A Dominating Property of i-center in P;-free Graphs

Jiping Liu
Department of Mathematics and Statistics
Simon Fraser University
Burnaby, B.C. Canada

Qinglin Yu
Department of Mathematics
University College of The Cariboo
and
Department of Mathematics and Statistics
Simon Fraser University
Burnaby, B.C. Canada

Abstract. The i-center C;(G) of a graph G is the set of vertices whose distances from

any vertex of G are at most §. A vertex set X k-dominates a vertex set Y if for every
y €Y thereis a z € X such that d(z,y) < k. In this paper, we prove that if G is a
Py-free graph and i > | 4], then G(G)(q+ 1)-dominates Cso(G), as conjectured by
Favaron and Fouquet [4).

1. Introduction

We consider only simple gmphs, which have no loops and multiple edges, referred

to as graphs for short. Any terminology not defined here will conform to the usage
in[2).

Let G = (V, E) be a graph with vertex set V and edge set E. For a positive
integert, G is called P;-free if it does not contain a path on ¢ vertices as aninduced
subgraph. The distance d( z, y) between two vertices z and y is the length (i.e., the
number of edges) of a shortest path joining x and y. In [1], G. Bacso and Z. Tuza
generalized the classical concepts of centre and dominating set to the notions of
i-center and k-dominating set. The i-center C;(G) of G is the set of vertices such
that z € C;(G) if forallv € V(G), d(z,v) < i. Aset D C V k-dominates a
set of vertices U of G if for every z € U thereisay € D such that d(z, y) < k.
In particular, a set of vertices D of V(@) is called a k-dominating set of G if D
k-dominates V(G).

P. Erd6s, M. Saks and V. T. S6s [3] proved that Ci(G) is nonempty for any
P31 -free connected graph G. In the light of this result, Bacsé and Tuza [1] used
the i-center and k-dominating set to give a characterization for P;-free graphs.
Furthermore, they studied the relation between the i-center and k-dominating set
and proved that if G is a connected graph and C;(@) is a d-dominating set, then
Ci+1(G) is a (d — 1)-dominating set. For P,-free graphs, they proposed the fol-
lowing conjecture.
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Conjecture 1. (Bacsé and Tuza [1]) If G is a Py -free connected graph, then
C;-dominates Ciyy fork < 1 <2k —2.

In general, this conjecture is not true. Tuza [S], O. Favaron and J. L. Fouquet
[4] as well as the authors, have independently constructed counterexamples. Al-
though Conjecture 1 does not hold in general, the following result is proved in
(4.

Theorem 1.1. Let G be a P;-free graph. Then for every i > |3), Ci 2-
dominates Cis3 .

Based on this result, Favaron and Fouquet [4] posed the following problem.

Conjecture 2. (Favaron and Fouquet [4]) For a P;-free graph G, if § 2> L3l
then Ci(q + 1) -dominates C;vo(g 2 1).

In section 3 of this paper, we prove this conjecture and hence generalize Theo-
rem 1.1.

2. The Generalized Neighborhood Lemma

A result which plays an important role in dealing with P;-free graph is “Neigh-
borhood Lemma” [1). The special caset = 2k+ 1 andd = k+ 1 was first proved
by E. R. K. Chung (see [1]).

A vertex v in G is an i-neighbor of z if and only if dg(z,v) = i. We denote
all the i-neighbors of 7 by Vi(z). So |JL; Vi(z) is the set of vertices other than
z, whose distances to z are at most k. This set is also denoted by Niy(z). A path
from u to v will be called an u—v path. Let P be a path and z, y be two vertices
on P. The subpath of P from z to y is called an z—y segment of P.

Lemma 2.1. (Neighborhood Lemma, Bacso and Tza [1]) Let u and v be two
nonadjacent vertices in a P;-free graph (t > 4). If s is the second vertex of an
u—v path with d = d(u,v), then Ny_4(u) C Ni_d(3).

We will require a generalization of this lemma in the proof of the main theorem.

Lemma 2.2. (Generalized Neighborhood Lemma) Let u and v be two nonadja-
cent vertices ina P;-free graph (t > 4). If s isisthe j-th (j > 2) vertexof an u—
v path (i.e., d(s,u) = j) with length d = d(u, v), then Ny_a(1) C Ni—dvj-2(3).

Proof: Let z € N;_4(u) be an arbitrary vertex, and choose an z-u path R of
length d(z,u). Denote the u—v path by D. Since D and R share the vertex u,
their union connects z and v.

