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1. Introduction.

In his paper [4], David R. Morrison discusses two very interesting Stolarsky arrays

and writes that “It would be interesting to have a classification of the Stolarsky
arrays.” Here, we introduce a class of Stolarsky arrays which we call Stolarsky
interspersions. These arrays are in one-to-one correspondence with the zero-one
sequences that begin with 1, and they include two arrays discussed by Morrison
[4], namely, Stolarsky’s original array (Table 1) of 1977 and the Wythoff array
(Table 2), introduced by Morrison.

Throughout, let & = ( 1+ v/5) /2. The indexing of all sequences will start with
1. The notation s; will be accompanied by an identifier such as “the sequence”
or “the number”. Rows and columns of arrays will frequently be regarded as
sequences; thus, the notation a(4, /) can have any of four possible meanings: an
array (both { and j vary), arow (j varies), a column (i varies), or a single number;
nearby words will specify the intended meaning,

A sequence s; is a positive Fibonacci sequence if
(F1) the recurrence s; = sj_; + s;_2 holds forall j > 3;

(F2) there exists J for which s; > 0 forallj > J.

A Stolarsky array is an array A = a(4, j) of positive integers such that
(S1) forevery i, the ith row, a(%, j), is a positive Fibonacci sequence;

(S2) every positive integer occurs exactly once in A.

An array A is a Stolarsky interspersion if A satisfies (S1)-(S2) and also prop-
erties (S3) and (S4):

(S3) every column of A is an increasing sequence;
(S4) if u; and v; are distinct rows of A, and p and ¢ are any indices for which
tp < Vg < tpr1, then upy) < vge1 < Upsa.

The interspersion property, (S4), may be described as follows: as soon as aterm
of one row fits between successive terms of another row, all succeeding terms of
each of these rows fit individually between individual terms of the other row. See
Table 1 and Table 2. Arrays that satisfy (S1)-(S4) are called interspersions, and

. properties of interspersion proved in [4] and [3] hold, in particular, for Stolarsky
interspersions.
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Table 1. The original Stolarsky array

1 2 3 5 8 13 21 34 55 89 144 ...
4 6 10 16 26 42 68 110 178 288 466
7 11 18 29 47 76 123 199 322 521 843
9 15 24 39 63 102 165 267 432 699 1131
12 19 31 50 81 131 212 343 555 898 1453
14 23 37 60 97 157 254 411 665 1076 1741
17 28 45 73 118 191 309 500 809 1309 2118
20 32 52 84 136 220 356 576 932 1508 2440
22 36 58 94 152 246 398 644 1042 1686 2728

Table 2. The Wythoff array

1 2 3 5 8 13 21 34 55 89 144 .
4 7 11 18 29 47 76 123 199 322 521
6 10 16 26 42 68 110 178 288 466 754
9 15 24 39 63 102 165 267 432 699 1131
12 20 32 52 84 136 220 356 576 932 1508
14 23 37 60 97 157 254 411 665 1076 1741
17 28 45 73 118 191 309 500 809 1309 2118
19 31 50 81 131 212 343 555 898 1453 2351
22 36 58 94 152 246 398 644 1042 1686 2728

In (R3) just below, [ z] denotes the greatest integer < z. Later we use ((z)) to
denote the fractional part, z — [z], of z.
Call an array A = a(3,/) aregular array if
(R1) the first row of A is given by a(1,1) = 1,8(1,2) = 2,and a(1,)) =
a(1,j — 1) +a(1,7 —2) forall j > 3;
(R2) forallg > 1,a(g+ 1,1) = least positive integer not in the first ¢ rows of
A;
(R3) forallg >1,a(g+1,2) € {[aa(g,1)],[aa(q,1) + 11};
R4) forallg > 1,a(g+1,j) =a(g+1,7—1) +a(g+ 1,7 —2) forall j > 3.

2.{ Stolarsky interspersions } = { regular arrays } .

The heading of this section indicates the main result in the article, which takes
the form of Theorem 1 and Theorem 2. We begin with five lemmas.

