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ABSTRACT. By a graph we mean an undirected simple graph.
The genus v(G) of a graph G is the minimum genus of the
orientable surface on which G is embeddable. The thickness
©(G) of G is the minimum number of planar subgraphs whose
union is G.

In [1], it is proved that, if v(G) = 1, then 6(G) = 2. If
~¥(G)=2, the known best upper bound on ¥(G) is 4 and, as far
as the author knows, the known best lower bound is 2. In this
paper, we prove that, if y(G) = 2, then 6(G) < 3.

1 Introduction

By a graph we mean an undirected simple graph. The genus v(G) of a
graph G is the minimum genus of the orientable surface on which G is
embeddable. The thickness O(G) of G is the minimum number of planar
subgraphs whose union is G. The arboricity of G is the minimum number
of forests whose union is G.

A graph with genus g has the arboricity at most 2 + 1/3g by [5]. Hence
the thickness of a graph with fixed genus g has an upper bound. Recently,
Dean and Hutchinson [3] proved the inequality,

6(G) <5+ v2v(G) -2,

which is best possible up to a constant.

In [1], it is proved that, if v(G) = 1, then ©(G) = 2. If v(G) = 2, the
known best upper bound on ©(G) is 4 and, as far as the author knows, the
known best lower bound is 2. For example, the complete graph K, and
the complete bipartite graph Ky, with genus 2 has the thickness 2, since

ARS COMBINATORIA 38(1994), pp. 87-95



O(Ks) = ©(K4,6) = ©(Ks,10) = 2, see [6]. In this paper, we prove that, if
7(G) =2, then ©(G) < 3.

Let ¥ be an orientable surface of genus g and G a graph of genus g embed-
ded in . The surface ¥’ obtained from X by cutting along a nonseparating
cycle C in G and pasting two disks along the boundaries is of genus g — 1.
In § 3, we show that there is a subgraph H with ©(H) < 2, which is called
a collar of C, such that G — E(H) is embeddable in ¥’, where E(H) is the
edge set of H.

In § 4, we consider the embedding of G with v(G) = 2, and, show that,
if a collar H of a nonseparating cycle is nonplanar, G — E(H) is planar.

2 Preliminaries

In this article, a graph is considered as a one-complex. A surface is a
two-complex in which a neighborhood of each point is homemorphic to the
Euclidean plane R? or R2 = {(z,y) € R?: y > 0}.

Let G be a graph embedded in the surface £ with the vertex set V(G)
and the edge set E(G). Cutting ¥ along a subgraph H of G in which the
degree dy(v) of any vertex v is at least 1, we obtain a surface ¥'. Then
¥ can be considered to be an identification space of ¥£’. The preimages of
e € E(H) and v € V(H) under the identification map ¢: ¥’ — ¥ consistof
two edges and dy(v) vertices, respectively.

Let V'’ be a subset of V(H). By X", we denote the complex obtained
from ¥’ by identifying the vertices in ¢~!(V’) under ¢|¢~1(V"’), see figure
1, for example. If there is a vertex v in V' with dg(v) > 2, £” is not a
surface. Using the map ¢, we obtain a map « from £” onto ¥ such that
x|lr~1(Z = (V(H) = V') U E(H))) is one-to-one. We call £ and ¢ 1G)
the results of cutting © and G along (V(H) —V')U E(H), respectively. For
v € V(H)-V’, the vertices in 7~!(v) will be denoted by oW @),
For convenience, we write v for 7~1(v) of a vertex v € V(G), if [~ 1(v)| = 1.

The length of a path or a cycle P is denoted by ¢(P). A chord of a cycle
C in G is an edge which does not belong to C but joins vertices of C. For
distinct vertices u and v, we will denote the section of C from u to v which
follows the orientation of C' by Clu,v]. If a cycle C in G C X separates
¥, we say that C is separating. Otherwise, C is nonseparating. A path P
connecting two vertices » and v in C is said to be separating relative to C,
if PU C[u,v] or P U Cf[v, 4] is separating.

A bridge B of C in G is either a chord together with both ends, or a
connected component B’ of G —V (C) together with all edges from B’ to C
and all ends of these edges. For the definition of a bridge, we refer to [2].
The vertices in V(B) N V(C) are called attachments of B. A bridge with
k attachments is called a k-bridges. A 1-bridge B is said to be trivial, if
|E(B)| =1.
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Figure 1

We say that two bridges B, and Bs overlap if at least one of the following
two conditions holds:

(1) There are two attachments v; and v of By and two attachments v3
and v, of By such that all of four are distinct and they appear on C
in the order v, v3, v2, v4.

(2) There are three attachments common to B;, and B;. B; avoids By,
if all the attachments of B, lie between two consecutive attachments
of Bz. If B; and Ba do not avoid, they overlap [2].

3 Collar of a cycle

Let G be a graph embedded in the closed surface ¥. Suppose that a cycle
C in G has no chord. We denote the results of cutting ¥ and G along
V(C) U E(C) by £ and G, respectively. Then 5 has two boundaries C(©)
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and C(D. Let E’ be the image of {e € E(G’) e is incident to a vertex in
V(C©®)} under the identification map 7: £ — X. The subgraph H of G
induced by E’ is called a collar of C.

