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Abstract. We consider two variations of the classical Ramsey number. In particular
we seek the number of vertices necessary to force the exisience of an induced regular
subgraph on a prescribed number of vertices.

1. Introduction

If k is a positive integer, then the Ramsey number r(k) is the smallest positive
integer r such that every graph on r vertices contain & vertices which induce either
an independent or complete subgraph. Rephrasing, any graph with »(k) vertices
contains k vertices which induce a regular subgraph of degree either zeroor k— 1.
. These numbers have proven to be notoriously difficult to compute. We consider
some natural relaxations of the classical Ramscy problem in this paper. These
relaxations yield two new classes of Ramscy type numbers. These two classes
have been considered by Erdds (2, p.8] and Fajtllowicz. (3, p.13).

The graph terminology used here mostly follows Chartrand and Lesniak [1].
All induced subgraphs in this paper arc veriex induced subgraphs. Graphs on j
vertices which are complete, cycles, independent, and paths will be denoted by
K;, C;, I;, and P;, respectively. '

Definition 1. Let k be a positive integer. Then N (k) is the lcast positive integer
N such that every graph with N vertices conlains an induced regular subgraph
with exactly k vertices (3, p.13].

Definition 2. Let k be a positive intcger. Then n( k) is the least positive integer
n such that every graph withn vertices contains an induced rcgular subgraph with
at least k vertices [2, p.8].

The existence of the numbers N (k) and n( k) follows from the existence of the
Ramsey numbers as n(k) < N(k) < r(k) < (*71).
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We note the following numbers for small valucs of k:

(@ (1) =N(}=1

® n(2)=N(2)=2

) N(3)=r(3)=6

(d n(3)=S5.
Equation (d) follows from the fact that the cycle Cs is the only graph on five
vertices which is free of K3 and I5, while the path P4 contains no regular induced
subgraph on three or more vertices.

2. Results

We give our results after first defining some terminology. Let A and B be vertex
subsets of a graph G. Then (A) denotes the subgraph of G induced by A. An
A — B edge is an edge with end vertices in A and B. The graph on four vertices
with two disjoint edges is denoted by M,. The j-wheel graph is denoted by W.
For example, the graph W in Figure 1 is obtained by adding an isolated veriex 10
a five-wheel graph. ’
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Figure 1

Our main result is the following structure theorem. This thcorem will be used
to compute n(4) and N(4).

Theorem 1. Let G be a graph on seven vertices. Then G contains no induced
regular subgraph on four vertices ifand only if G W or G = W.

Proof. The graph W contains no induced regular subgraphs on four vertices
and hence neither does its complement .

Suppose that G contains no induced regular subgraph on four vertices. Note
that Cs, I+, K4, and M, are the regular graphs on four vertices. Since K4 =
Wi, G contains no three-wheel subgraphs. Assume that G contains a four-whecl
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subgraph H. The rim of H doesn’t induce a Cy in G. Thus two antipodal points
of the rim are joined by an edge e in G. However, (}/ U e) contains K4 as a
subgraph; a contradiction. Thus

G contains no three- or four-wheel subgraphs. (1.1)

The graph G has seven vertices and hence is not regular of degrec 3. Thus ei-
ther G or G contains a vertex v with degree at least 4. Assume the former with-
out loss of generality. Let P be a longest path among the neighbors of v. Let
A = {ay,02,...,a;} be the vertices of P, where adjacent vertices on P are con-
secutively listed. Let B = {b1,bz,..., b} be the neighbors of v not on P and
C={a,cz,...,ce} be the vertices of G not adjacent 1o v. Note that |[C] < 2.

e & ... &

v

Figure 2. A subgraph of G.

There is an edge in the subgraph induced by the neighbors of v as deg(v) >
4. Thus |A| > 2. Assume there is a B-B edge, say b1by. Then there is an
{aj-1,8;} — {b1,b2} edge as G doesn’t contain an induced Ms. This yields a
J + 1 vertex path among the neighbors of v contradicting the choice of P. It
follows that there are no B-B edges and likewisc no a; — B or a; — B edges. If
|B] > 3, then {a; U B) contains an edgc e. Thus e is cither an a; — B or B-B
edge; a contradiction. Hence |B| < 2.

Suppose |A| = 2. Then |B| = |{C| = 2 and (B U C) contains cithera B-C ora
C-C edge. Assume there is a C-C edge. Then c|c; is an edge and there exists a
{b1,v}—{c1,c2} edgee. Evidently e is a B-C edge. Thus there is a B-C edge in
either case. Suppose, without loss of generality b) c; is an edge. Then there is an
{a1,a2} = {b1, c1} edge. Assume that a) ¢, is an edge without loss of generality.
Then (a1, b1,¢1,v) = Ca; a contradiction. Thus |4] > 3.
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Assume |B| = 2. Then there is an edge in {a1,0;, b1, by). Hence a1a; €
E(G). 1t follows from (1.1) that |4] > 5. Thus [V(G)| > [AUB|=T7;a
contradiction. Hence |B| < 1.