Lemma 1.1. Suppose u is a positive integer. Then

C[al(a) if ((aw) < ((a((aw)))
((atCeuw)) = { a(aw) 1 if ((aw) > ((a((aw)))) "
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Proof: First, suppose ((au)) < ((a((au)))). That is, ((au)) < a ((au)) —
[a((au))], so that [a((au))] < (a—1) ((au)) < 1, whence [a((au))] =
0, which implies a((au)) = ({(a((au)))). On the other hand, if ((au)) >
((a((au)))), we similarly find that [a((au))] > (a@—1) ((au)) > 0, so that
[a((au))] = 1, which implies ((a((au)))) = a((au)) — 1. ]

Lemma 1.2. Suppose u is a positive integer. Then
((au - a((au)))) = ((av)) — a((au)) + 1.
Proof:

((au — a((aw)))) = { 1+ ((a)) —a((aw)) if ((au)) < ((a((au))))
((au)) — a((au)) if ((au)) > ((a((au))))
= ((au)) — a((au)) + 1 by Lemma 1.1.

|
Lemma 1.3. Suppose u is a positive integer. Then [a[au]] +1=u+[au].
Proof:

[a[om]] +1=alau] +1 - ((afau]))

= a{au — ((au))} + 1 — ((alau)))

=o?u+ 1 —a((au)) — ((alaul))
u+au+1—a((av)) — ((e®u - a((av))))
v+ [au] + ((au)) + 1 — a((au)) — ((au - a((au))))
u + [au] by Lemma 1.2,

Lemma 1.4. Suppose v is a positive integer of the form [ au] for some positive
integer u. Then [av+ o] = [av+2), If v isof the form [au+ 1], then [av+ ]
=[av+1].

Proof: Itis known that v is of the form [ «u} if and only if ((av)) > 2 —a. (See,
for example, Section 2 of Fraenkel, Porta, and Stolarsky [2].) This inequality is
equivalent to each of the following: ((av))+((a)) > 1,((av)) > ((av+a)),
[av] —[av+ a] > a,[av] — [av+ a] = 2,and finally, [av + a] = [av + 2].

If v is not of the form [ aeu] then it must be of the form [ au + 1], and since then
[av+ a] # [av+ 2], wehave [av + ] = [av + 1]. ']
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Lemma 1.5. Suppose u; is a row of a regular array. Then either

uzi = [auax_1]) and uzper = [auax + 1] forall k > 1,
orelse

uzk = [augg_1 + 1] and uage1 = [auzg] forall k > 1.

Proof: By (R3), uz = [au;] orelse u; = [au; + 1], 50 we have two cases.
Case 1. up = [au,;]. Suppose for arbitrary m > 1 that uy, = [@u2m-1]. Then

Udm+l = [auzm—_1] + B2m1 bY R4)
= [a[at2m-1]1] + 1 by Lemma 1.3
= [auzm] + 1.

Now suppose for arbitrary m > 1 that uz;me1 = [@uzm + 1]. Then

tams2 = [Qtizm] + u2m bY (R4)
= [a[auzm,]] + 2 by Lemma 1.3
= [a[ausm] + @] by Lemma 1.4
= [auam+1] by induction hypothesis.

We conclude that uzx = [auzs—1] and usgs1 = [auag + 1] forall & > 1.

Case 2. u; = [au, + 1]. The proof in this case is quite similar to that of Case 1
and is omitted. 1

Theorem 1. Every regular array is a Stolarsky interspersion.