We can choose two (not necessarily distinct) verticesy € Rand z € D, such
that the z—y segment of R together with the z—v segment of D induces an z—v
path P. This can be done if we choose y € R such that y is adjacent to a vertex of
D and d(z, y) is the smallest. The vertex in D which is adjacent to y and closest
to v is z. Since the graph G is P,-free, the length of the path P is at most ¢ — 2.
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If 2z belongs to the u—s segment of D, then
d(z,8) < d(z,v) —d(v,8) <t—2—(d—j)=t—d+j—2.
If z belongs to the s—v segment, then

d(z,3) < d(z,y) + d(y,2) + d(z,5)
< d(z,y) + d(y,2) + d(u,y) + d(y,2) —j
=d(u,z) +2d(y,2) —j
<t—d+2—j<t—d+j—-2.

Therefore, € Ny_g+j-2( 8). [ |

3. The Main Theorem

In this section we prove Conjecture 2, which is our main result and generalizes
Theorem 1.1.

Theorem 3.1. Let G be a P;-free connected graph. If i > | £, then Ci(g+ 1) -
dominates Ci.q for g > 1.

Proof: If t < 4, then G is a complete graph. C;(G) = V(G), the theorem is
obviously true. Suppose ¢t > 4. Since G is a P,-free graph, for any u,v € V,
we have d(u,v) < t —2 or Gi-2(G) = V. To prove the theorem, we need only
consideri+ g<t—2,ie.g<t—-1—-2<2i+1-1-2<i-1.

We have that Civq = (Cirg—Cirg-1) U(Cirg—1 —Cisg-2) U- - -U(Cie1 —C)) U
C;. Forany z € Cjyq — Ci, thereisap, 1 < p < g, such thatz € Cisp — Cisp-1.
If we can show that z is (p + 1)-dominated by C;, then of course z is (g + 1)-
dominated by C;. This will prove the theorem. Also, notice thatp < 1 — 1.

Letx € C,'+p - C£+p_]. Let B = {b € qu.](Z) 3w e V'id-p(z) such that
d(b,w) =i~ 1}. Then B # 0. If BN C; # 9, then C;(p + 1)-dominates x and
we are done. Suppose then that B N C; = @. We will obtain a contradiction.

Claim. Forany s € B, Visr(8) C Ubeyy Viss(z) for 1 < r < p.

Let s € B, and w be an (i — 1)-neighbor of s in V;,p(z). There is an z—w path
TT1T2 ... TpTps1...Tirp—1 w With length ¢ + p, and s is the (p + 1)-th vertex 2p41
along this path. Note that d(z,-1,w) = i+p—(p—1) = i+ 1,andalsoi > 54,
thatist — 4 — 1 < 1. There is an integer m > O such thatt — i — 1+ m = ¢, 0r
t—(i+1—m)=1.Letd < i+ 1— m beaninteger. Then d(z,-1,w) 2> d.

When p is odd, applying the Neighborhood Lemma to the paths z-z4, z2-
Tds2 .. -, Tp—-1-Tp-1+d, FESPECtively, we have

Ni-d(z) C Ne—g(x2) C -+ C Ne—d(zp-1) C Ni-a(s).
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Yi'i-p-l w

Figure 1

If p is even, applying the Neighborhood Lemma to the paths z-zg4, T2—Za+2,
<+ +y Tp-4~Tp—4+d, and applying the Generalized Neighborhood Lemma (with j =
3) to the path z,_2—Zp_2+4, We Obtain

Ne_d(z) C Ni—a(z2) C - C Ni—d(zp-2) C Ni-as1(3).

In any case, we have Ny_4(z) C Ni—g+1(8). Thus for any j /ges, letting j =
t — d, we have Nj(z) C Nj.1(s) forj > i.

Lety € Vise(8). Thend(s,y) = i+ r. fd(z,y) <i+7r— 1,theny €
Nisr—2(%) C Ni+y-1(8) which is impossible. But d(z,y) < i+pasz € Cisp,
therefore, y € (f}..,_; Vi+r(z). The claim is proved.

Let w be any (i — 1)-neighbor of s in V;., and w' be a (i + 7)-neighbor of s
for some » > 1. By the above claim, the shortest z—w' path Py, has lengthi+ 7/,
wherer— 1 < ¥ <pandi+y'/gep+ 1.

Let y; (resp. y}) be a vertex of V() N Py (resp. Vj(z) N Ppy) forj > 0.In
particular, z = yo = yp and s = ypr1. We use ' to denote yp,,, if i + r>p+1l,
The paths z—w and z—w' are labeled as Py, = Z3192 -- - Yp¥pel - - Ypri-1 W and
Prw = TYIY) - - Yplps1 -+ - ¥ W' (see Figure 1).

