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Abstract. As a generalization of a matching consisting of edges only Alavi et al in
(1] define a total matching which may contain both edges and vertices.
Using total matchings [1] defines a parameter £} (G) and proves that 8, (G) < p-1
holds for a connected graph of orderp > 2.
Our main result is to improve this inequality to 83 (G) < p—2 /P+2 and we give
an example demonstrating this bound to be best possible.
Relations of several other parameters to B are demonstrated.

Notation.

For z € R we let [z}, the ceiling of z, denote the least integer not less than z and
[z}, the floor of z, denotes the largest integer not larger than z. For a graph G we
use p and ¢ to denote its number of vertices and edges; p = |V(G)|, g = |E(G)).
By A C G wemean A C V(G) U E(G) and we let V(A) denote the vertices
of G which either belong to A or are incident with an edge of A. Let (A) denote
the graph induced by A in G, that is, V(A) together with those edges of G which
join two vertices of V( A). By K. » we denote the complete graph on p vertices, y 2
denotes the path with p vertices, Sy and f; , are the vertex- and edge-independence
numbers, that is, the maximum number in G of independent vertices and edges,
respectively. For undefined terms, the reader is referred to [3).

Total matching, cover and 5.

An element of a graph is either a vertex or an edge. For a graph G with vertex set
V(G) and edge set E(G) we say that a subset M C G is a total matching if no
distinct pair of elements of M are adjacent nor incident.

A total maiching M of G is called maximal if no other total matching M’ of G
containing M as a proper subset exists.

A subset C of V(G) U E(G) is said to cover G if each element of G not in C
is adjacent to or incident to an element in C.

A total matching is maximal if and only if it covers G. For any total matching
there exists a maximal total matching containing it as a subset.
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A set which covers G contains a total matching, but not necessarily a maximal
total matching. As an example let G be the path abcd. The set {b, c} covers G
and contains the total matching {b}, but contains no maximal total matching.

We define 85 (G) to be the minimum cardinality among all maximal total match-
ings of G. For a fixed graph G, thus, $5 (G) denotes the number of elements in a
total matching M which firstly is maximal, thatis, M cannot by addition of any el-
ement from V(G) U E(G) be extended to a larger total matching of G, and which
secondly is of minimum cardinality, that is, no other maximal total matching of G
contains fewer elements than M.

Matchings as sets of edges have been extensively studied, a survey is given in
[6]. Total matchings as sets, where both edges and vertices are permitted, was
defined in [1] and a related concept of total cover was treated in [2].

Comparison with other graph parameters.
Proposition 1. For any graph G with p vertices,p > 1, we have

22] <m0 <o-mo.

Proof: A set Fof 81(G) independent edges in G is by definition a total matching
and can be extended to a maximal total matching M in G.

M contains the original 8, (G) edges plus the p—2 B, (G) vertices from V(G)\
V(F), thus, |M| = p — A1(G), and that by definition of 85 (G) proves B;(G)
< p - Bi1(G). Next, let F be a set of 81(G) independent edges and let M be a
maximal total matching with 85 (G) elements. A vertex from M covers at most
one edge in F, and an edge from M covers at most two edges in F', thus, since
M covers F, we have that |[M] > 84€. Hence, 85(G) = |M| > [242] and
Proposition 1 is proven. 1

Proposition 2. For any graph G with p vertices we have

+ Po(G)
fe < 2BO,
Proof: A set S of 8o (G) independent vertices can be extended to a maximal total
matching M which contains Bo(G) vertices plus possibly some edges, each of
which must have both its ends in V(G)\S, that is, plus at most P—‘%ﬁl edges.

Thus, 8 (G) < M| < B5@. i

Proposition 3. Let G be a graph with p vertices, q edges and maximum valency
A. Then we have

ptq '
SAT1 < B (G).

Proof: Consider a maximal total matching M with |M| = 85(G). Each element
of M covers at most 2A + 1 elements of G, because a vertex covers itself plus at
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most A edges leading to A neighbours, and an edge covers itself, two ends and at
most A — 1 incident edges at each end.

The 85 (G) elements of M can, thus, altogether cover at most 83 (G) (24 +1)
elements. Since M covers all p + ¢ elements of G we obtain p + g < B(G)
(24 +1), [ |

Let i(G) be the independent dominance number of G, that is, {(G) is the min-
imum order of an independent set I C V(&) such each vertex in V(G)\I is
adjacent to a vertex in I. :

Proposition 4. For any graph G we have
i(G) < A(G).

