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1 Introduction

A hypergraph is called bipartite [6] if its vertices can be colored in two colors
so that no hyperedge is monochromatic. Erdés [7] defines a function m(n)
to be the minimal number of hyperedges in an n-uniform non-bipartite hy-
pergraph. It is easy to see that m(2) = 3 and the corresponding hypergraph
is a triangle. The Fano plane, the projective plane of order 2, shows that
m(3) < 7; furthermore, it is not too difficult to prove that m(3) = 7.

Let G be an n-uniform hypergraph on v vertices. Since there are 2v~!
different 2-colorings of V(G) and every hyperedge is monochromatic under
2Y=" of them, a non-bipartite hypergraph G must have at least 2V2"~" =
2"~1 hyperedges. Thus, (see [9]) m(n) > 2"~!. It turns out (see [9])
and ([15]) that a better lower bound can be obtained by using balanced
2-colorings, for which the color classes represent a partition of V(G) into
sets of equal size (within one element). If v and m are, respectively, the
number of vertices and the number of hyperedges in a non-bipartite n-
uniform hypergraph, then

_(%2"‘1: 5 2;_’;' , if v even;
m 2 I([v/2]—n)!
v v, -
1—7%1%-]—)-)” Tl else.
Although much stronger lower bounds are known for the asymptotics of

m(n) (see [4],[12]), they do not provide an improvement for small n. In
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this paper, we are concerned with the case of n = 4. Abbott and Hanson
(2] constructed a hypergraph showing that m(4) < 24. Their construc-
tion was independently improved by Seymour([11] and Toft[14]. The new
hypergraph! contains 23 quadruples of an 11-element set; thus, m(4) < 23.

If a non-bipartite n-uniform hypergraph contains two vertices not in any
hyperedge, then contracting them yields a new non-bipartite n-uniform hy-
pergraph with a fewer vertices. Thus, the problem of computing m(4) can
be considered on those hypergraph for which every pair of vertices belongs
to a hyperedge. Selfridge ([13]) defines m,(n) to be the minimal num-
ber of hyperedges in a non-bipartite n-uniform hypergraph with v vertices
satisfying the condition on vertex pairs. Everywhere in this paper, the hy-
pergraphs are assumed to satisfy this condition. It is easy to see that in such
a hypergraph, every vertex belongs to at least (v — 1)/(n — 1) hyperedges,
implying

mn) 2 [2[251]]- ()

n—1

For the case of n = 4, more is known. Abbot and Liu ([3]) proved 24 <
mg(4) < 26; Exoo shows in [10], that mjg(4) < 25. The anonymous referee
to this paper presents the following constructions showing that mx(4) < 26
for k = 12,13, 14. For k = 14, the quadruples are

(1,2,3,8) (1,4,5,8) (1,6,7,8) (2,4,6,8) (2,5,7,8) (3,4,7,8)
(3,5,6,8) (1,2,3,9) (1,4,5,9) (1,6,7,9) (2,4,6,9) (2,5,7,9)
(3,4,7,9) (3,5,6,9) (1,2,3,a) (1,4,5,8) (1,6,7,a) (2,4,6,a)
(2,5,7,0) (3,4,7,a) (3,5,6,a) (8,9,a,b) (8,9,1,¢) (8,9,a,d)
(81 9la! e) (b’ cl dl e)'

For k = 13, replace the last two quadruples in the above family by (1,8,9,a)
and (1,b,¢,d); for k = 12, replace the last three quadruples by (1, 8,9, a),
(2,8,9,a) and (1,2,b,c). ’

In 1977, P. Aizley and J.L. Selfridge have stated in [1}, that they can
prove that m(4) > 19, but they never published their argument.

A summary of the results related to computing m,(4) is given in the
table below. The values ‘inside the square brackets are lower and upper
bounds for the corresponding value of ».

v 8 9 10 11 12 13 14 15 16
my(4 0 1, 17, 17, 0 » 19,

1Both constructions turns out to be isomorphic, although it was not recognized at
the time. To the authors’ knowledge, the isomorphism of the hypergraphs was first
established with the use of the software system SetPlayer{5].
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Our main result improves the lower bounds of the entries for » = 10, 11,
12, 13.

