NN N
w Wwo

N =

O Www
W o ww
W wow
O Www
NN WN
W wwo
W wow
NN N W
W o ww
w

2
2
3
2 3
is the incidence matrix of a Definition 3 ternary design with parameters
(4,12,27,9,56). If there existed a one to one map f from {0, 2, 3} to {0, 1, 2}
such that f(IN) were the incidence matrix of a Definition 1 ternary design
we would have 3f(2) + f(3) = 3f(3) + f(0) as the block size in the Defini-
tion 1 design (for example see block 1 and block 2 of the original design),
but 3£(2) + f(3) = 3(3) + f(0) implies 3£(2) — f(0) = 2f(3). An exhaus-
tive search of all possible f’s shows that this latter equation can never be
satisfied.

Before we show a class of Definition 3 designs which is equivalent to
Definition 1 designs we introduce the concept of design regularity.

An n-ary design D with incidence matrix entries ag, a1, . .., an—1 is said
to be row regular if there exist constants pg, p1,..., pn—1 such that each
treatment v appears in exactly po blocks ap times, in p; blocks a; times,
..., and in p,_; blocks a,—_; times. Examples 1, 2, 3 and 4 are all row
regular.

Similar to row regular we define an n-ary design D with incidence ma-
trix entries ag,ai,...,a,_1 to be column regular if there exist constants
ap, i, ...,an_1 such that each block b consists of ag treatments that ap-
pear o times, a; treatments that appear o; times, ..., and on—; treat-
ments that appear a,_; times. Examples 1, 2 and 3 are column regular;
Example 4 is not.

Finally we say an n-ary design D with incidence matrix entries ag, ay, ...,
an—1 is index regular if there exist constants £y 0, fo,1, - - -, Bon—1; B1,1, 81,2,
«.-sB1,n-1; -+ Pn—1,n—1 such that for each inner product of distinct rows
the inner product sum consists of apap appearing fo o times, apa; or ajag
appearing fp,1 times, ..., and a,—1a»_1 appearing Br_1,,—1 times. That is,
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Bi;j denotes the number of times a;ajand aja; appear in the inner product
of two distinct rows. Examples 1, 2, 3 and 4 are all index regular.
Example 5, given below, shows that an incidence matrix of a design can
be row and column regular without being index regular. Example 6, given
below, shows that an incidence matrix of a design can be row and index
regular without being column regular. A design cannot be index regular
without also being row regular (Proposition 3.1).
Example 5:

1 2020
21200
0210 2
2 001 2
0 02 21

is the incidence matrix of a Definition 1 ternary design with parameters
(5,5,5,5,4) that is row and column regular but not index regular (for exam-
ple see the inner product of rows 1 & 2 and rows 3 & 4).

Example 6:
1120
1 201
101 2

is the incidence matrix of a Definition 1 ternary design with parameters
(3,4,4,3,3) that is row and index regular but not column regular (see columns
1 and 2).

Proposition 3.1. If a Definition 3 n-ary design is index regular, then it is
row regular.

Proof: Let N be the incidence matrix of an n-ary design with parameters
(V, B, R, K, A) which is index regular. Assume that ao,a1,...,an—1 are the
entries of N, and let §;; denote the number of times a;a; or aja; occurs in
the inner product of any two distinct rows of N. Also, for m =1,2,...,V
let 7,, denote the number of times ag occurs in the mth row of N; then for
distinct r and s in {1,2,...,V}, Z;.';ll Boj = Tr + Ts — 2Poo. Hence if r, s,
t are distinct elements of {1,2,...,V}, then 7 + 75 — 2600 = Z;‘;ll Boj =
75+t —2P00 Which implies that 7. = 7;. Thus, ag appears the same number
of times in each row of N. In arguments similar to the one given above we
can show each a,, for m =0,1,...,n—1 appears the same number of times
in each row of N. Therefore, N is row regular. O

We say a design is triply regular if it is row, column and index regular.

Theorem 3.2. If D is a triply regular n-ary design and {by, b1, ...,bp_1} is
any set of n distinct nonnegative integers, then D is equivalent to an n-ary
design whose incidence matrix entries are the elements of {bo,bi,...,bn_1}.
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Proof: Let D be a triply regular n-ary design with parameters (V, B, R, K, A)
and incidence matrix N, where the entries of N are elements of the set
{ao,a1,...,an—1}. Since D is row regular there exist constants po, p1, ...,
pn—1 such that each treatment appears in exactly po blocks ag times, p;
blocks a; times, ..., and p,_1 blocks an—; times. Similarly since D is also
column and index regular we can find constants ag, a1, . ..,an—1 that cor-
respond to the column regularity of D and constants 8o 0, fo,1,- - -1 Bo,n—1;
B1,1,81,2,- -+ Pi;n—1; .. Bn—1,n—1 that correspond to the index regularity
of D.

Let V and B be as defined for D and define constants R;, K1, and A
as follows:

n—1 n—1 n—1ln-1
Ry = Zpibs', K, = Z a;b;, and Ay = Z Z.Bijbibj-
i=0 i=0 i=0 j>i

For i = 0,1,...,n — 1 let f(a;) = b;. The entries of the matrix f(N) =
[f(ns;)] are elements of the set {bg,b1,...,bn_1}. Since N is row regular,
each row sum of f(N) will be R; = Z::ol pib;. Since N is column regular,
each column sum of f(N) will be K1 = Z::ol a;b;. Since N is index
regular, the inner product of any two distinct rows of f(NN) will be A; =
E:‘;ol ;.';il Bijbibj. Thus, f(N) is the incidence matrix of an n-ary design
with parameters (V, B, Ry, K1, A4). O
Corollary 3.3. Every triply regular Definition 1 n-ary design is equivalent
to an infinite number of Definition 3 n-ary designs.