Proof: Let M be a maximal total matching with |[M| = B5(G). M consists of
edges e; and vertices v;, M = {ej,e2,... ,€n, v1,v2,... ,un}. Denote the ends
of e; by z; and y;. Let I = {v1,v2,... ,un}.
Add to I vertex x; if ) is not dominated by any vertex already in I. Continue
on with 3, 3, ... , z, and do the same with y;,y5,... , ya.
We note that when finished the set I cannot contain both ends of an edge e;.
Thus, the final I dominates all vertices of G and has cardinality no more than
|M], sothat i(G) < 1| < [M] = B;(G). ]
Lemma 5. With the preceding nolation By( K,) = [£]. In fact, any maximal
lotal matching M of K, has [%] elements. Further
(1) Ifpiseventhen M consists of either § edges orof & — 1 edges and one
vertex.,
(2) Ifpisoddthen M consists of %‘—' edges and one vertex.

Proof: Let M be a maximal total matching of K,. M contains at most one vertex.
If M contains exactly one vertex v then M\{v} is a maximal set of independent
edges in K, — v, therefore, M\{v} consists of | &% | edges and [M| = 1+ | 25%]
= [£]. If M contains no vertex, but only edges, then p is even, because otherwise
M could be extended by a vertex; thus, |M| = £ = [£]. All the claims of Lemma
5 now follow immediately.

Propositions 1-4 are best possible: With G = K, we obtain the right side equality
in Proposition 1 because B, (K,) = [§] andp — 1 (K,) = p —| 2] = [£].

With G consisting of k copies of a 5-circuit and one K, all disjoint except
for exactly one common vertex, we obtain the left side equality in Proposition 1,
because 41 (G) =2k + 1, 5(G) = k+ 1.

Forp odd, we obtain with G = K, equality in Proposition 2, because 85 Kp) =
[$] and 25@ - 21 - g7,

Proposition 3 is best possible: Fora path P, withp = 5k + 3 vertices we obtain
equality in Proposition 3, because 83 ( Pp) = [152]] by [1] s0 that 8 ( Pyg.3) =
2k+ 1 and 5% = 1055 = 2% + 1. That Proposition 4 is best possible is seen
from G = Cy¢, where i(Cyy) = B3(Cax) = k. (]
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Monotonicity.

Bo, p1 are not monotone in general, but consider the special case of a sequence
of graphs G; C G2 C Gs ... C G C ..., all spanned by the same fixed set of
vertices, then: :

- A is monotonically non-decreasing, because adding more edges toa graph
does not decrease the number of independent edges.

- o is monotonically non-increasing, because adding more edges may lower
the number of independent vertices, but not increase it.

- is not monotone at all: Let G consist of p isolated vertices, let G2 =
Kyp1 andlet Gs = K. Then we have G) C G2 C Gs whilep, 1, f%]
are the corresponding values for 85(G;),1=1,2,3.

Main result (Theorem 1).
We shall first prove a lemma. .

Lemma 6. Let G be a connected graph with p vertices. If fi(G) < § then
B(G) <p—Fi(G) — 5551+ 2.

Proof: Let F' be a set having the maximum number 81 = £ (G) of independent
edges in G and let S be the set V(G)\V(F) consisting of p — 2 8 vertices. By
maximality of F', we note (S) consists only of isolated vertices.

Since G is connected there exists by the pigeon hole principle anedgee = (z,y)
in F which is joined to at least t;lﬁ- vertices in S, and, thus, to at least two vertices
in S, because p > 30 = L,,?‘E‘- > 1.

Assumee = (z,y) isjoinedtovy, va,... , v, k > 2,inSandassume(z,v;) €
E(G). Then(y,v;) € E(G) for2 < i < k,because otherwise { F\e} U{(z,v1),
(y,vi)} would be asetof B + 1 independent edges in G, a contradiction. Hence,
(z,v) € E(@)1LiLk

Define M 10 be the set M = {F\e} U{S\N(z)} U{z}. We can see that M is
a total matching and that M covers G. Thus, M is a maximal total matching of G
and we have that

L@ LM <A+ (P—zﬂl)—p—_gl-

This proves Lemma 6. [}
We note that the function — £ — z attains its maximum for z = \/P» therefore,
we obtain by substituting 8, = |/p that

14
= — — +2.
P8 B

B(G) <p—2yp+2.

