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Abstract: We examine permutations having a unique fixed point and a
unique reflected point; such permutations correspond to permutation matrices
having exactly one 1 on each of the two main diagonals. The permutations
are of two types according to whether or not the fixed point is the same as
the reflected point. We also consider permutations having no fixed or re-
flected points; these have been enumerated using two different methods, and
we employ one of these to count permutations with unique fixed and reflected
points.

Introduction

The original inspiration for this work was a coin problem published by -
Henry Ernest Dudeney, which we discovered on page 249 of [2]. Dudeney
challenges the reader to arrange twenty pennies in a square so that there
is the same number of pennies in each row and each column and along
each of the two main diagonals. The solution is obtained by placing sixteen
pennies in a square and making an appropriate choice of four of them on
top of which to put the remaining four. Evidently an appropriate choice
corresponds to a 4 x 4 permutation matrix with exactly one 1 on the main
diagonal and one 1 on the main antidiagonal. We consider the problem of
enumerating the n x n permutation matrices having exactly one 1 on each
of the main diagonals. We also examine a related problem, that of enumer-
ating permutation matrices with no 1 on either of the main diagonals; this
has been solved using at least two different methods, one of which we shall
apply to the former problem.

Let [n] denote the set {1,...,n} and &, the set of permutations of [n].
A fixed point of ¢ € &y, is an i € [n] such that o(i) = {; a reflected point
of o is a j € [n] such that o(n —j+ 1) = 7. In other words, i is fixed if it is
the ith letter of the word o(1)0(2)...0(n) read left-to-right; j is reflected
if it is the jth letter of this word read right-to-left. Notice that if P = [p;;]
is the permutation matrix corresponding to o, i.e., if p;; = 6jo(i), then each
fixed point of o corresponds to a 1 on the main diagonal of P, and each
reflected point corresponds to a 1 on the main antidiagonal. We denote by
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X, the number of 0 € G, having no fixed points and no reflected points,
and by I, the number of 0 € &, having exactly one fixed point and one
reflected point.

Our purpose is to determine X, and Z,, for arbitrary n > 0. We begin
with X,,, which counts permutation matrices having no 1 on either the main
diagonal or the main antidiagonal. Formulas for X,, have been derived by
S. Hertzsprung [1], using derangement numbers, and by J. Riordan [4],
who derives a recurrence using rook theory. We shall look at Hertzsprung’s
approach first.

The Work of Hertzsprung

Hertzsprung’s paper appeared in 1879, well before the development of
rook theory as a method for enumeration of permutations with restricted
positions. The paper begins with the solution of the problem: How many
terms appear in the formula for the determinant of an n x n matrix which
has only 0s on its main diagonal? The answer, as is well-known now, is
the derangement number D, := n! Y p_o(—1)%/k!, which also happens to
be the integer nearest to n!/e. Hertzsprung then asks: How many terms
appear in the formula for the determinant of an n x n matrix with only 0s
on both the main diagonal and the main antidiagonal? Clearly, the number
of terms in this formula is Xp,.

The key observation allowing Hertzsprung to arrive at his formula is
that for the permutations being counted, “no position is forbidden to more
than two numbers, and two [distinct] positions forbidden to the same num-
ber are also both forbidden to a certain other number. When these con-
ditions hold, it is immaterial whether the forbidden positions are stated
for one number or for the other.” He considers permutations with each
position forbidden to either one or two numbers, and finds a formula for
the number of such permutations in terms of the derangement numbers.
Next he observes that if ¢ and j have a forbidden position in common, then
i+ j = n+ 1. The problem then splits into two cases, because if n is odd
there is a position with only one forbidden number, but if n is even all
positions are forbidden to two numbers. His formulas for X, are as follows:

A ]
Xom = 'Zo 2™ ’m(ISJDm-zj) ;
J=
tmi2l . omb .
Xom41 = Zo om-2+ méJDm-zijm—sz,
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where 67 D == Y1_o(=1Y~* (%) D4 2i-

