On the thickness of graphs with genus 2

Kouhei Asano
Faculty of Science
Kwansei Gakuin University
Nishinomiya, Hyogo 662

shinomiya, Hyogo 662 Japan

ABSTRACT. By a graph we mean an undirected simple graph. The genus $\gamma(G)$ of a graph G is the minimum genus of the orientable surface on which G is embeddable. The thickness $\Theta(G)$ of G is the minimum number of planar subgraphs whose union is G.

In [1], it is proved that, if $\gamma(G) = 1$, then $\Theta(G) = 2$. If $\gamma(G)=2$, the known best upper bound on $\gamma(G)$ is 4 and, as far as the author knows, the known best lower bound is 2. In this paper, we prove that, if $\gamma(G) = 2$, then $\Theta(G) \leq 3$.

1 Introduction

By a graph we mean an undirected simple graph. The genus $\gamma(G)$ of a graph G is the minimum genus of the orientable surface on which G is embeddable. The thickness $\Theta(G)$ of G is the minimum number of planar subgraphs whose union is G. The arboricity of G is the minimum number of forests whose union is G.

A graph with genus g has the arboricity at most $2 + \sqrt{3g}$ by [5]. Hence the thickness of a graph with fixed genus g has an upper bound. Recently, Dean and Hutchinson [3] proved the inequality,

$$\Theta(G) \le 5 + \sqrt{2\gamma(G) - 2},$$

which is best possible up to a constant.

In [1], it is proved that, if $\gamma(G) = 1$, then $\Theta(G) = 2$. If $\gamma(G) = 2$, the known best upper bound on $\Theta(G)$ is 4 and, as far as the author knows, the known best lower bound is 2. For example, the complete graph K_n and the complete bipartite graph K_{mn} with genus 2 has the thickness 2, since

 $\Theta(K_8) = \Theta(K_{4,6}) = \Theta(K_{3,10}) = 2$, see [6]. In this paper, we prove that, if $\gamma(G) = 2$, then $\Theta(G) \leq 3$.

Let Σ be an orientable surface of genus g and G a graph of genus g embedded in Σ . The surface Σ' obtained from Σ by cutting along a nonseparating cycle G in G and pasting two disks along the boundaries is of genus g-1. In § 3, we show that there is a subgraph H with $\Theta(H) \leq 2$, which is called a *collar* of G, such that G - E(H) is embeddable in Σ' , where E(H) is the edge set of H.

In § 4, we consider the embedding of G with $\gamma(G)=2$, and, show that, if a collar H of a nonseparating cycle is nonplanar, G-E(H) is planar.

2 Preliminaries

In this article, a graph is considered as a one-complex. A *surface* is a two-complex in which a neighborhood of each point is homemorphic to the Euclidean plane R^2 or $R_+^2 = \{(x, y) \in R^2 : y \ge 0\}$.

Let G be a graph embedded in the surface Σ with the vertex set V(G) and the edge set E(G). Cutting Σ along a subgraph H of G in which the degree $d_H(v)$ of any vertex v is at least 1, we obtain a surface Σ' . Then Σ can be considered to be an identification space of Σ' . The preimages of $e \in E(H)$ and $v \in V(H)$ under the identification map $\phi \colon \Sigma' \to \Sigma$ consistof two edges and $d_H(v)$ vertices, respectively.

Let V' be a subset of V(H). By Σ'' , we denote the complex obtained from Σ' by identifying the vertices in $\phi^{-1}(V')$ under $\phi|\phi^{-1}(V')$, see figure 1, for example. If there is a vertex v in V' with $d_H(v) \geq 2$, Σ'' is not a surface. Using the map ϕ , we obtain a map π from Σ'' onto Σ such that $\pi|\pi^{-1}(\Sigma-((V(H)-V')\cup E(H)))$ is one-to-one. We call Σ'' and $\phi^{-1}(G)$ the results of cutting Σ and G along $(V(H)-V')\cup E(H)$, respectively. For $v\in V(H)-V'$, the vertices in $\pi^{-1}(v)$ will be denoted by $v^{(1)},v^{(2)},\ldots,v^{(n)}$. For convenience, we write v for $\pi^{-1}(v)$ of a vertex $v\in V(G)$, if $|\pi^{-1}(v)|=1$.