This inequality is, thus, implied by the hypothesis 81 (G) < §.
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Theorem 1. Let G be a connected graph with p vertices,p > 1, then £5,(G) <
p—2./p+2, unless G is spanned by one of the three exceptional graphs G = G\,
G2, Gs, defined by:

V(Gy) = {vi | 1<i<2k +1},
E(Gi) = {(v1,%) |2<i<2k+ 1} U{(v2i,v2411) | 1<k}, k=1,2,3.

In particular the inequality holds forp > 8.

Proof: If f) < £ then Lemma 6 proves Theorem 1.

In fact, with notation of Lemma 6, if just some edge e = (2, y) in F is joined
to at least two vertices in S, then we see from the proof of Lemma 6 that we can
obtain £, (G) < p—2./p+ 2 as desired.

Hence, we may assume that 8) > § and that each edge e € F is joined to at
most one vertex in S.

Let v; € S and assume that F contains an edge e = (z,y) such that (z,v1) €
E(G),(y,n1) € E(G). Then the set:

M = (F\e) U(S\v)) U{z}

has [M|= (61 — 1) +(p—2p1 — 1) + 1 = p— ) — 1 and M is a maximal total
matching. We then obtain:

2
B LIMl=p-fi-1<p-1<p-2p+2

because 0 < p— 6,/p+ 9 holds for all p.
We may, hence, assume that each edge e; = (:z:., y;) in F has both its ends
joined to the same vertex vj¢;) in S.

0 o
F / €i
K\

N~

Q

A3

°
Ujti)
Figure 1: In the proof of Theorem 1 we find, first, this substructure to be

contained in G, secondly, we see that G is spanned by only one of the
components above which, thirdly, turns out to be either G, G2, or Gs.
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No edge of G can join two vertex-disjoint triangles z;, y;, v;, and zy, yy, vy,
otherwise G would contain 8; + 1 independent edges, a contradiction.

Since G is connected, it must be spanned by Gy, for some k > 1, where G
consists of k triangles pendant from the same vertex (Figure 1).

We shall now prove that k < 3. The set consisting of the vertex common to all
k triangles and the opposite edges from each triangle is a maximal total cover of
G with k + 1 elements, s0 55 (G) < k+ 1.

Thus, when k& > 4, G satisfies the inequality of Theorem 1, because p =
V(@) =2k+1,8,(G) <k+landthenk+1<2k+1-2V2k+1+2is
implied by the fact that the function z — 2+/2z + 1+ 2 attains its minimum value
for z = 2, has value O for z = 4 and is increasing for z > 3. The exceptional
graphs, thus, are spanned by G, 1 < k < 3. This proves Theorem 1. [ |

The exceptions of Theorem 1 are listed in Figure 2.

The example below demonstrates that the inequality of Theorem 1 is best pos-
sible.

Gy G, G,
B/(G,) 2 3 4
p-2Vp+2 13 25 3.7

Figure 2: The exceptions of Theorem 1, the dotted
edges do not belong to G3, but may belong to G.

Example: We note that 85 (Gp) = p — 24/p + 2 holds for an infinite family of
graphs.

Proof: Let Gp denote a K, n > 1, with n— 1 pendant edges from each vertex,
thenp = |V(Gp)| = n+n(n— 1) = n2. One can easily show that §;(G,) =

w2 — 2n+ 2 = p— 2,/p+ 2 by considering a maximal total matching M of G,
with |M| = §5(G,). Then M contains at most one veriex from the central graph
K., and by examining each of the two cases, that M contains exactly one vertex
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or no vertex from K,, theresult |[M| =14 (n—1)(n—1) = n* ~2n+2 can
be deduced. [ |

In general, connectivity is not needed to get the bound in Theorem 1. We have
the somewhat stronger result below.

Theorem 1°. With a finite number of exceptions, if G is a graph of order p with
no isolated vertices, then ,(G) <p—2 \/p+2.

Proof: Suppose p > 23. Consider the following two cases.

Case 1 Suppose £1(G) > §. From Proposition 1 we know

2
By (G) <p-Bi(G) < -32.

So long as p > 23, we note 22 is less than the desired expression.