Proof: Let A = a(4,;) be a regular array. Each positive integer occurs at least
once because of (R2). We shall show next that no entry of A can appear more
than once. Suppose & = a(4,7) and ¥ = a(m,n) are terms of a regular array
= a(4,j) and that ¥ = &; we assert that (m, n) = (4, 7). If not, assume i is the
least positive integer for which there is anumber ¥ as described. Now, neither i nor
m is 1 because of the manner in which terms in Column 1 are chosen. Therefore,
& = [au] or & = [au + 1] for some u, by Lemma 1.5; similarly, ¥ = [av] or
v = [av + 1] for some v.
Casel. &t = [au] and ¥ = [av],0r & = [au + 1] and ¥ = [av + 1]. Then
[au]l = [av], from which easily follows u = v, so thata(i,j —1) = a(m,n—1).
Butu < &, contrary to our choice of & as the least repeated term of the array. Thus,
Case 1 cannot occur.
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Case2. & = [aul and ¥ = [av+ 1],0r & = [au + 1] and & = [av]. It suffices
to consider only the former. From [au] = [av + 1] follows au — ((au)) = av
—((av)) + 1, so that

veu4 i{((av)) — ((au)) — 1.

Writing this as v = u + Q, we note that Q, as an integer strictly between —2 /a
and 0, must be —1, so that u = v + 1. The equation [au] = [av + 1] therefore
implies
[av+ o] = [av+1]. ¢))

Now, since v immediately precedes ¥ = [av + 1] in a row of a regular array,
v = [ aw] for some positive integer w, by Lemma 1.5. Therefore, by Lemma 1.4,
Equation (1) cannot occur, and we conclude that no positive integer occurs more
than once in A. We show next that A has the interspersion property, (S4).

Suppose u; and v; are distinct rows of A, and for convenience, suppose u; <
v1. (The argument if u; > v; is analogous to what follows.) Let p be the index
for which up < v1 < upe1. Lemma 1.5 shows that there are four cases:

Case 1. v; = [av1], upr1 = [aup], and upe2 = [aups1 + 1]. As a first induction
step, clearly :
Upe1 < V2 < tips2. 2

Assume for arbitrary m > 2 that upsi—1 < vk < tips¢. Then adding the inequal-
ities

Upim—1 < U < Upem and Upim-2 < Um-1 < Uprm-1
gives Uptm = Upim—1 + Upim-2 < Uy + U1 = Upysi
< Uptm + Upim—1 = Uprmel.

By induction, (S4) holds.

Case 2. v; = [av1], ups1 = [aup + 1], and up2 = [aup]. Since [aup + 1]
lies in Row u; and [aw; ] lies in Row vj, we have [au, + 1] # [av]. Assume
that [aup + 1] > [av1]. Then au, + 1 — ((au,)) > avi— ((av;)), so that
v1 —tp < 2 fa, whence v; = u, + 1. Butthen [av] = [au, + @] > [aup+ 1],
a contradiction. Therefore, [auy + 1] < [av1], so that u,.; < v2. The condition
vl < tps) implies v2 < ups2. Thus, the first step (2) holds, and just as in the
proof for Case 1, (S4) holds.

Case 3. v; = [av) + 1], tp1 = [aup], and upe2 = [aup: + 1]. Here, (S2)
holds, and (S4) follows as in the proof for Case 1. _

Case4. va = [av; + 1], tupe1 = [atup+ 1], and ups2 = [auper + 1), Again, (S2)
" holds, and (S4) follows as in the proof for Case 1.
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Theorem 2. Every Stolarsky interspersion is a regular array.

Proof: First, it is easy to show that (S1)-(S3) imply (R1), (R2), (R4). We show
next that (R4) holds also. Suppose A = a(4, /) is a Stolarsky interspersion. For
anyi>2,let

w=a(i,1), e(,j1)=u—1, and a(iz,j2) =u+l. .
We shall show first that a( 42, j2 + 1) —a(41,j1+ 1) = 3, thenthat a(4, 2) is one of
the numbers a(4;, j1+1)+1 ora(4y,j1+1)+2,and finally thata(s;, 1+ 1D +1=
[au]. We shall then conclude that a(3,2) is one of the numbers [aa(i,1)] o
[aa(, 1)1+ 1.