Beginning with n = 0, we find the first few values of X, to be 1, 0,
0, 0, 4, 16, 80, 672, 4752, 48768, 440192. We may also obtain these values
from the following recurrence formula, stated by Hertzsprung:

2(n—2)X,-4 (n even);
Xn=(n—1)Xn-1+ {2En - 13){,,_2 En odd)).
This formula is mentioned by Muir in [3], but with the index n—3 appearing
where there should be n — 4. The values given by Muir (through 4752)
agree with those given by Hertzsprung, but the first few values given by
the misstated formula are 1, 0, 0, 0, 4, 16, 80, 672, 4896, 49920, 460032.
The latter sequence appears as sequence 1432 in [5] with a reference to
Muir. Hertzsprung does not show how the recurrence may be derived from
his original formula: he claims that this would take too much space. We
shall see that Hertzsprung’s recurrence formula is valid, but will derive it
using rook theory rather than derangements. We will also use rook theory
to compute X, '

Rook Theory; Formulas for X, and X,

Suppose we have a positive integer n and a subset B of [r] x [n]. Let
R(z) = Zrkx" and Hy(t) = Ehnkt", where for each k > 0 we define

ry = |{P C B :|P| =k and no two elements of P
have a common coordinate}|,
hak = |{o € 6, : (i,0(%)) € B for exactly k values of i € [n]}|.

Evidently R(z) and H,(t) are polynomials of degree at most n. Observe
also that R(z) depends only on B (so long as n is large enough that [n] x [n]
contains B), but H,(t) depends on ‘B and n.

We often call B a board. This is because we think of it as a sort of
chessboard, upon which we try to place rooks in such a way that none can
attack another. The number of ways to do this with k rooks is ry; therefore
we call R(z) the rook polynomial of . The function Hn(t) is the hit
polynomial of B and n; the number of ways to place n rooks on the board
[n] x [n] so that none can attack another and exactly & of them ‘hit’ B is
hpi. We think of B as defining restricted positions for permutations of [n]:
if (4, j) € B, we have the restriction “o(i) # j”, or equivalently, “j cannot
be in the ith position of the word of ¢”. From this point of view A, is the
number of o € &, which violate exactly k of the restrictions imposed by
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8. We are most often interested in finding hno = Hn(0), the number of &
which do not violate any restrictions.

Although we are more interested in the hit polynomial, it is the rook
polynomial that is usually easier to compute for a given B. The idea of
rook theory is to establish connections between the two polynomials and to
use properties of one to determine properties of the other. The following
theorem, whose proof may be found in [4), is of fundamental importance.

Theorem. Let B C [n] x [n]. If R(z) = Y rezF is the rook poly-
nomial of B, then the hit polynomial H,(t) of B and n is ) rx(n —
E)(@e-1)F

In applying this theorem, we shall make use of the symbol E, which
we define to have the property E' = i! for all nonnegative integers i. We
may substitute E for indeterminates in a polynomial: e.g., if P(z) =
S pez®, then P(E) = Y prE¥ = Y pek!. More generally, if ¢ is an-
other indeterminate, then P(¢E) = Y pigfk!l. Similarly, if P(z,y) =
3. prizFy, then P(¢E,rE) = ¥ prgri(k + I)!. (We may also describe E
using integrals. For instance, P(¢E) = [~ P(gz)e *dz and P(¢E,rE) =
fs P(qz, rz)e%dz.)