Theorem.
23 ifk = 10;
me(d)>{ 20 ifk = 11,12
17 ifk = 13.
Consequently, m(4) > 17. (m]

The hypergraphs considered in the paper are always 4-uniform, that is,
they are collections of quadruples (sets of size 4). The union of these sets is
called the vertex set of the hypergraph and the sets are called hyperedges.
Every coloring of a hypergraph is a 2-coloring of its vertex set: A coloring
is called balanced (resp. unbalanced) on a given set T of vertices if the
number of vertices in T colored in one of the colors differs from that for
the other color by at most (resp. more than by) one. A coloring which is
balanced (resp. unbalanced) on the vertex set of the hypergraph is simply
called balanced (resp. unbalanced). If a coloring ¢ is monochromatic on a
hyperedge @, then we say that Q blocks ¢. The set of colorings blocked by
a given hyperedge Q is denoted C(Q); the blocking degree of a hyperedge
Q with respect to a given set S of colorings is the number bdeg(Q; S) =
|SnCQ)I.

Our approach involves an analysis of pairwise intersections of the quad-
ruples. We repeatedly branch the problem into subproblems according to
the sizes of the hyperedge pairwise intersections. In one case, the hyperedge
intersections imply a sizable overlap of the sets of colorings blocked by the
hyperedges, and this can be used to increase the lower bound. In the other
case, we define a certain subset S C B and prove that the reduction in the
size of the set of colorings is still smaller than that in the blocking degrees.
This leads to the same lower bound as in the first case.

We say that two hyperedges Q' and Q” are distant if |Q’ N Q"] =1 or
2; otherwise, the hyperedges are called close. Given a hypergraph H, we
define an auxiliary graph G(H) whose vertices are hyperedges of H, and
two vertices are adjacent iff the hyperedges are close. A hyperedge which
is an isolated vertex in G(H) is also called isolated. Given an order of the
hyperedges in a hypergraph, we define the actual degree of a hyperedge
Q to be the number of colorings blocked by @ and not blocked by any
preceding hyperedge. We assume that the vertices of G(H) (equivalently,
the hyperedges in H) are always ordered in such a way that for every
component of G(H), every vertex, except for the first, is adjacent to at
least one preceding vertex of the component. We call such an ordering
standard. A standard ordering implies that for every hyperedge which is
not the first in its component, its actual degree is smaller than its blocking

degree.
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2 The v =10 case

Let B be the set of all balanced coloring of the set {1, 2,...,10}. Then
it is straightforward to compute that |B| = 126 and the blocking degree
of every quadruple is 6. Given two quadruples @, and Qq, the number
|C(Q1)NC(Q2)| of colorings in B blocked by both hyperedges is determined
by the value of |Q; N Q2|, as the following blocking table shows.

@nQ;l JoJ1]2]3
[C@)nCc@)il|2]0fo]1

Let H = {Q1,Q2,...,Qm} be a non-bipartite hypergraph on 10 vertices.
We consider two cases.

Case 1: There exist at most 7 isolated quadruples.

Assume that the hyperedges are ordered in the standard way. Then,
every hyperedge which is not the first in its component of G(H) blocks at
most 5 colorings not blocked by some preceding hyperedge. Since there
are at most 7 isolated hyperedges, at least half of the remaining m — 7
hyperedges block < 5 colorings not blocked by some preceding hyperedge.
Thus, we have 7x 6 + (m —7) x 3} > 126 implying m > 23.

Case 2: The number of isolated quadruples of the hypergraph is at least 8.

Any collection of eight quadruples of a set with 10 elements, contains
at least two with two or more elements in common. It can be seen by
observing that the quadruples cover 8(3) = 48 pairs, while the number
of pairs is (I¥) = 45. Thus, at least one pair is covered by at least two
quadruples. Since the quadruples are isolated hyperedges, it follows that
there are two isolated hyperedges with exactly two elements in common.
Let these be Q; = (1,2,3,4) and Q2 = (1,2,5,6) and let S be the subset
of B comprised of all colorings that are unbalanced on both Q; and Q2,
and are not blocked by either one. Furthermore, let S; U S2 U 83 be the
partitioning of S defined by:

Si1: the set of colorings unbalanced on @; N Q2;
S»: the set of colorings balanced on @, N Q2 and on V — (Q; U @Q2);

S3: the set of colorings balanced on @1 N Q> and unbalanced on V — (Q1U
Q2).