From the definition, a bridge of C in a collar H has exactly one vertex
which does not belong to C. Hence H is planar, if all the bridges in H
avoid each other.

The embedding of G in the orientable surface ¥ of g(X) is said to be
minimal, if y(G) = g(X), where g(X) denotes the genus of £. If G C T is
minimal, there is a nonseparating cycle in G [4]. We cut ¥ along C and
paste two disks along the boundaries and denote the resulting surface by
¥'. Let H be a collar of C. Then g(¥') = g(X£) — 1 and G — E(H) is
embeddable in ¥’. Hence we have the following.

Theorem 1. Let G C X be a minimal embedding. Then there exists a
sequence of minimal embedding

Go C %,G1 CLy,...G, C Xy,
having the following properties.
(1) Go=G, % =%
(2) 9(Zit+1) < 9(%;) and g(En) = 0.

(3) For 0 < i < n—1, there is a shortest nonseparating cycle C; in G;
such that G;1 = G; — E(H;), where H; is a co]]ar of C;.

In [1], we proved H is planar, if G has no triangle. However a collar is
not always planar if G has a triangle, for example see Remark 1 in [1]. We
next consider the properties of a collar of a shortest nonsepararing cycle.
For nonnegative integers p and ¢, we define graph G4 to be the union of
a 4-cycle oV v2v3vg, P (vo, v2)-paths and ¢ (vi, vs)-paths of length 2. Let

= GpqUB and Gy, = G,,,UB’, where B is a 3-bridge with attachments
{'vo, v;,v2} and B’ a 3-bndge w1th attachments {vo,v2,v3}. Then Gpq, G
and Gy, are planar, see figure 2.

PQ’

Theorem 2. Let C be a shortest nonseparating cycle in a minimal em-
bedding G C . Then a collar H of C has one of the following properties.

(1) All the bridges of H avoid each other.

(2) H is isomorphic to Gpq, Gy, or G, with trivial bridges.

P’
(3) £(C) = 3 and there are at least two 3-bridges of C in H.

It is easy to see that H is planar if H satisfies (1) or (2). Before proving
Theorem 2, we will show that ©(H) = 2, if H satisfies (3). Let v be a
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Figure 2

vertex of V(C) and H, the subgraph of H induced by the set of all edges
incident to v. Then both H, and H — E(HV') are planar, hence, ©(H) < 2.

From now on, we assume G C ¥ is a minimal embedding, and H is a
collar of a shortest nonseparating cycle C. The following two lemmas are
proved in [1].

Lemma 3 [1, Lemma 4]. Let uy, u2,v1,v2 be distinct vertices in C which
appear on C' in the order u,us, vy, v2.

Suppose that there is a (ui, v;)-path P; with P;NC = {u;,v:},1=1,2,
and Py N P, = (. Then both P, and P, are nonseparating relative to C.

Lemma 4 [1. Lemma 5]. Suppose that a bridge of H contains a (u, v)-
path P of length 2. If PU Clu,v] is nonseparating, then ¢(Clv,u]) < 2.

Proof of Theorem 2: Since C is a shortest nonseparating cycle, there
is no chord of C. Let {By,..., B} be the set of all bridges in H and let
{z:}=V(B;))-V(C),1<i<n.

First we suppose that every path in every bridge joining two vertices in
C is separating relative to C. In this case, we will show that the bridges of
H avoid each other. To do this, we assume that B; and B; overlap. From
Lemma 3, there are three attachments u,, u2, and u3 common to B; and B;.
Then two of the three cycles z;[u1, u2]zi, z:Clug, us|z;, and z;Clus, u1]z;
are separating. We may assume z;Clui,ug]x; and x;C[ug,us]z; bound
submanifolds D; and Dy of X, respectively. From the construction of H,
the edge z;jus is contained in D; U Ds. This contradicts the fact that B;
has three attachments u;, uz, and us.
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Figure 3

Second we suppose that there is a (u,v)-path P in a bridge such that
PN C = {u,v} and P is nonseparating relative to C. Then, since both
P U C[u,v] and P U C[v,u] are nonseparating, we have £(C) < 4 from
Lemma 4. '

For the case £(C) = 4, we let C = vyvavzvav;. If there is a 4-bridge B;,
it can be shown that the 3-cycles ;v vyx;, T;v9v3T;, T;v3v47; and z;v4v1x;
are separating from the minimality of C. This contradicts the fact that C
is nonseparating. Hence C has no 4-bridge.

Assume there are two 3-bridges B; and B;. Suppose that {vi,v2} C
V(B;) NV (Bj). Then z;vivox; and zjvivex; are separating. Since there is
a path from v3 to z; not intersectiong z;v1v2x;, and a path from v3 to z;
not intersection z;v1v2z;, we have a contradiction. Hence V(B;)NV(B;) is
a pair of nonconsecutive vertices in C. Thus there are at most two 3-bridges
in H, and H satisfies (1) or (2).