If R is any commutativering with identity, then it is clear that P(z) —
P(E) defines a linear map from R[z] to R. On the other hand, E™
times E" is clearly not equal to E™*". Given P(z) and Q(z), we ob-
tain P(E)Q(E) by first multiplying together P(z) and Q(z), then re-
placing =z with E. For example, (E2 — 1)? is 4! — 2(2!) + 0! = 21, not
(2! = 01)2 = 1. This definition ensures that if P(2)Q:1(z) = Pa(z)Q2(z),
then P(E)Q1(E) = P2(E)Q2(E). It also allows us to make sense of ex-
pressions such as P(E)Q(E~!) whenever P(z) and Q(z) are such that
P(z)Q(z!) is a polynomial in z, i.e., has no terms of negative degree. In
particular, if the degree of P(z) = _ pxz* is at most n, then E"P(E~!) =
Y pe(n — k)! makes sense.

We now observe that the theorem above may be restated in terms of E.
Namely, we have that if R(z) is the rook polynomial of B8 C [n] x [n], then
the corresponding hit polynomial Hy(t) is equal to E” R(E~1(t—1)). When
we set t equal to 0, we obtain the symbolic expression h,o = E"R(—E~!).

Suppose B; and B, are boards with no common coordinates; i.e., for
any (i1,J1) € B, and (i2,j2) € B2 we have i} # j; and i3 # j2. Then
we shall say ®B8; and B, are disjoint. If B is the union of disjoint boards
8, and B,, then any placement of j non-attacking rooks on ‘B; and of k
non-attacking rooks on B, will correspond to a placement of j + k non-
attacking rooks on 8. This observation leads directly to the useful result
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that if B, and B, are disjoint, with Ry(z) and Ry(z) their respective rook
polynomials, then the rook polynomial of B; U B, is Ry(z)Rz(z).

Now we are prepared to apply rook theory to the problems of com-
puting X, and Z,. Let %, = {(3,4),(i,n—i+1):1< i< n}C
[n] x [n]. We find that 2, is the union of either [n/2] or [n/2] + 1 disjoint
boards, according as n is even or odd: in each case, we have the boards
{G,9),(lin—i+1),(n-i+1,i),(n—i+1,n—i+1)}for 1 <i<[n/2],
and if n is odd we also have the board {((n +1)/2,(n + 1)/2)}

It is easy to see that any board of the form {(i, k), (,1), (4, k), (, 1)},
with ¢ # j and k # !, has rook polynomial 1 + 4z + 2z2, and that any
board consisting of a single point has rook polynomial 1 + z. It follows
that for m > 0, the rook polynomials of 5, and g4y are respectively
(1442 +22%)™ and (1442 +22z%)™(1+z). Now observe that the constant
terms of the corresponding hit polynomials are X5, and Xzpm41. By virtue
of the theorem above, we have the following symbolic formulas:

Xom = (E? — 4E + 2)™, (1)
Xomsr = (E* —4E+2)™(E - 1). (2

The situation is slightly more complicated in the case of . There
are two kinds of permutations enumerated by X,,: those for which the fixed
point is different from the reflected point, and those for which the two
points coincide. The second kind exist only for odd n, as a point 7 that is
both fixed and reflected must satisfy i = n — i+ 1.

The following figure will help to illustrate our strategy for computing
Zn. It depicts [n] x[n], but with the rows and columns indexed in an unusual
way; we can see that each 2 x 2 ‘block’ of horizontally- and vertically-shaded
squares corresponds to a factor 1+ 4z + 2z in the rook polynomial of 2,,
while the doubly-shaded square corresponds to the factor 1 + z, which
appears iff n is odd. The shading describes whether a point in 2, is of the
form (3,4), ({,n — i + 1), or both.

We will compute X, by counting placements of n non-attacking rooks
on [n] x [n] such that either (a) there is one rook on a horizontally-shaded
square, one rook on a vertically-shaded square, and n—2 rooks on unshaded
squares, or (b) there is one rook on the doubly-shaded square and n — 1
rooks on unshaded squares.
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FIGURE 1

In case (a), we shall have the same number of placements for each
possible choice of the two shaded squares. These two squares must not
be in the same row or the same column. This condition is equivalent to
their being in different 2 x 2 blocks in Figure 1. The number of ways to
choose the blocks is [n/2|(|n/2] — 1), and once they have been chosen, we
have two horizontally-shaded squares in the first block and two vertically-
shaded squares in the second block from which to choose. We have shown
that there are 4|n/2|(|n/2] — 1)¥, placements of the type described by
(a), where ¥, denotes the number of such placements with rooks on the
shaded squares (1,1) and (2,n - 1).

