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ABSTRACT. The composition of two graphs G and H, written
G[H], is the graph with vertex set V(G) x V(H) and (u1,v1)
is adjacent to (u2,v,) if u; is adjacent to uz in G or if u; = ua
and v; is adjacent to v2 in H. The rth power of graph G,
denoted G", is the graph with vertex set V(G) and edge set
{(»,v): d(u,v) < r in G}. The bandwidth of graph G is min
max | f(u) — f(v)|, where the max is taken over each edge uv €
E(G), and the min is over all proper numberings, f. This paper
establishes tight upper and lower bounds for the bandwidth of
an arbitrary graph composition G[H], with the upper bound
based only on |V (H)] and the bandwidth of G. In addition, the
exact bandwidth of the composition of G[H] is established for
G the power of a path or a cycle.

1 Introduction and terminology

All graphs are assumed to be undirected, simple, and finite. For G = (V, E),
either V or V(G) will be used to denote the set of vertices of G, and either
E or E(G) will denote the set of edges of G. For u,v € V, the distance
d(u,v) between u and v is the minimum of the lengths of all paths between
u and v in G. §(G) denotes the minimum degree of any vertex in G. For
any S = {uj,u,...,un} C V(G), the neighborhood N(S) is the set of all
vertices v in V(G) — S such that v is adjacent to at least one vertex in S.

Bandwidth on graphs, and the analogous problem of bandwidth on matri-
ces, has been studied since the early 1950s (see [1].) Following the notation
of [1] and [10], we may define bandwidth as follows. Let G = (V, E) be
a graph on n vertices. A 1-1 mapping f: V — {1,2,...,n} will be called
a proper numbering of G. The bandwidth of a proper numbering f of G,
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B(G)-|V(H)|+ |V(H)| — 1. If z is adjacent to y and both are in the same
subgraph Hy, then |F(z) — F(y)| < |[V(H)|-1. Thus, in any case, we have
B(CG[H]) < Br(G[H]) < |F(z) - F(¥)| < B(G) - [V(H)| + |V(H)| -1. D

It is easy to verify the following bandwidth computations which are used
in the remainder of the paper: B(Pn) =1, B(Cp) =2, B(Kn) =m -1,
B((Pn)") =r for r <m, B((Cn)") = mm{2r m — 1}, and (for K, = the
complement of K,,) B(K,) = 0. To see that the upper bound given in
Theorem 1 is tight, we note that for G = K, and H = K», G[H] = Knpm
and B(G[H]) < (n-1)m+m—1=nm ~1= B(Kpm).

The following two corollaries are direct consequences of Theorem 1.
Corollary 1. For |V(H)| =n and m > r, B((Pn)"[H])) < (r + 1)n - 1.

Corollary 2. For |V(H)|=n, B(Ca)'[H]) < (2r+1)n —1.

We next develop a lower bound for the bandwidth of the composition of
two graphs. For graph G of order n let 7(G) denote max min |[N(A)| where
the maximum is over all k with 1 < k < n and the minimum is over all
A C V(G) with |A| = k. Bound 7(G) was first defined in [8].

Theorem 2. B(G[H]) > n(G) - [V(H)| + 6(H).

Proof: We first define functions p: 2V(GIHD _, 9V(G) apq & oV(GIH) _,
{1,2,...,|G[H]|}. For all $ C V(G[H]), p(S) = {u: SNV(H,) # ¢} and
®(S) = |p(S)| (as defined in [8]). Let Tk = {S: S C V(G[H]), B(S) = k,
and there is an z € S such that ®(S — {z}) < k}. From [8] we must then
have B(G[H]) > maxmin|N(S)|, where the maximum is over all k such
that 1 < k < » and the minimum is over all S € T}. Since for all S € T},
IN(S)| 2 INa(p(5))| - [V(H)| + 6(H) and {p(S): S € T} = {A: A C
V(G),|A| = k} it follows that B(G[H]) > maxmm(|Na(A)| V(H)| +
6(H)) =n(G) - [V(H)| + 6(H), where the maximum is over all k such that
1 <k < n and the minimum is over all A C V(G) such that |A] = o

If H = K, it is clear that the bound established by Theorem 2 is tight.
The following two corollaries follow immediately.

Corollary 8. B(G[Kn]) 2 9(G)-m+m —1.
~ In fact, note that 9(G) -m +m —1 < B(G[Kn]) < B(G) -m+m —1.
Corollary 4. If B(G) = 7(G), then B(G[Km]) = B(G) -m+m —1.

3 Bandwidth involving powers of graphs

Lemmas 1 and 2, which are used in this section, are previously known
results.

Lemma 1 (From [1]). If H is a subgraph of G, then B(H) < B(G).
Given proper numbering f of G, let u; = f~1(3).
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Lemma 2 (From ([8]). Let f be a proper numbering on G, a graph on p
vertices. Then, for every z € [1,p], Bs(G) = |N({uy, ua, ..., uz})|-

We now consider compositions on G[H] for G a power of a graph path.
Lemma 3. Let G = (Pr42)"[Kn). Then B(G) > (r + 1)n— 1.