Let C denote the sequence a(4, 1); that is, Column 1 of the array A. Let vy be
the number of terms in C that are < a(41, /1), and let v be the number of terms
in C that are < a(42,72). Now v2 — v, = 1, since otherwise u — 1 oru + 1,
as well as u, belongs to C; but this is impossible, for if two consecutive positive
integers w and w + 1 belong to C, then let a(k, 1) be the greatest number inC
that is less than w, so that a(k, 1) < w < w+ 1 < a(k, 2), contrary to (54).

By Lemma 3 in [3], we have

v = a(4, 1 + 1) —a(dy, /1) and v = a(iz, j2 + 1) —a(42,j2), so that
a(d2,j2 + 1) —a(d1, j1 + 1) = va—v + a(i22) —a(ir, j1)
=1l+u+1—-(u—-1)=3.

Since a(i1, /1) < a(i,1) < a(4y,J; + 1), we have a(i,2) > a(dy,j1 + 1), by
(S4). Similarly, since a(i, 1) < a(42,2) < a(i,2), wehavea(i, 2) < a(iz,j2+
1). Thus, a(4, 2), lying strictly between a(41,/1 + 1) and a(i2, j2 + 1), must be
a(i1,71 + 1) + 1 ora(dy, j1 + 1) + 2. There are two cases:

Case 1. u—1 = [am] for some positive integer m. By Lemma 1.5, a(4), j1+1) =
[au—a+1].Letv=u—1 in Lemma 1.4 to obtain [av + a] = [av + 2]. That
is, [au] = [au — a+ 2], sothata(dy,ji+ D)+ 1= [aul.

Case 2. u—1 = [am+ 1] for some positive integer m. By Lemma 1.5, a(11,j1 +
1) =[a(u—1)]. Letv=u—1inLemma 1.4 toobtain [av] = +H[av+ a—1].
That is, [au — &) = [au — 1], so that a(41,/1) + 1= [au]. [ |

3. Classification of Stolarsky interspersions.

Theorem 3. The set of Stolarsky interspersions are in one-to-one correspondence
with the set of all zero-one sequences that begin with 1.

Proof: Let A be a Stolarsky interspersion. For i > 2, each entry a(4,1) in Col-
umn 1 is uniquely determined by the entries of the preceeding rows, and all col-
umn entries in columns numbered > 3 are determined by the recurrence a(4, j) =
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a(i,/ — 1) +a(i,; — 2) for j > 3. Therefore, the sequence a(1,2), which is
Column 2, determines A.

Since the Stolarsky interspersions are in onre-to-one correspondence with the
regular arrays, we have a(i,2) € {[aa(i,1)], [aa(4,1) + 1]} forall i > 2.
Define the classification sequence of A by

= ) _ [0 ifa(4,2) = [aa(4,1)] .
¢1(A)-land¢:(A)—{l if a(i,2) = [aa(i, 1) + 1] fori=2,3,....

It is clear that the mapping A — ¢;(A) is a one-to-one function from the set
of all Stolarsky interspersions onto the set of all zero-one sequences that begin
with 1. Conversely, every zero-one sequence beginning with 1 yields a Stolarsky
interspersion, by (R3) and Theorem 1. [ |

As suggested by the last sentence of the proof of Theorem 3, it is helpful to
think of (B3) as a means of constructing all possible Stolarsky interspersions: for
each row beyond the first, after the first term u (which is determined by (R2)),
we can, by (R3), choose either [au] or [au + 1] to be the second term. The
availability of both of these numbers means that neither has occurred previously
in the construction. Thus, we have the following corollary.

Corollary 3.1. Suppose A = a(4,)) is a Stolarsky interspersion. If a(%,2) =
[au] then [au + 1] occurs in'a row of A numbered higher than i. If a(4,2) =
[au + 1] then [ aeu) occurs in a row of A numbered higher than s.

Theorem 4. The classification sequence of the Wythoff armay W is given by
¢i(W)=1foralln>1.