Now to evaluate 3, we place rooks on (1,1) and (2,n—1). We cannot
put anything else in the 1st or 2nd rows or the 1st or (n — 1)st columns, so
we remove them from Figure 1, which gives us the following:

The placements enumerated by ¥y, correspond to placements of n — 2 rooks
on the board in Figure 2 such that none of the rooks is on a shaded square.
We see that the rook polynomial associated with Figure 2 is (1 + 4z +
2z2)"-2(1+4z)% if n = 2mis even, (14+4z+2z%)™"2(1+z)3 if n = 2m+1
is odd. Therefore we have 2, = (E?2 —4E +2)™"3(E —1)? and Yoy =
(B* - 4E 4+ 2™ %(E - 1)%.
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FIGURE 2

We now consider case (b), which occurs only if n = 2m + 1 is odd.
By removing the row and column containing the doubly-shaded square, we
find that the placements described by (b) correspond to placements of 2m
rooks on [2m] x [2m] with none on A2m; the number of such placements
is just X3p,. (This is why the problem of enumerating permutations with
unique fixed and reflected points led us to con51der permutations with no
fixed or reflected points.)

Combining the two cases, we can give formulas for X, in terms of the
symbol E:

Zom = 4m(m — 1)(E? — 4E + 2)™%(E - 1)?; (3)
Zoms1 = 4m(m — 1)(E2 —4E +2)""3(E - 1) + (E* —4E + 2)™ (4)

We shall now derive several recurrence formulas involving X, and X,
including Hertzsprung’s formulas for X,;. Our strategy is a simplified ver-
sion of what Riordan does in [4], pp. 186-187; indeed, he computes recur-
rences. for the hit polynomials of %,,, and when we put ¢ = 0 in these, we
get recurrences for X,,. We will derive recurrences that involve only X,
and X,,.
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Recall that if B C [n]x[n] has rook polynomial R(z), then E"R(—E~!)
is the constant term of the corresponding hit polynomial. We have that
Ef = {E*~ for any ¢ > 0; by linearity of differentiation, this implies that if
P(z) is any polynomial and P’(z) its derivative with respect to z, then

P(E) = P'(E)+ P(0). (5)

(If we write P(E) = fo°° P(z)e~%dz, then (5) follows from integration by
parts.)

For X, the polynomials to which we apply (5) are (22 — 4z +2)™ and
(z? -4z +2)™(z—1), for n = 2m and n = 2m+1 respectively. Considering
the first of these, we see that

%(a:z -4z 4+2)" = m(:t':2 -4z + 2)""1(23: —4)
= 2m(s? — 4z 4+ 2" (z — 1) = 2m(s’ — 4o + D"

this gives us
Xom = 2m(Xom-1 — Xom-2) +27. (6)

Similarly, one can write
d 2 m 2 m
a[(a: -4z +2)™(z 1)) = (2m + 1)(z° — 42 + 2)
+2m((z® — 42+ 2)™ " Y(z — 1) + (22 — 4z + 2)™71),
and this gives us
Xom+1 = (2m + 1) Xom + 2m(Xam—1 + Xom-2) = 2™.

Now using (6), we can rewrite the latter equation to eliminate the 2™-term,
and after simplifying we obtain

X2m+1 = 2m(x2m + 2X2m—1)v (7)

which is one of Hertzsprung’s formulas and which also appears in [4].