The length of a path or a cycle P is denoted by $\ell(P)$. A chord of a cycle C in G is an edge which does not belong to C but joins vertices of C. For distinct vertices u and v, we will denote the section of C from u to v which follows the orientation of C by C[u,v]. If a cycle C in $G \subset \Sigma$ separates Σ , we say that C is separating. Otherwise, C is nonseparating. A path P connecting two vertices u and v in C is said to be separating relative to C, if $P \cup C[u,v]$ or $P \cup C[v,u]$ is separating.

A bridge B of C in G is either a chord together with both ends, or a connected component B' of G - V(C) together with all edges from B' to C and all ends of these edges. For the definition of a bridge, we refer to [2]. The vertices in $V(B) \cap V(C)$ are called attachments of B. A bridge with k attachments is called a k-bridges. A 1-bridge B is said to be trivial, if |E(B)| = 1.

$$\begin{aligned} \mathbf{V'} \! = \! \{ \mathbf{a} \} & \qquad \qquad \boldsymbol{\pi^{-1}}\!\! (\mathbf{a}) = \! \{ \mathbf{a}^{(1)}\!\! \}, \ \, \boldsymbol{\bar{\pi}^{1}}\!\! (\mathbf{b}) = \! \{ \mathbf{b}^{(1)}\!\! , \mathbf{b}^{(2)} \} \\ & \qquad \qquad \boldsymbol{\pi^{-1}}\!\! (\mathbf{c}) = \! \{ \mathbf{c}^{(1)}\!\! , \mathbf{c}^{(2)}\!\! , \mathbf{c}^{(3)} \}, \ \, \boldsymbol{\bar{\pi}^{-1}}\!\! (\mathbf{d}) = \! \{ \mathbf{d}^{(1)} \}, \\ & \qquad \qquad \boldsymbol{\bar{\pi}^{-1}}\!\! (\mathbf{e}) = \! \{ \mathbf{e}^{(1)}\!\! , \mathbf{e}^{(2)} \} \end{aligned}$$

Figure 1

We say that two bridges B_1 , and B_2 overlap if at least one of the following two conditions holds:

- (1) There are two attachments v_1 and v_2 of B_1 and two attachments v_3 and v_4 of B_2 such that all of four are distinct and they appear on C in the order v_1, v_3, v_2, v_4 .
- (2) There are three attachments common to B_1 , and B_2 . B_1 avoids B_2 , if all the attachments of B_1 lie between two consecutive attachments of B_2 . If B_1 and B_2 do not avoid, they overlap [2].

3 Collar of a cycle

Let G be a graph embedded in the closed surface Σ . Suppose that a cycle C in G has no chord. We denote the results of cutting Σ and G along $V(C) \cup E(C)$ by $\tilde{\Sigma}$ and \tilde{G} , respectively. Then $\tilde{\Sigma}$ has two boundaries $C^{(0)}$

and $C^{(1)}$. Let E' be the image of $\{e \in E(\tilde{G}): e \text{ is incident to a vertex in } V(C^{(0)})\}$ under the identification map $\pi \colon \tilde{\Sigma} \to \Sigma$. The subgraph H of G induced by E' is called a collar of C.

From the definition, a bridge of C in a collar H has exactly one vertex which does not belong to C. Hence H is planar, if all the bridges in H avoid each other.

The embedding of G in the orientable surface Σ of $g(\Sigma)$ is said to be minimal, if $\gamma(G) = g(\Sigma)$, where $g(\Sigma)$ denotes the genus of Σ . If $G \subset \Sigma$ is minimal, there is a nonseparating cycle in G [4]. We cut Σ along C and paste two disks along the boundaries and denote the resulting surface by Σ' . Let H be a collar of C. Then $g(\Sigma') = g(\Sigma) - 1$ and G - E(H) is embeddable in Σ' . Hence we have the following.