Proof: Column2 of W is given (for example, Morrison [4]) by w(i, 2) = [a?[ai]].
By Lemma 1.3, then, w(3i,2) = [a[a[«i]]] + 1, whichis [aw(i,1)]+ 1. |

Theorem 4 shows the Wythoff array to be maximal among the Stolarsky inter-
spersions in the sense that its classification sequence dominates all others: ¢;(W) >
¢:(A) forall§ > 1, forall Stolarsky interspersions A. It is natural to inquire about
the minimal array, W', given by ¢;(W’) < ¢:(A) foralli > 1, forall A. We call
W' the Wythoff dual . (Generally, every A has adual A' defined by

1+ ¢i(A) if $i(A) =0

1 — ¢i(A) if $i(4) = 1 fori=2,3,....

$1(A) = 1 and §;(A") ={
It is not difficult to prove that the first column of the Wythoff dual is given by
w'(1,1) = landw'(i,1) = [a[ai —a+ 1]+ 1] fori=2,3,....
Column 2 is givenby w'(3, 2) = [aw'(i, 1)], Column 3 by w'(4, 3) = [aw'({,2)+

1], and so on, in accord with Lemma 1.5.
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Consider the array B = b(i, j) defined as follows:
(B1) the first row of B is given by b(1,1) = 1, 5(1,2) = 2, and b(1,5) =
b(1,7 —1) +b(1,j —2) forall j > 3;
(B2) forallg > 1,b(g+ 1,1) = least positive integer not in the first ¢ rows of

(B3) forallg > 1, b(q+ 1,2) = least positive integer b such that no term of the
Fibonacci sequence b(q + 1,2), b(g+ 1,2) + b,... is equal to any (i, j)
fori<i<gandj>1;

(B4) forallg >1,b(g+1,7) =b(g+1,j—1) +b(g+1,j—2) forallj > 3.

Note that (B1)-(B4) are like (R1)-(R4) except for (B3), which with (B2) suggests

the name least-least array for B.

Conjecture. The least-least array is the Wythoff dual.

The classification scheme presented in the proof of Theorem 3 depends on
which of two possible numbers occupies the second column of a Stolarsky in-
terspersion, for each row after the first. It is natural to ask where the other number
.— the one not appearing in Column 2 — lies. According to Theorem 5 below,
this other number always lies in Column 1.

Lemma 5.1. Suppose A = a(i,j) is a Stolarsky interspersion. If v = a(i,1)
forsome i > 2, then v+ 1=a(k,j) forsome k<i—1landj>1.

Proof: If not, thenv + 1 = a(i + 1,1), by (R2). Since v — 1 = a(h, ;) for some
h<i—1landj > 1,wehavea(h,j) <v<v+1<a(h,j+1),contraryto
(54). |

Theorem 5. Suppose A = a(i,j) is a Stolarsky interspersion and i > 2. Let
v=a(i,1). Ifa(4,2) = [av], then [av + 1] = a(k, 1) forsome k > i+ 1. If
a(3,2) = [av + 1], then [av] = a(k,1) forsome k > i+ 1.

Proof: Casel. a(4,2) = [av]. Wehave [av+1] = a(k, j) forsomek > i+1,
by Corollary 3.1, for some j > 1. If j > 2, letu = a(k,j — 1). By Lemma 1.5,
[av+ 1] € {[au], [au + 1]}. Since u # v, we have [av + 1] = [au]. But then,
as argued in Case 2 of the proof of Theorem 1, u = v+ 1. This means, by Lemma
5.1, that u lies in a row of A numbered < i — 1, contrary to u = a(k,j — 1).
Therefore, j = 1.
Case 2. a(4,2) = [av + 1]. The proof is similar to that of Case 1 and is omitted.
N |

4, Row-swapping in Stolarsky interspersions.