Assume |A| € {3,4}. Then the edges of P are the only edges in (4) by (1.1).
Let S C AUB be anindependent set of three vertices and ¢ € C. Then there exists
ac-S edge as cU S doesn’t induce an I4. Assume that ¢ has two neighbors in S.
Then these two neighbors together with c and v induce a Cy in G; a contradiction.
Thus

¢ has exactly one neighbor in §. (1.2)

Suppose |A| = 3. Then |B| = 1 and |C| = 2. Let 8§ = {a1,03,b1}. Each
of ¢; and c; has exactly one neighbor in S by (1.2). Suppose cicz € E(G).
Then, as G doesn’t contain an induced My, there are {a1,v} —{c1,c2}, {a3,v} —
{c1,c2},and {b1,v} — {c1,c2 } edges. It follows that either ¢ or c; has exactly
two neighbors in S contradicting (1.2). Thus ¢ic; ¢ E(G). Suppose ¢ and c;
share a common neighbor z in S. Then (S \ {z}) U {c1,c2} induces an I4 in G;
a contradiction. Thus ¢; and ¢, have distinct neighbors, say z and y respectively,
in S. Hence {c1, c2,%,y) ¥ Ma; a contradiction. It follows that |A| > 4.

Suppose |A| = 4. Letc € C. It follows from the argument given in establishing
(1.2) that ¢ is not adjacent to two nonconsecutive vertices of the path P. Suppose
a1¢c € B(G). Then {a), a3, a4,¢) ¥ My; acontradiction. Thus a;c ¢ E(G) and
likewise asc ¢ E(G). Assume |B| = 1. Then|C| = 1. Let S = {a1,04,b1}. By
(1.2),b1c; € E(G). Assume azby ¢ E(G). Then {az,a4, b1} is an independent
set. By (1.2), a2cy ¢ E(G). Thus {a1,02,b1,¢1) ¥ Ma; a contradiction. Hence
azby € E(G). Assume a3by ¢ E(G). Then {a1,a3,b1} is an independent set.
By (1.2), a3c; ¢ E(G). Thus {a3,04,b1,c1) ¥ My; acontradiction. It follows
that a3b; € E(G) and (az,a3,b1,v) ¥ Ka; a contradiction. Hence |B| = 0
and |C| = 2. Since {a1,a4,c1,c2) contains an edge, cicz € E(G). Hence
{a1,61,¢2,v) ¥ My;acontradiction. Thus |4[ > 5.

There is an {a1, a2 } — {a4, a5} edge. It follows from (1.1) that a1 a5 € E(G).
Moreover, all edges of {a1,a2,03,a4,as) lic on the cycle ey, a2, a3,04,05,01.
Thus (a1, a3, 03, a4,05,v) ¥ Ws. Letube the vertex V(G) \{a1, 02,03, 04, a5,
v}. We show that u may only be adjacent to v. Thus if deg(u) = 0, then G = W,
while if deg(u) = 1, then G & W. Suppose that v has a neighbor in A, say e,
without loss of generality. Then there is an {a, u} — {a3,24 } edge. By (1.1), we
may assume that a3 u € E(G) without loss of generalily. As{ai, a2, a3, u) # C4,
azu € E(G). Thus (a1, a2,03,u,v) = W, contradicting (1.1). [

.We next use our main theorem to compute the Ramsey type numbers n(4) and
N(4).

Theorem 2. (a)n(4) =7 (b)yN(4) = 8.

Proof. Let G be a graph on seven vertices. Both W and W contain induced Cs
subgraphs. It follows from Theorem 1.1 that G has an induced regular subgraph on
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Figure 3

four or more vertices. On the other hand the graph X of Figure 3 has six vertices
and no induced regular subgraph on four or more vertices. Thus n(4) = 7.

Let G be a graph on eight vertices. By Theorem 1, G contains W or W as

a subgraph. By using the arguments given in the last paragraph of the proof of

Theorem 1 it follows that any graph containing W or W as a proper subgraph has

an induced regular subgraph on four vertices. On the other hand W and W have

seven vertices and no induced regular subgraph on four vertices. Thus N(4) = 8.

|

We next give some lower bounds for small values of our Ramsey type numbers.

Figure 4

Theorem 3. (a)n(5) > 12 (BN(5) > 19 (c)N(6) > 18.

Proof. It can be checked that the graph P, + P; has no induced regular subgraph
on five or more vertices. Likewise, Cy + Cy has no induced regular subgraph on
exactly five vertices. Parts (a) and (b) follow from thesc two facts. With more
work one can check that the graph (Cs + Ws) UY has no induced regular subgraph
on exactly six vertices. Part (c) follows from this fact. [ |

We conclude with a general lower bound on N(p) when p is prime.
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Theorem 4. If p is prime, then N(p) > (p— 1)? + 1.

Proof. Consider the graph G consisting of p — 1 copics of Kp_;. If for some k
with 0 < k < p—1 there is a k-regular induced subgraph H with p vertices, then,
since each component of H is complete, H must contain exactly k + 1 vertices of
each component which it intersects nontrivially. Hence p is a multiple of k + 1.
Since pis prime k+1 is p or 1. But this is impossible, since no component contains
p vertices and there are not p components. 1
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