Theorem 1. Let $G \subset \Sigma$ be a minimal embedding. Then there exists a sequence of minimal embedding

$$G_0 \subset \Sigma_0, G_1 \subset \Sigma_1, \ldots G_n \subset \Sigma_n$$

having the following properties.

- (1) $G_0 = G$, $\Sigma_0 = \Sigma$.
- (2) $g(\Sigma_{i+1}) < g(\Sigma_i)$ and $g(\Sigma_n) = 0$.
- (3) For $0 \le i \le n-1$, there is a shortest nonseparating cycle C_i in G_i such that $G_{i+1} = G_i E(H_i)$, where H_i is a collar of C_i .

In [1], we proved H is planar, if G has no triangle. However a collar is not always planar if G has a triangle, for example see Remark 1 in [1]. We next consider the properties of a collar of a shortest nonsepararing cycle. For nonnegative integers p and q, we define graph G_{pq} to be the union of a 4-cycle $v_0v_1v_2v_3v_0$, p (v_0, v_2)-paths and q (v_1, v_3)-paths of length 2. Let $G'_{pq} = G_{pq} \cup B$ and $G''_{pq} = G'_{pq} \cup B'$, where B is a 3-bridge with attachments $\{v_0, v_1, v_2\}$ and B' a 3-bridge with attachments $\{v_0, v_2, v_3\}$. Then G_{pq} , G'_{pq} , and G''_{pq} are planar, see figure 2.

Theorem 2. Let C be a shortest nonseparating cycle in a minimal embedding $G \subset \Sigma$. Then a collar H of C has one of the following properties.

- (1) All the bridges of H avoid each other.
- (2) H is isomorphic to G_{pq} , G'_{pq} , or G''_{pq} with trivial bridges.
- (3) $\ell(C) = 3$ and there are at least two 3-bridges of C in H.

It is easy to see that H is planar if H satisfies (1) or (2). Before proving Theorem 2, we will show that $\Theta(H) = 2$, if H satisfies (3). Let v be a

Figure 2

vertex of V(C) and H_v the subgraph of H induced by the set of all edges incident to v. Then both H_v and H - E(HV) are planar, hence, $\Theta(H) \leq 2$.

From now on, we assume $G \subset \Sigma$ is a minimal embedding, and H is a collar of a shortest nonseparating cycle C. The following two lemmas are proved in [1].

Lemma 3 [1, Lemma 4]. Let u_1, u_2, v_1, v_2 be distinct vertices in C which appear on C in the order u_1, u_2, v_1, v_2 .

Suppose that there is a (u_i, v_i) -path P_i with $P_i \cap C = \{u_i, v_i\}$, i = 1, 2, and $P_1 \cap P_2 = \emptyset$. Then both P_1 and P_2 are nonseparating relative to C.

Lemma 4 [1. Lemma 5]. Suppose that a bridge of H contains a (u, v)-path P of length 2. If $P \cup C[u, v]$ is nonseparating, then $\ell(C[v, u]) \leq 2$.

Proof of Theorem 2: Since C is a shortest nonseparating cycle, there is no chord of C. Let $\{B_1, \ldots, B_n\}$ be the set of all bridges in H and let $\{x_i\} = V(B_i) - V(C), 1 \le i \le n$.

First we suppose that every path in every bridge joining two vertices in C is separating relative to C. In this case, we will show that the bridges of H avoid each other. To do this, we assume that B_i and B_j overlap. From Lemma 3, there are three attachments u_1, u_2 , and u_3 common to B_i and B_j . Then two of the three cycles $x_i[u_1, u_2]x_i$, $x_iC[u_2, u_3]x_i$, and $x_iC[u_3, u_1]x_i$ are separating. We may assume $x_iC[u_1, u_2]x_i$ and $x_iC[u_2, u_3]x_i$ bound submanifolds D_1 and D_2 of Σ , respectively. From the construction of H, the edge x_ju_2 is contained in $D_1 \cup D_2$. This contradicts the fact that B_j has three attachments u_1, u_2 , and u_3 .