Notice that if a coloring is unbalanced on a set with at most three elements,
then it is monochromatic on this set. It is straightforward to verify that
|S| = 30, |S;| = 16, |S2| = 12, |S3| = 2. Define the type of a quadruple Q to
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be a triple (a,b,c) where a = [QN {1,2}]; b= |@N{3,4}], c=|QN {5,6}|.
Since Q; and Q, are isolated, 1 < a+b< 2and1<a+c<2 Itis
easy to check, that for any quadruple, its blocking degrees with respect to
sets Sy, 52,53 depend on the type of the quadruple only; in addition, any
two quadruples whose types are (a, b, c) and (a, c, b) have the same degrees.
The table below shows the dependence of the blocking degrees on the type
of a quadruple; the empty entries in the table correspond to 0’s.

TYPE || (2,00) [ 1,1,1) | (0,2,2) ] A,1,0) [ (0,2,1) | (1,0,0) | (0,1,1)
SAMPLE || 127813573456 || 1378|3457 ||1789 3578

S [ 1 | T 2
Sz 1 |
55 2 [T

Thus, from the table we see that the colorings from sets Sy, Sa, S3 are
blocked by quadruples of different types. To block S; we need at least 8
quadruples (the types are either (1,1,1) or (0,1, 1)); to block colorings from
82 we need 12 quadruples of type (1,1,0), and to block colorings from S,
we need at least one quadruple. It implies that at least 23 quadruples® are
needed.

8 Thew=11,12 case
The blocking table for this case is as follows.

QN Q] 0j1]27]3
CRINC@ e[0T [7

As before, H = {Q1,Q2,...,Qm} is a non-bipartite hypergraph and
Ay,...,Ap are the components of G(H). ‘

Case 1: G(H) contains at least one isolated vertex.

Let @Q; = {1,2,3,4} be an isolated hyperedge, and let S; be the set of
all balanced colorings that are unbalanced on Q;, but not blocked by this
hyperedge. We easily check that for every i = 2,...m, if |Q; N Q=1
(resp. |@: N Q1| = 2) then bdeg(Qi; S1) = 13 (resp. bdeg(Qi;S1) = 12).
The bound m > 19 follows immediately. To prove a stronger bound, we
branch the case into two subcases.

Case 1.1: There is at least one more isolated hyperedge in .

2A more careful analysis shows that to block the colorings from S1, we need 12
quadruples; this gives the lower bound of 27 for the case.

143



Let Q; be an isolated hyperedge different from Q, and let S; C S be the
set of colorings in 8 unbalanced on both @; and @2, but not blocked by
Q2. Then, if |Q; N Q2| = 1, say Q2 = (1,5,6,7), then |S2| = 106 and
VQ € H,Q # Q1,Q2, bdeg(Q’;S1) < 6. This implies 6 x (m —2) > 106,
yielding m > 20.

Let now |Q; N Q2| = 2, say Q2 = (3,4,5,6). Then || k" 9" bek KW,
[6Q € H,Q # Q1,Q2,(1,2,5,6), bdeg(Q; S2) < 6. Consequently, 12+ 6 x
(m —3) 2 112, and m > 20.

Case 1.2: Q; is the only isolated hyperedge.
Lemma 1 For every component A of G(H), 3_gca adeg(Q) < 12A].

Proof: If A contains a hyperedge Q intersecting Q; in two elements, then
we place Q first in the component. Obviously, adeg(Q’) < 12 for every
hyperedge in the component.

On the other hand, if every hyperedge in A intersects Q; in one element,
then we can verify that any of hyperedges except for the first blocks at least
two colorings in S; in common with a preceding hyperedge. The lemma
follows. a

Completing case 1.2, as well as the whole case 1, is now trivial:

4
224 < ) 12|Ai| = 12(m — 1) and m > 1+ [224/12] = 20.

i=2
Case 2: Every component of G(H) contains at least two vertices.

First, we prove that m > 19. From the blocking table, it follows that for
every hyperedge Q which is not numbered first in its component, adeg(Q) <
22. Therefore,

462 < i adeg(Q;) <= zp:(28 + 22(]A;| — 1)) = 22m +- 6p.

i=1 i=1
But, for the case under consideration, p < m/2, implying 462 < 25m, and
m > 19.

To improve the bound, we need two more auxiliary statements, first of
which can be checked directly.

Lemma 2 Let P and Q be two disjoint quadruples and let S be the set of
balanced colorings that are unbalanced on both P and Q. If R and S are
close quadruples both distant from P and Q, then bdeg(R;S) < 6, and at
least one coloring in S is blocked by R and by S. a
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Lemma 3 Let (Ry, S)), (R2,S52),...,(Rs,Ss) be 8 pairs of distinct
quadruples of a set with < 12 elements. Then, there are 8 pairs of elements
each covered by lwo quadruples from different pairs.