Proof: Suppose f is a proper numbering of G. Let u; = f ‘1(L), V((Pry2)")
= {’01,‘!)2, ves ,v,-+2}, and Prjo = v1v2...Vr42. Let Fj = V((K“)j) for each
1 <j < r+2 where (K,); is the jth copy of K». We consider two cases
for the location of u;.

Case I. u; ¢ T’y UTr42. Then N({u1}) contains all but n —1 vertices of
G so that u, is adjacent to u; for some j > (r+2)n—(n—1) = (r+1)n+1 =
Fui) = f(u) 2 (r+1)n= By(G) > (r+1)n—1.

Case II.. u; € ' UT,42. Let y = min{i: v; € 'y U2}, Then
uy € N({1}), and max{i: u; € N({u1})} > nr +y — 1 since [N({u1})] =
nr. Thus A: B;(G) > nr +y — 2. From Lemma 2, we have B: B(G) >
IN({u1,- .., 4y} = V(@) - Hu1, ..., 5} = (r+2)n—y. Adding inequal-
ities A and B and dividing by 2 gives By(G) > (r + 1)n — 1.

Thus, whether Case I or Case II holds, Bf(G) 2 (r + 1)n — 1, therefore
B(G)2(r+1)n-1.

Theorem 8. For G = (Pn)"[H], |V(H)| =n,and m > r+2, B(G) =
(r+1n-1.
Proof: First note that (Pry2)"[Kn] € (Pm) [Kn] € (Pm)rlH]. Then by
Lemma 3, Lemma 1 and Corollary 1 we have

(r+1)n—1 < B(Pr42)"[Kn]) < B((Pm) [H) < (r+ 1)n -1

Thus B(G) = (r +1)n— 1. |
Corollary 5 follows directly from Theorem 3.

Corollary 5. For H any graph with |V(H)| =n and m 2> 3, B(P,[H]) =
2n—1. _

The following corollaries may be derived from Theorem 3 and from results
providing the bandwidth of the sum of two graphs in [9].

Corollary 6.
3 ifm=n=2
B(PulPa))={2n-[(n+1)/2] ifm=2 andn#2
2n-1 if m>3
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Corollary 7.

5 if m=2andn=3
B(PalCA) = {5 _ [(n+1)/2] ;ff - 32,,"3 Z::
2n -1 ifm>3
Corollary 8.
B = {3 VA A2

We next consider compositions G[H] for G a power of a graph cycle.
Lemma 4. For G = (Cp)"[Kn] and m > 2r + 2, B(G) > (2r + 1)n— 1.

Proof: Suppose f is a proper numbering of G. Let u; = f~1(5), V((Cma)")
= {v1,2,...,9m}, Cm = v192...vmv1, and T'; be the copy of K, corre-
sponding to v;. Without loss of generality we may suppose that u; € T';.
Let y =min{i: u; € N({x1})}. Then max{i: uw; € N({u1})} > 2nr+y -1
which implies A: B;(G) > 2nr+y—2. From Lemma 2 we have B: B;(G) >
IN({u1,...,uy})| = (2r +2)n —y. Adding A and B and dividing by 2 we
obtain By(G) > (2r + 1)n ~ 1 which implies B(G) > (2r +1)n —- 1. 0O

Theorem 4. For G = (C,)"[H], [V(H)| =n, and m > 2r + 2, B(G) =
@2r+1)n-1.
Proof: From Lemma 4, Lemma 1, Corollary 2, and the fact that (Cp,)"[Kp]
C (Cm)T[H]), we obtain
(2r +1)n =1 < B((Cm)"[Kn]) < B((Cw)"[H]) < 2r +1)n —1.
Thus B(G) = (2r + 1)n — 1. O
Corollary 9 follows directly from Theorem 4.

Corollary 9. For H any graph with [V(H)| =n and m > 4, B(C,[H]) =
3n—1.

The following corollaries may also be derived from Theorem 4.

Corollary 10.

2 ifm=3andn=1
5 ifm=3andn=2
B(Cn|P.)) =
(Com[Fal) 2n+|(n-1)/2] ifm=3andn>3
3n—1 ifm>4
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Corollary 11.

2n42 ifm=3and3<n<b
B(CnlCal)=42n+|(n—-1)/2]) ifm=3andn>6
In-—-1 ifm>4

Corollary 12.

on+|(n—-1)/2] fm=3
3n—1 ifm>4

B(Cn(Ro]) = {

4 Conclusions

The bandwidth for the composition of two graphs has been bounded above
and below and all bounds have been shown to be tight. In addition, exact
values for bandwidth have been established for a number of graph compo-
sitions involving graph powers on paths and cycles.
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