Figure 3

Second we suppose that there is a (u,v)-path P in a bridge such that $P \cap C = \{u,v\}$ and P is nonseparating relative to C. Then, since both $P \cup C[u,v]$ and $P \cup C[v,u]$ are nonseparating, we have $\ell(C) \leq 4$ from Lemma 4.

For the case $\ell(C) = 4$, we let $C = v_1 v_2 v_3 v_4 v_1$. If there is a 4-bridge B_i , it can be shown that the 3-cycles $x_i v_1 v_2 x_i$, $x_i v_2 v_3 x_i$, $x_i v_3 v_4 x_i$ and $x_i v_4 v_1 x_i$ are separating from the minimality of C. This contradicts the fact that C is nonseparating. Hence C has no 4-bridge.

Assume there are two 3-bridges B_i and B_j . Suppose that $\{v_1, v_2\} \subset V(B_i) \cap V(B_j)$. Then $x_i v_1 v_2 x_i$ and $x_j v_1 v_2 x_j$ are separating. Since there is a path from v_3 to x_i not intersectiong $x_j v_1 v_2 x_j$, and a path from v_3 to x_j not intersection $x_i v_1 v_2 x_i$, we have a contradiction. Hence $V(B_i) \cap V(B_j)$ is a pair of nonconsecutive vertices in C. Thus there are at most two 3-bridges in H, and H satisfies (1) or (2).

For the case $\ell(C) = 3$, it can be seen easily that H satisfies (1) or (3). This completes the proof of Theorem 2.

4 Graphs of Genus 2

In this section we consider a minimal embedding $G \subset \Sigma$ of a graph G of genus 2. If H is a collar of a shortest nonseparating cycle C, we have $\gamma(G - E(H)) \leq 1$ by Theorem 1. It is easy to see that $\gamma(G - E(H)) = 1$ for G and C in Figure 3.

In Figure 3, H is planar, however a collar is not always planar, for example, see Remark 1[1]. We will prove

Theorem 5. Let $G \subset \Sigma$ be minimal embedding of graph G of genus 2. If a collar H of a shortest nonseparating cycle C is nonplanar, G - E(H) is

planar.

Proof: Cutting Σ and G along $V(C) \cup E(C)$, we obtain the surface $\tilde{\Sigma}$ and the graph G'. Let π be the projection. From the construction of a collar H, there is the subgraph H' of G' such that $\pi(H') = H$ and H' is isomorphic to H. $\pi^{-1}(C)$ consists of two cycles C_0 and C_1 , where C_0 is contained in H' and C_1 is disjoint from H'. By Σ' , we denote the surface obtained from $\tilde{\Sigma}$ by pasting two disks D_0 and D_1 , along C_0 and C_1 . The subgraph $G' - E(H') - V(C_0) - E(C_1)$, which is denoted by K, is isomorphic to G - E(H).

Suppose that H is nonplanar. Then the collar H satisfies (3) in Theorem 2 and $\Theta(H) \leq 2$. Since H' is isomorphic to H, H' has three 3-bridges B_1 , B_2 and B_3 . Let $\{v_1, v_2, v_3\} = V(C_0)$ and $\{x_i\} = V(B_i) - V(C_0)$, i = 1, 2, 3. We consider the rotation scheme for the graph $C_0 \cup B_1 \cup B_2 \cup B_3$ in Σ' . (For the definition of the rotation scheme, we refer to [6].) For this purpose, we choose an orientation for Σ' , which will be called the counter clockwise orientation, i.e., the rotation $\rho(v)$ for each vertex v is the cyclic permutation (u_1, u_2, \ldots, u_p) of the adjacent vertices such that the edges vu_1, vu_2, \ldots, vu_p appear in the counter clockwise order around v. We assume that the vertices of $V(C_0)$ appear on C_0 in the order v_1, v_2, v_3 , if we follow C_0 in the counter clockwise direction with respect to D_0 .

Figure 4

First, we consider the case that $\rho(x_i)=(v_1,v_2,v_3)$, for i=1,2 or 3. Suppose that $\rho(x_1)=(v_1,v_2,v_3)$. Let Σ'' be the result of Σ' cutting along $V(C_0)\cup E(C_0\cup B_1)$ and $\phi\colon \Sigma''\to \Sigma'$ the identification map. The vertices in $\phi^{-1}(V(C_0))$ are denoted by $v_i^{(j)}$ as shown in Figure 4. By Euler's formula, the region $\phi^{-1}(\Sigma'-D_0)$ must be a disk for Σ' to have genus 1.