Case 2 Suppose Bi1(G) < £. Then we see from the argument used in the proof

of Lemma 6 that the desired inequality holds. The argument of Lemma 6 remains

valid if the assumption “G is connected” is relaxed to “G has no isolated vertex”.
|

An inequality for complementary graphs (Theorem 2).
We have for complementary graphs G, G that

Bi(K;) = [ J <BU(O) + Bi(D.

The inequality follows from the fact that the | £ | edges of a matching in K, will
partition into two sets of independent edges in G and G, respectively. For g, we
can prove an analogous inequality:

[p+2

] < BB +B(D)
which is stated in Theorem 2 below.

In Theorem 2 we shall in two steps prove that [Z2] < ﬁz(G) + 0 (G) First
we easily obtain the weaker result:

[ﬂ = B(Kp) < BA(G) + By(D).

Then we prove that equality cannot occur $o that, in fact:

[p+2

2] [2]+1<ﬁ2(c)+1f“z(a>

For the first step we need Lemmas 7-9 below on covers of Ko.
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Lemma 7. For p > 1 we have
If the set C covers K, then |C| > [£].

Proof: Assume that C covers K, and that C consists of = edges and y vertices,
0<zy<|Clz+y=|C|.

The edges of C are altogether incident with at most 2 z vertices in K, so |V (C) |
<2z+y<2z+2y=2|C|

If|C] < [%] and C has fewer than | % edges then K;\V(C) contains at least
two vertices a and b and, thus, the edge (a, b) is not covered by C, otherwise p is
odd and C consists of | £ edges so that K,\V(C) consists of one vertex which
is not covered by C. This proves Lemma 7. [ |

Lemma 8. Foreven p, p = 2m, the following three statements are equivalent:
(1) C covers Kay, and |C| =
(2) either (i) C consists of m mdepcndent edges or (ii) C consists of m—1
independent edges and one vertex not incident with any of them;
(3) C is a maximal total matching of K3 .

Proof: We shall now see that if C with |C| = [£] covers K, then C contains at
least | 5] — 1 edges. Assume that C consists of z edges and y vertices 0 < z,
y<[§.z+y=[3].1fz < [3] -2 then |[V(C)| < 2z + y < [E]+ |B) -2
= p— 2 and as in the proof of Lemma 7 we see that V( K,;)\V(C) will contain
two vertices a, b such that the edge (a, b) is not covered by C.

Thus, C must contain at least | 5] — 1 edges. This statement and its proof
applies not only to to this lemma, where p is even, but also to Lemma 9 below,
where p is odd.

For p = 2m we have, if z = |_3J m then y = 0 and C consists z = £ edges
which cover p = 2z vertices. Thus, C is independent and 2(i) occurs.

Ifz=|%]-1=m~-1theny=1. Since C covers K, we musthavep—1 <
|V (C)]. This together with |V(C)| < 2z+ y = p— 1 implies |[V(C)| =2z +y
so that C is independent and 2(ii) occurs. Thus, (1) implies (2). It is easily seen
that (2) implies (3), and that (3) implies (1). This proves Lemma 8. [ |

Lemma 9. Forodd p,p = 2m+ 1, the following two statements are equivalent:

(1) Ccovers Kappey and |Cl=m+ 1;

(2) either (i) C consists of m independent edges and one vertex or (ii) C con-
sists of m — 1 independent edges plus one edge adjacent o exactly one of
them plus one vertex incident with none of the m edges or (iii) C consists
of m~1 independent edges and two vertices not incident with any of them.

Further, C is a maximal total matching of Kam+1 if and only if (i) above occurs
and the vertex is not incident with any of the edges.

Proof: Assume that C with |G| = m + 1 covers K3,,.1. As noted in the proof of
Lemma 8 we find that C must contain at least | £] — 1 edges. As previously we
let z, y denote the respective numbers of edges and vertices in C.
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Ifz=|f|=mtheny=1.
If the mn edges are independent then 2(i) occurs.
Otherwise, from '
(@ Ccovers K, =p—1<|V(O)|
(b) =z edges cover < 2z — 1 vertices, and
© |[V(O)|<2z=p-1
we obtain V(C) = p— 1;and V(C) = p— 1 implies that = edges cover 2z — 1
vertices. Thus, C consists of m — 1 independent edges plus an mth edge adjacent
to exactly one of them and 2(ii) occurs.
fz=|%|-1=m—1theny=2andp-1<|V(C)|<2z+2=p—1.
Thus, |V(C)| = p— 1, or, equivalently, |V (C)| = 2z + y, which implies that C
consists of £ = m — 1 independent edges and y = 2 vertices not incident with
any of them and case 2(iii) occurs.
This proves that (1) implies (2). Conversely, it is easy to verify that (2) implies
(1). The last remark is easily seen and Lemma 9 is proven. ]