For the case ¢(C) = 3, it can be seen easily that H satisfies (1) or (3).
This completes the proof of Theorem 2.

4 Graphs of Genus 2

In this section we consider a minimal embedding G C ¥ of a graph G of
genus 2. If H is a collar of a shortest nonseparating cycle C, we have
v(G — E(H)) <1 by Theorem 1. It is easy to see that y(G — E(H)) =1
for G and C in Figure 3.

In Figure 3, H is planar, however a collar is not always planar, for ex-
ample, see Remark 1[1]. We will prove

Theorem 5. Let G C ¥ be minimal embedding of graph G of genus 2. If
a collar H of a shortest nonseparating cycle C is nonplanar, G — E(H) is
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planar.

Proof: Cutting £ and G along V(C) U E(C), we obtain the surface £ and
the graph G’. Let 7 be the projection. From the construction of a collar H,
there is the subgraph H’ of G’ such that w(H’) = H and H’ is isomorphic
to H. n~!(C) consists of two cycles Cp and C;, where Cp is contained
in H' and C, is disjoint from H’. By %', we denote the surface obtained
from £ by pasting two disks Do and D;, along Cp and C;.. The subgraph
G’ — E(H') — V(Cp) — E(C1), which is denoted by K, is isomorphic to
G - E(H).

Suppose that H is nonplanar. Then the collar H satisfies (3) in Theorem
2 and ©(H) < 2. Since H’ is isomorphic to H, H' has three 3-bridges
By, By and Bs. Let {’Ul,vg,'va} = V(Co) and {.’L','} = V(B.') - V(C'o),
1=1,2,3. We consider the rotation scheme for the graph CoUB; U B;U B3
in X', (For the definition of the rotation scheme, we refer to [6].) For
this purpose, we choose an orientation for ¥’, which will be called the
counter clockwise orientation, i.e., the rotation p(v) for each vertex v is
the cyclic permutation (u1,ug,...,up) of the adjacent vertices such that
the edges vu1,vug, ..., vu, appear in the counter clockwise order around v.
We assume that the vertices of V/(Cp) appear on Cy in the order vy, vg,v3,
if we follow Cj in the counter clockwise direction with respect to Dg.

v,;®

(D, )
¢'="- D)

v2(3) v33)

z "
Figure 4

First, we consider the case that p(z;) = (v1,vp,v3), for i = 1,2 or 3.
Suppose that p(z1) = (v1,v2,vs). Let £ be the result of &’ cutting along
V(Co)UE(CoUB;) and ¢: £” — ¥’ the identification map. The vertices in
¢~ 1(V(Cyp)) are denoted by v,w as shown in Figure 4. By Euler’s formula,
the region ¢—1(X’ — Do) must be a disk for £’ to have genus 1.
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Figure 5

Since K is disjoint from V(Cp) U E(Cp U By), ¢~ }(K) is isomorphic to
K. We paste three disks along three cycles zivgl)vg)zl, zlv§2)v§1)a:1 and
zlvgl)vgz)zl. Then the resulting surface, in which ¢~1(K) is embedded, is
the disjoint union of a 2-sphere and a disk ¢~!(Dp). Therefore K is planar.

Second we consider the case that p(z;) = (v1,vs,v2) for i =1,2,3.

As it can be seen in Figure 5, {v2,vs}, {vs,v1} and {vi,v2} appear con-
secutively in the order vy, vs in p(v1), vs, v1 in p(vs) and v, va in p(vs).
Hence we may assume p(v;) = (z1, z2, Z3, v2, v3), Without loss of generality.
Then there are 36 possibilities for the rotation scheme of CoU B; U B U Bs
in ¥’. Using the fact that g(X’) = 1, we can see that the only possibility is

p(z1) = (v1,v3,v2),
p(z2) = (v1,v3,v2),
p(z3) = (v1,v3,v2),
p(v1) = (z1, z2, T3, V2, v3),
p(v2) = (z3, %1, Z2,3,v1),

p(v3) = (z2, z3,T1,v1,v2).

Actually, this scheme has six orbits Oy = v1vsvavy, O2 = z1v3v1Z1, O3 =
TougusTa, Oy = Z3v1v2Z3, Os = T1v1Z2v3T3v2x1 and Og = T1V2T2v1T3V3T ],
and each of these orbits must bound a disk for ¥’ to have genus 1. Every
other scheme has two or four orbits.

Let F; be the face of Co U B; U By U B in ¥’ whose boundary is Oq,
1 <i < 6. Define K; tobe a KNF, for 1 <i < 6. Then each K; is planar,
K, is empty, and K5, K3 and K, are disjoint, with each joined to KsU K
at a single vertex. Thus, it suffices to prove that K5 U Kj is planar.
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V(Ks5)NV(Ks) = {z1, 2, z3}, and each K5 and K¢ has a planar embed-
ding with three vertices on the boundary of the outer face, so K5 U Kg is
planar.
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