Figure 5

Since K is disjoint from $V(C_0) \cup E(C_0 \cup B_1)$, $\phi^{-1}(K)$ is isomorphic to K. We paste three disks along three cycles $x_i v_1^{(1)} v_2^{(2)} x_1$, $x_1 v_1^{(2)} v_3^{(1)} x_1$ and $x_1 v_2^{(1)} v_3^{(2)} x_1$. Then the resulting surface, in which $\phi^{-1}(K)$ is embedded, is the disjoint union of a 2-sphere and a disk $\phi^{-1}(D_0)$. Therefore K is planar.

Second we consider the case that $\rho(x_i) = (v_1, v_3, v_2)$ for i = 1, 2, 3.

As it can be seen in Figure 5, $\{v_2, v_3\}$, $\{v_3, v_1\}$ and $\{v_1, v_2\}$ appear consecutively in the order v_2 , v_3 in $\rho(v_1)$, v_3 , v_1 in $\rho(v_2)$ and v_1 , v_2 in $\rho(v_3)$. Hence we may assume $\rho(v_1) = (x_1, x_2, x_3, v_2, v_3)$, without loss of generality. Then there are 36 possibilities for the rotation scheme of $C_0 \cup B_1 \cup B_2 \cup B_3$ in Σ' . Using the fact that $g(\Sigma') = 1$, we can see that the only possibility is

$$ho(x_1) = (v_1, v_3, v_2),$$
 $ho(x_2) = (v_1, v_3, v_2),$
 $ho(x_3) = (v_1, v_3, v_2),$
 $ho(v_1) = (x_1, x_2, x_3, v_2, v_3),$
 $ho(v_2) = (x_3, x_1, x_2, v_3, v_1),$
 $ho(v_3) = (x_2, x_3, x_1, v_1, v_2).$

Actually, this scheme has six orbits $O_1 = v_1v_3v_2v_1$, $O_2 = x_1v_3v_1x_1$, $O_3 = x_2v_2v_3x_2$, $O_4 = x_3v_1v_2x_3$, $O_5 = x_1v_1x_2v_3x_3v_2x_1$ and $O_6 = x_1v_2x_2v_1x_3v_3x_1$, and each of these orbits must bound a disk for Σ' to have genus 1. Every other scheme has two or four orbits.

Let F_i be the face of $C_0 \cup B_1 \cup B_2 \cup B_3$ in Σ' whose boundary is O_1 , $1 \le i \le 6$. Define K_i to be a $K \cap \overline{F_i}$ for $1 \le i \le 6$. Then each K_i is planar, K_1 is empty, and K_2 , K_3 and K_4 are disjoint, with each joined to $K_5 \cup K_6$ at a single vertex. Thus, it suffices to prove that $K_5 \cup K_6$ is planar.

 $V(K_5) \cap V(K_6) = \{x_1, x_2, x_3\}$, and each K_5 and K_6 has a planar embedding with three vertices on the boundary of the outer face, so $K_5 \cup K_6$ is planar.

Acknowledgement

The author would like to express his gratitude to the referee for his valuable suggestions and comments.

References

- [1] K. Asano, On the genus and thickness of graphs, J. Combin. Theory 43(1987) 287–292.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, New York 1976.
- [3] A.M. Dean and J.P. Hutchinson, Relation among parameters for graphs, preprint.
- [4] B. Ritcher and H. Shank, The cycle space in an embedded Graph, J. Graph Theory 8(1984) 365-369.
- [5] E. Scheinerman, The maximum interval number of graphs with given genus, J. Graph Theory 11(1987) 441–446.
- [6] A.T. White and L.W. Beineke, Topological Graph Theory, in Selected Topics in Graph Theory (L.W. Beineke and R.J. Wilson, ends.) Academic, London(1978) Chap.2, pp.15–49.