Theorem 2. Fora graph G with p vertices,p > 1, we have

+2 - 3
52 <m@mn@<[2]
Proof of Theorem 2:

Left side inequality

Let My, M2 be maximal total matchings in G, G, respectively, with [M;| =

B3(G). and |M2| = B5(G). _
From the fact that M, covers G and M covers G it follows that M = My UM
covers Ky, and, hence, by Lemma 7 that |[M| > [£]. Thus, we have:

(2] <1< il + a1 = (@) + B,
We cannot have equality above, for assume
2]-m©@+a@.

We shall then reach a contradiction.

From M = M) U M, we have [M| < |Mi|+ |M3| = [£] which combined
with |[M| > [£] gives |M| = [£] and, hence, M, N M, = §. We shall, aided by
Lemma 8 and Lemma 9, go through the possibilities for M )

Case 1 Suppose p is even and M consists of £ independent edges. Consider
e=(z,y),e € M. We may assume e € M; C G, thene ¢ M, and M U {z}
is independent, contradicting maximality of M, .
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Case2 Suppose pis evenand M consists of & — 1 independent edges and one
vertex z notincident with any of the edges. We may assume z € M1, thenz ¢ M3
and M, U {z} is independent, contradicting maximality of M>.
Case3 Suppose pis odd, M consists of | 3] independent edges and one vertex
z. We may assume that € M, z € M>. If z is not incident with any edge of
M then M U {z} is independent. If z is incident with an edge of M, then for the
unique vertex y in K, not incident to any edge of M we obtain that M, U {y} is
independent. In both events we have a contradiction to maximality of My.
Case 4 Suppose p is odd, M consists of | §] — 1 independent edges plus one
edge having exactly one vertex incident with this set plus a vertex z not incident
with any of the edges. Denote the second vertex not incident with any of the edges
byy,.y ¢ M. .

If z € Mi, then M> U {y} is independent in contradiction to maximality of
M.
Case 5 Suppose p is odd, M consists of |2] — 1 independent edges and two
vertices z, y not incident with any of them. Denote the third vertex not incident
with any of the edges by z,z ¢ M.

If z € M) then {z,2} N M = @ and M2 U {(z, 2) } is independent, a contra-
diction.

Thus, we cannot have equality in:

|2] <1+ e

and we have proven

222 <m0+ n@.

Right side inequality

To prove the right inequality we use B0 (G) + Bo(G) < p+ 1. Let Sy and S, be
sets of independent vertices in G and G, respectively. In G the vertices Sz span a
complete graph (S, ), which, thus, contains at most one vertex from Sy . Therefore,
51|+ 52| < p+ 1. Proposition 2 applied to G and Ggives B3 (G + (G < p
+5'-(ﬂ§5‘19 <p+ %l = 32211 The proof of Theorem 2 is complete. [ |

Theorem 2 is best possible.

For equality in the lower limit let p be odd and G = K151, G = Kp_1 U K.
Thenp=2m+ 1 and [22] = m+ 2 and B3 (K1 ,1) = 1 and £5(8) = [55H]
+1 = m+ 1. The equality 8}(G) + 8,(G) = 3 = [32] holds for the pair of
graphs G = K,, G = pKi.

Complexity.

Given G, let G’ be G together with two pendant vertices attached to each vertex
in G. We note that 85 (G") = 2p— Po(G). From [3] we know computation of So
is an NP-complete problem. Hence, we have the following.
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Proposition 5. Computation of 85 is an NP-complete problem.

Added in proof: A parameter similar to, but slightly different from Bj is treated
in P. Erdds, A. Meir: “On Total Matching Numbers and Total Covering Numbers
of Complementary Graphs”. Discrete Mathematics 19 (1977), 229-233. Incor-
rectly, Theorem 3.2 of that paper has overseen the exceptions stated in our Theo-
rem 1.
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