We can also use (6) to rewrite itself, by observing that 2™ = 2(2™~!) =
2[X2m—-2 — (2m - 2)(X2m-3 — X2m-4)]; substituting this into (6) gives us

Xom = 2mXom_1 — (2m —2)Xa2m_2 — 2(2m = 2) X3m_3 + 2(2m — 2) Xom-—4.
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We substitute into the latter equation (7), with m replaced by m — 1, to
obtain
sz = (2m - l)sz—-l + 2(2771 - 2)X2m_4, (8)

the second of Hertzsprung’s formulas.

Our last recurrence for X, involves only even values of n and, like (7),
18 a special case of a recurrence given in [4] for hit polynomials. (Formula
(8) does not appear in Riordan’s work.) If we iterate (5), we obtain the
identity P(E) = P"(E) + P'(0) + P(0). We combine this with the identity

dif—z(zz—4z+2)m = 2m(2m—1)(z®—4z+2)™ ! +8m(m—1)(z*—4z+2)™ 2
to derive

Xom = 2m(2m — 1) Xam—2 + 8m(m — 1) Xom_g + 2™ —m2™t.  (9)

We now consider the case of X,. The formulas we give here are not
recurrences, because they do not express I, in terms of I, for certain
m < n; rather, they express L, in terms of X,, for m < n. We have not
succeeded in coming up with recurrence formulas for X,.

Let n = 2m > 4 be even, and observe that we may write

(E2 —4F 4 2)m-2(E - 1)2 = (E2 —4E + 2)m-—1
+2(E? -~ 4E+2)""%(E - 1)+ (E* - 4E + 2)™%;

thus we have

Zom = 4m(m — 1)(Xam-2 + 2Xom—3 + Xom—4)
=2mXom-1 + 2m(2m’— 2)X2m_4
= m(Xgm - (2m - 3)X2m_1). (10)
In case n is odd, n = 2m + 1 > 5, we write
(B2 ~4E+2)™HE-1)®= (B> -4E+ 2" Y(E-1)
+2(E? —4E +2)™ ' + 5(E? — 4E + 2)™%(E - 1)
+2(E®-4E+ 2)”"2,
and go on to obtain
z;'Zm-l-l = Xom + 4m(m - 1)(X2m—1 + 2Xom—2 + 5X2m-3 + 2-X2m—4)
= X2m + 2m((2m - l)sz-l + 2(2m et 2)X2m_4) - 2mX2,,._1
+ 5m(2m - 2)(X2m_2 + 2X2m_3) - 2m(m - l)sz_z
= (2m + 1)X2m + 3mX2m_1 bt 2m(m -— I)Xz_m_:. (11)
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We conclude this section  with a table of some of the first few values of
X, and X,

n Xn Xa
0 1 0
1 0 1
2 0 0
3 0 0
4 4 8
5 16 20
6 80 96
7 672 656
8 4752 5568
9 48768 48912
10 440192 494080

11 5377280 5383552
12 59245120 65097600

Concluding Remarks

We have found formulas that will tell us, for any n, how many per-
mutations of n have exactly one fixed and one reflected point. We now
consider ways in which our work could be improved upon or extended.

Concerning X;,, we used rook theory to prove Hertzsprung’s recur-
rence formulas; he could not have done it this way, and he does not give
any clues as to how he did it. Also, the techniques we have employed do not
give a clear indication. of how one could prove (7) and (8) combinatorially,
although the simplicity of these formulas suggests that they should have
combinatorial interpretations. In particular, Hertzsprung notes the simi-
larity between the formula X, = (n — 1)(X,_; + 2Xn-2), which holds for
odd n, and the formula D,, = (n=1)(Dn-1+4 Dn_-2) involving derangement
numbers. The latter has a simple combinatorial proof; perhaps the former
does too.