For any array A = a(4, j), let R; denote Row i of A and let R}, denote all of Row
k except the first term. The (i,k) row-swap of A, written A(i, k), is the array
that results from A by interchanging R; and Rj. We use the term row-swap to
mean also the operation that carries A onto A($, k). For example, the succession
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(2,3),(5,8),(10, 16) of row-swaps, applied to the Stolarsky array S (see Table
1) results in an array (which we write as §{(2,3; 5, 8; 10, 16 )) whose first twelve
rows agree with those of the Wythoff array (Table 2),

Lemma6.1. (([am]/a)) + 1/a > 1 for every positive integer m.
Proof: (([aml/a)) +1/a>1= (((a—Diam])) + a—1=((alam])) +
a— 1, which exceeds (2 — a) + a— 1, by the Fraenkel-Porta-Stolarsky inequality
used to prove Lemma 1.5. B
Lemma 6.2. For every positive integer m, ((am))/a + (([alam])) = 1,
[[am+ 1]/a]l = m, and [[am]/a]l =m —~ 1.
Proof: Let m > 1. Below, we use the inequality in Lemma 6.1 to evaluate
(([am + 11/a)) as (([am]/a)) + 1/a—1:

[lam + 1]/a] = [am + 1)/a— (([am + 1]/a))
= {am+ 1 - ((am))}/a - (([am + 1]/a))
=m+ 1/a—((am))/a— (([am]/a)) = 1/a+1
=m+ 1 - {((am))}/a+ (([am]/a))},

so that ((am))/a+ (([am]/a)) is aninteger. Itis clearly positive and less than
2, 50 it must be 1, so that the first two assertions are proved. For the third, we
have 1/a + (([am]/a)) > 1 by Lemma 6.1. Then 1 = [1/a + (([am]/a))]
= [[am+1]/a—[[am]/a]l]l = [[am+1]/a) —[[am]/a] = m—[[am]/a].
|
Theorem 6. Suppose A = a(4,j) is a Stolarsky interspersion. Let 1 and k be
distinct positive integers. Then the row-swap A(s, k) is a Stolarsky interspersion
ifand only if
a(k,2) —a(k,1) = a(i,1). 3
Proof: Write A(i, k) as A’ = a'(4, j) , and suppose A’ is a Stolarsky interspersion.
Then in Row ¢ of A’, we have a’(i,3) = a'(i,2) + &'(i,1), and (3) follows.
For the converse, suppose A is a Stolarsky interspersion and ¢ and k are indices
for which (3) holds. Let u = a(4,1). ByLemma 1.5, a(4,2) € {[au], (au+1]},
and a(k,1) € {[am], [am + 1]} for some m > 1.

Case 1. a(4,2) = [au] and a( k, 1) = [am + 1]. We shall show that m = u:

u=a(k,2) —a(k,1)
= [alam+ 1]] — [am + 1] by Lemma 1.5
= [(a—Dlam+1]]
= [[am + 1]1/a]
= m by Leinma 6.2.
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Case 2. a({,2) = [au] and a(k,1) = [am]. We shall show that this cannot
occur:
u = a(k,2) —a(k,1)

= [a[am] + 1] — [am] by Lemma 1.5

=1+ [[am]/a]

= m by Lemma 6.2.
But then a(k, 1) = a(4,2), contrary to (S2).
Case 3. a(4,2) = [au + 1] and a(k,1) = [am + 1]. The method of proof for
Case 2 readily shows Case 3 to be impossible.

Case4. a(4,2) = [au + 1] and a(k, 1) = [am]. The method of proof for Case
1 yields u = m.

Thearray A(s, k) has the same rows as A except for Row 5 and Row k. It follows
that (R1)-(R4) hold for A(i, k); in particular, (R4) holds as a result of Equation (3),
and (R3) holds as shown in Cases 1-4 above. By Theorem 1, therefore, A(i, k) is
a Stolarsky interspersion. [ |

Theorem 6 shows that infinitely many Stolarsky interspersions B can be ob-
tained via a sequence of row-swaps from any given Stolarsky interspersion A.
One must not ask for too much, however, for it is not true that every B can be ob-
tained from every A. For example, one can start with the original Stolarsky array
(Table 1) and find a sequence of row-swaps that place all the terms of row 2 (that
is,4,6,10,16,...) into column 1. It is clear that the resulting array cannot be
returned by row-swapping to the original array. One wonders just which Stolarsky
arrays can be obtained from others by row-swapping.
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