Let h = [2:5=5|. We show the following claims.

(1) w1 = o}, is only possible for L= k < h.

Suppose that y; = y}. If | # k, say L < k, then the path z—y(= yi)—w' has
length [+ i+’ — k < i+ 1’ (for the case | > k, consider the path z-y(= y1)—w).
This is a contradiction.

Ifl = k,and [ > p+ 1, then the path s—y;( = y})—w' has length

I—(p+D+i+r —l=i+r —p—12i+r
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and hence ¥ > p+ »+ 1. This is impossible as » > 1 by the hypothesis and
r’ < p by the claim.
So we can assume | < p+ 1. Then the path s—y;(= y;)—w' has length
p+l—l+i+r —l=i+r+p+1-21>i+r

orl < BI2rtL Since [is an integer, we have I < h.
(2) Assume yiy) € E, then L < h + 1, and ypi1yh,y € E only if m;i isan
integer.
Ifl > p+ 1, the path s-y;—y}~w' has length
l-(p+ D+ 1+i+r =l=—p+i+r' >i+r,

this implies ¥ > p + r. Again, this is a contradiction as v/ < pand r > 1.
So we assume ! < p + 1. The path s—y;—y}—w' has length

p+l—l+l4i+r =l=p+2+i+7r -212>i+r
Thus ! < 257 + 1 < h+ 1. So,if L= h+ 1, then Z5=" is an integer.
(3) Assume yiy} € E, then |l — k| < 1.
Suppose to the contrary that y;y;, € E and k — ! > 1, say. Then the path
z—y;~y,—w' has length L + 1+ i+ ¢/ — k < i+ 7/ which is a contradiction.

(4) Assume y1y;,, € E,then L< h+ 1.
Ifl < p+ 1, the path s—y;—y}, ,—w’ has length

p+l=l+l+i+r —(l+D)=p+i+r-21+12>i+r,

which implies [ < h + 1.
Ifl > p+ 1, the path s~y;—y}, ,—w' has length

l—(p+ D +1+i+7 -+ 1) =—pt+i+r —1>4+r,
hence ¥’ > p+ r+ 1. As before, this is a contradiction.
(5) Assume yy}_, € B, thenl < B55T*2 orr=1,7 = p.
Ifl < p+ 1, the path s—y;~y]_, —w' has length
p+1—1+ l-fi-i-r'—(l—-l) =p+3+i+r -2l>i+r

Hence | < BI5743,
If L > p+ 1, the path s—y;—y;_,—w’ has length

I—(p+ D +1+i+r —(U=-1D)=—p+1+it+tr >i+ T

Together with v < p, we have thatr = 1 and v’ = p.
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The claims are proved.

Unless k = [ — 1 and (,7') = ({,p), we can now construct an induced path
from w to w' that has length at least ¢ — 1. There are two cases.

Case 1. There exist vertices y; and y} such that y; = y}, and the union of paths
yi~w and y}—w' form an induced path from w to w.

In this case, we have I = k < h by (1), and the w—w’ path has length

p+r—r+1
P77
2
>2i+r—1>2i>t—1.

i+p—l+i+tr =1>2i+p+r —

Case 2. There exist vertices y; and y}, such that y;y} € E and paths y;—-w, yi—w'
together with the edge gy}, form an induced path between w and w'.

In this case, yiy, € E, which implies that L-kl <1by@3). Ifk=1+10r
l=k < h+ 1, the path w—w' has length

f+p—l+laitr —k22i+p+r —21
>2i+r—1>2i>t—1.

Ifl = k= h+ 1, then Z5=" is an integer by (2) again. In this case, the w—uw' path
has length

ivp—l+laitr —l=2i+p+r+1—(p+r' —7+2)
=2i+r—-1>2i>t—1.

Ifk=1—1,and(r,r') # (1,p), thenl < BT57*3 by (5) the w—w' path has
length

i+p—l+l+itr — (-1 =2i+p+r —21+2
>2i+r—1>2i>t-1.

Hence, in any case above we have an induced path w—w' with length at least
t — 1. This contradicts that G is P;-free graph. ‘

Ifk = -1 and (r,7) = (1, p), we cannot obtain contradiction as above. In this
case, suppose that we have chosen s € B, such that [V;_ (8)| is maximum. But
we have w € Vi_1(8") for each w € V;_1(s) (see Figure 1), hence Vi1 (8] >
|Vi-1(8)|, which contradicts the choice of s. This shows that s € C;. 1
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