The machinery we have developed gives us concise formulas for X,, and
Xn in terms of the symbol E, and it allows us to derive recurrence formulas
for X,,. But it is not so helpful when we try to find recurrences satisfied
by X,. We expected that X, like X,,, could be given by a homogeneous
recurrence relation of constant order, whose coefficients were polynomials
in n; but the data do not seem to suggest such a relation. Nor do the
data suggest how we could express X, in terms of Xy, for m < n (if we
could do this, we could combine it with (10) and (11) to get recurrences
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for Z,). Perhaps a new approach is called for to decide whether there are
recurrence formulas for Z,,. We now offer one possibility, although it is not
immediately clear how useful it will be.

Recall that we began by considering permutations of [n] that ‘hit’ the
board 2, exactly once on each diagonal. We could not use rook theory
directly, because it does not distinguish between diagonals. Some permu-
tations that hit 2/, twice hit it once on each diagonal, some hit it twice
on a single diagonal and miss the other. If n is odd, it is possible for a
permutation that hits 2, only once to hit both diagonals. This suggested
the possibility of rook polynomials and hit polynomials in several variables,
each variable corresponding to some sub-board of a given board. We shall
show how this can be done in the two-variable case, and it will generalize
readily to more variables.

Suppose we are given B.,By C [n] x [n]; then we define R(z,y) =
Y rijz'y , where rij is the number of ways to place i rooks on B, and j
rooks on By such that none can attack another. We also define Hy,(s,t) =
> h,,.-,-s‘tj , Where hy,;; is the number of ways to place n non-attacking rooks
on [n] x [n] with exactly i on B, and exactly j on B,. We shall call R(z, y)
the rook polynomial of B, and B, and H,(s,t) the hit polynomial of n,
B;, and By. We have the following theorems, which may be proved in
much the same way as the corresponding theorems for the single-variable
case: :

Theorem A. Suppose B;, U B, and Bz, U B2, have no common
coordinate, and let R;(z,y) be the rook polynomial of B;, and B, for
i = 1,2. Then Ri(z,y)R2(z,y) is the rook polynomial of B;. U B,
and ‘Bly U mzy.

Theorem B. Let B.,B, C [n] x [n] and B, NB, = 0. If R(z,y) =
>_rijz'y is the rook polynomial of B, and By, then the hit polyno-
mial Hy(s,t) of Bz, By, and nis ) rij(n —i — j)!(s — 1)¥(t — 1)7.

Another way of stating Theorem B is that if B, NB, = 0, then
Hn(s,t) = E"R(E~Y(s — 1), E~!(t — 1)). If B, NB, is not empty, this
result need not hold; for B, = B, = {(i,j)} C [n] x [r], we have rook
polynomial 1+ zy and hit polynomial E® + E"~!(st—1). (Theorem A does
not require B;. N B;y to be empty.) '
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Now to see what this has to do with Z,, we define U, = {(i,7) : 1 <
i< n}and Ay = {(i,n—i+1):1< i< n}. With [n] x [n] depicted as
in Figure 1, we have that 2, consists of all vertically-shaded squares and
Apy consists of all horizontally-shaded squares. (The doubly-shaded square
is both horizontally- and vertically-shaded.) Evidently the rook polynomial
of each 2 x 2 block of shaded squares is 1 + 2z 4 2y + z2 + y2, while the
doubly-shaded square has rook polynomial 1 + zy. From the theorems
above, we see that the hit polynomial Hy(s,t) of n, Unz, and U,y is given
by the following formulas:

Hom(s,) = (E? +2E((s — 1) + (¢ - 1)) + (s - 1)° + (¢ = 1)*)™;
Hom41(5,t) = ‘
(B24+2E((s - 1)+t -1)+(s-1)*+ (- 1)) (E+st-1).

From the definition of 2,, and ,y, we see that the coefficient of st in
H,(s,t) will be the number of permutations of [r] having exactly one fixed
and one reflected point—i.e., Z,. It is not hard to compute the coefficient of
st from the formulas above and to verify that it agrees with our previously
obtained formula for Z,.
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