Corollary 3.4. Every triply regular Definition 3 n-ary design is equivalent
to a Definition 1 n-ary design.

As illustrated below in Example 7, Definition 3 designs do not have to
be triply regular to be equivalent to Definition 1 designs.

Example 7:

- 0235
|| |50 2 3
M=151713 5 0 2
r4 2 350

and

TITIT] TeToTe TsT3ry T4T4T4 555000
Tor3Ty TIT3T4 ToTiT4 Tor3Ty 500550
TaraTe TaT4Ty T1T4T2 T3rire 050505
T4Tors T4T1T3 T4Tory TiTor3 005055

N =

N is the incidence matrix of a 4-ary Definition 3 design. N is not column
regular (see columns 1 and 49).
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Let f be the map from {0,2,3,5} to {0,1,2,3} such that f(0) = 0,
f(2) =1, £(3) =2 and f(5) = 3. The matrix f(NN) is the incidence matrix
of a 4-ary Definition 1 design. Thus, N and f(N) are two non-triply regular
4-ary designs that are equivalent.

4 Some ternary results

We conclude by presenting several interesting results about regularity that
are true for ternary designs. The first is a generalization of a result of
Billington [2]. The others strongly tie row and column regularity to equiva-
lence. We begin with a definition. Although we will only use the definition
as applied to ternary designs we present it in its general form.

We say a Definition 3 n-ary design is reduced if zero is one of the n
distinct elements of the incidence matrix of the design. Given the incidence
matrix of an n-ary design with parameters (V, B, R, K, A) we can “reduce”
the design by simply subtracting the minimum element b of the incidence
matrix from each element of the incidence matrix. The reduced design will
have row sum R — bB, column sum K — bV, and index A —2bR — b*B. We
do not claim that each Definition 3 n-ary design is equivalent to a reduced
Definition 3 n-ary design. The reason for this is that in “reducing” a design
we might be changing a row or column of the original incidence matrix to
the zero vector.

Theorem 4.1. Every reduced Definition 3 ternary design is row regular.

Proof: Let D be a reduced Definition 3 ternary design with parameters
(V,B,R, K, A) and with incidence matrix N = [n;;] where each n;; is an
element of {0, a1, az}.

Assume z is a treatment of D and assume z appears a; times in pz)
blocks and a; times in pz2 blocks. Then 2f=1(nmj)2 = a?pz1 + apz2.
Counting the number of ordered pairs in which x appears we get

2
AV =1) =" aipei(K — )

i=1
2 2 2
=" aipeK =Y alpzi = RK — ) a?pai,
i=1 i=1 i=1

which implies that

2
RK —A(V =1) =) a?pg:.

i=1
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Hence,

2
RK - A(V-1)=a1R= Ea?pz.' —a1R
i=1
2

= a?psi — a1(a1pz1 + a2pz2) = (a3 — a102)pa2.

i=1

Solving for p,2 we see that p. is the constant (RK —A(V —1) —a; R)/(a% -
ajay). The result follows. a

Theorem 4.2. If a ternary Definition 3 design is equivalent to a Definition
1 design, then the Definition 3 design is either row regular or a Definition
2 design.

Proof: Let D3 be a ternary Definition 3 design with incidence matrix
entries ag, a1, ag. Assume f(a;) =1, ¢ = 0,1,2 is an equivalence map from
Ds3 to a Definition 1 design.

Let each treatment occur R3 times in D3 and let z and y be two distinct
treatments of Dj3; then there exist constants pzo, pz1, pz2 and pyo, py1, py2

such that ) )
Ry = Z PziGi = Zpyiai
i=0

1=0

which implies

2
0= (pyi — Pasi)as. 6y
=0

Since f is an equivalence map it is then also the case that

2
0= (pyi — pzi) f(as).

=0

Thus,

(pz1 — Pul) = 2(Py2 — Pz2). 2
If B3 is the number of blocks in Ds, then

2 2
Bs = me' = Zpyi-
i=0 .

i=0

Combining this fact with (2) we get

(P:cO - PyO) = _(Py2 - P:n2)° (3)
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“Substituting (2) and (3) into (1) gives us (py2 — pz2)(—ao + 2a1 —a2) = 0.
Hence, (py2 — pz2) =0 or (—ag + 2a; —az) =0.

If py2 — pz2 is zero, then pyo = pzo and py1 = pg1 and it follows that Ds
is row regular.

If (—ag + 2a; — a2) = 0, then ag + ag = 2a;, and it follows that D3 is a
Definition 2 design. O

Theorem 4.3. If a ternary Definition 3 design is equivalent to a Definition
1 design, then the definition 3 design is either column regular or a Definition
2 design.

Proof: Similar to the proof of Theorem 4.2. a

Corollary 4.4. If a ternary Definition 3 design which is not a Definition 2
design is equivalent to a Definition 1 design, then both the designs are row
and column regular.

Proof: See Theorem 4.2 and 4.3. O
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