Proof. For every i = 1,...8, the quadruples of the pair (R;, S;) cover
at least 9 pairs of elements, making the total number of covered pairs of
elements 72. On the other hand, since the cardinality c of the ground set
< 12, the number of sets with two elements is at most 66. This proves the
lemma. a

Now we proceed to proving m > 20 in case 2. Let us assume that the
bound is wrong and m = 19. Then, from

p <m/2 and 22m + 6p < 462

it follows that 8 < p < 9. It is easy to see then that for the sizes {|A;|}
(i=1,...,p) the only possibilities, up to reordering, are

(5,2,2,2,2,2,2,2),(4,3,2,2,2,2,2,2), and
(3,2,2,2,2,2,2,2,2).

Let there be a component consisting of two disjoint hyperedges. Then we
consider the set S C B of colorings that are unbalanced on both hyperedges
of the component. Using Lemma 2 we have

P
15| <D (6+5(m; —1)) =5m+p<5x19+9=89.
i=1

But it is easy to compute that |S| = 112, which proves that every compo-
nent of size two consists of hyperedges intersecting in three elements. Now
we can easily reject (5,2,2,2,2,2,2,2) and (4,3,2,2,2,2,2,2) as possible
lists of components’ sizes. For example, for the latter one (similar for the
former), it must have been that

462 < (28 + 3 x 22) + (28 + 2 X 22) + (28 + 21) x 6 = 460.

Thus, if m = 19, then G(H) has 9 components, one is of size 3, and
the rest are of size 2. We apply Lemma 3 to find 8 pairs of elements that
are covered by hyperedges from different components. From the blocking
table, we see that if two quadruples intersect in two elements, there is a
coloring in B that is blocked by each. Therefore, for at least 4 components
{A:} of size two, the value 3¢ 4, adeg(Q) is smaller than }- 5 4, bdeg(Q),
implying '

P m
DD adeg(Qi) <) bdeg(Q:) - 4
=1

i=1 Q€A
< (28 + 2 x 22) + (28 4 21) x 6) — 4 = 460,
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which is impossible since |S| = 460. This completes the analysis for v =
11,12,

4 The v=13 case
There are (') = 1716 balanced 2-colorings of {1,2, ... ,13}; each quadruple
blocks 120 of them. The blocking table is as follows

Q:inQ,;l JOo]1[2]3
IC@)nC@N 20 [1[3[36

Let H = {Q1,Q2,... ,@m} is a non-bipartite hypergraph and
Ai, ..., A, are the components of G(H).

Case 1: There is at least one isolated quadruple, say @, = (1,2, 3,4).

Let S be the set of all balanced colorings that are not blocked by @ and are
unbalanced on it. It is easy to check that |S| = 840 and for any quadruple
Q with |Q N Q,] = 0 or 1, the blocking degree bdeg(Q) = 56. This gives
m > 1+ 840/56 = 16. If m = 16, then all Qy,...,Q)¢ are distant from Q,
and no two of them block the same coloring in S.

To eliminate the latter possibility, we describe the conditions under which
two quadruples @’ and Q" that are distant from @ can block disjoint sets
of colorings in S.

It is easy to see that the quadruples themselves must not be disjoint;
moreover, their intersection must not contain more than one element. Thus,
|@” NnQ"”| = 1. Furthermore, the previous condition can be used to prove
that each of the quadruples must meet Q; in one element.

~ In summary, if m = 16, then the intersection of any two quadruples
contains one element only. The rest is simple: there are 16 x (2) = 96 pairs
covered by the hyperedges, and there are just (;) = 78 pairs to cover,
so several of the hyperedges must intersect in two or more elements. The
contradiction completes this case.

Case 2: Every component of H contains at least two hyperedges.

Call a component type 1 if it is comprised of two disjoint hyperedges; any
other component is called type 2. If every component of G(H) is type 2,
then
1716 <D Y bdeg(Q) < 107m and m > 17.
i QEA;

If G(H) has a type 1 component, let @, = (1,2,3,4) and Q; = (5,6,7,8) be
the hyperedges of that component and let S be the subset of B consisting of
all colorings that are unbalanced on both Q; and Q2. Then |S| = 416 and
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every hyperedge blocks at most 28 colorings® in S. We have 28(m — 2) >
416, or m 2> 17. O
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