A METHOD OF STUDYING THE MULTIPLIER CONJECTURE AND SOME PARTIAL SOLUTIONS FOR IT*

Qiu Weisheng

Institute of Mathematics, Peking University Beijing 100871, People's Republic of CHINA

Abstract

This paper sketch the method of studying the Multiplier Conjecture that we presented in [1], and add one lemma. Applying this method we obtain some partial solutions for it: in the case $n=2n_1$, the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ", except that one case is yet undecided where n_1 is odd and 7||v and $t \equiv 3,5$, or $6 \pmod{7}$, and for every prime divisor $p(\neq 7)$ of v such that the order w of $2 \pmod{p}$ satisfies that $2|\frac{\phi(p)}{w}$; in the case $n=3n_1$ and $(v,3\cdot 11)=1$, then the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ", except that one case is yet undecided where n_1 can not divide by $n_1 = n_2$ 0 and the order of $n_2 = n_3$ 1 and $n_4 = n_4$ 2 and for every prime divisor $n_4 = n_4$ 3 of $n_4 = n_4$ 4 and $n_4 = n_4$ 5 and $n_4 = n_4$ 5 and $n_4 = n_4$ 6 and $n_4 = n_4$ 6 and $n_4 = n_4$ 7. These distinctly improve McFarland's corresponding results and Turyn's result.

§1. Introduction

Multiplier Theorem. Let G be an abelian group with a (v, k, λ) -difference set D, and let p be a prime dividing n but not v. If $p > \lambda$, then $\mu_p : g \longmapsto g^p \ (\forall g \in G)$ is a multiplier of D.

The condition " $p > \lambda$ " is crucial to all known proofs of the Multiplier Theorem. However, no examples are known showing that this

^{*}The project supported by National Natural Science Foundation of China.

restriction is necessary. The following has been conjectured.

Multiplier Conjecture. The Multiplier Theorem holds without the assumption that $p > \lambda$.

Since then virtually all further multiplier theorem have arisen in an attempt to weaken the condition $p > \lambda$.

In 1955 Bruck ([2]) proved the following theorem which is called Second Multiplier Theorem, where the assumption " $p > \lambda$ " is replaced by " $n_1 > \lambda$ ".

Second Multiplier Theorem. Let G be an abelian group with a (v, k, λ) -difference set D, and let v_0 be the exponent of G, let n_1 be a divisor of $n = k - \lambda$ such that $(n_1, v) = 1$, and $n_1 > \lambda$. Suppose that t is an integer such that for every prime divisor p of n_1 , there exists a positive integer j such that $t \equiv p^j \pmod{v_0}$. Then $\mu_t : g \longmapsto g^t \ (\forall g \in G)$ is a multiplier of D.

In 1963 Newman ([3]) proved: If n=2p and G is a cyclic group, then the assumption " $p>\lambda$ " can be replaced by "(v,7)=1".

In 1964 Turyn([4]) proved: If $n=2p^r$, then the assumption " $p>\lambda$ " can be replaced by "r is odd".

In 1970 McFarland ([5], [6] or [7]) proved: If $n=2n_1$, then the assumption " $n_1>\lambda$ " can be replaced by "v and $2\cdot 7$ are coprime"; if $n=3n_1$, then the assumption " $n_1>\lambda$ " can be replaced by "v and $2\cdot 3\cdot 11\cdot 13$ are coprime"; if $n=4n_1$, then the assumption " $n_1>\lambda$ " can be replaced by "v and $2\cdot 3\cdot 7\cdot 31$ are coprime"; etc.

In 1987 Wu Xiao-hong ([8]) proved: If $n = n_1$ and G is a cyclic group with prime order, then the assumption " $n_1 > \lambda$ " may be removed.

In 1992 we([1]) presented a character approach to the Multiplier Conjecture, and proved: if $n = 3n_1$ and $(v, 3 \cdot 13) = 1$, then in the majority of the cases the assumption " $n_1 > \lambda$ " may be removed.

This paper sketch the method of studying the Multiplier Conjecture that we presented in [1], and add one lemma. Applying this method we prove:

- (1) If $n = n_1$, then the assumption " $n_1 > \lambda$ " may be removed;
- (2) If $n=2n_1$, then the assumption " $n_1 > \lambda$ " may be removed, except that one case is yet undecided where n_1 is odd and 7||v| and $t \equiv 3, 5$, or 6 (mod 7), and for every prime divisor $p(\neq 7)$ of v such that the order w of 2 mod p satisfies that $2|\frac{\phi(p)}{w}$;
- (3) If $n = 3n_1$ and $(v, 3 \cdot 11) = 1$, then the assumption " $n_1 > \lambda$ " may be removed, except that one case is yet undecided where n_1 can not divide by 3 and 13||v| and the order of $t \mod 13$ is 12, 4 or 6, 2, and for every prime divisor $p(\neq 13)$ of v such that the order w of 3 mod p satisfies that $2|\frac{\phi(p)}{v}|$.

These distinctly improve McFarland's corresponding results, Newman's result and Turyn's result. Wu's result is merely a particular case of (1).

§2. A Method of Studying the Multiplier Conjecture

A method of studying the Multiplier Conjecture contains the following lemma 1, theorem 1, lemma 2, lemma 3, lemma 4, and lemma 5.

Lemma 1. Let G be an abelian group with a (v, k, λ) - difference set D, and let v_0 be the exponent of G. Set $n = k - \lambda$. Let $n = dn_1$ (d is a positive integer), and $(n_1, v) = 1$. Suppose that t is an integer such that for every prime divisor p of n_1 , there exists a positive integer j such that $t \equiv p^j \pmod{v_0}$. Set $\mu_t : g \longmapsto g^t, \forall g \in G$. If every prime divisor q of d satisfy $q|n_1$, then μ_t is a multiplier of D. Proof. See [1].

We denote the complex character group of an abelian group G by \hat{G} . Let $G = \{g_1, g_2, \dots, g_v\}$, where $g_1 = 1$. Supposed that

$$G = \langle g_{l_1} \rangle \times \langle g_{l_2} \rangle \times \cdots \times \langle g_{l_s} \rangle. \tag{1}$$

Let the order of g_{l_i} be $p_i^{\alpha_i}$, $1 \le i \le s$. Let ω_i be a primitive $p_i^{\alpha_i} \perp h$ root of $1, 1 \le i \le s$. Given $g = g_{l_1}^{t_1} \cdots g_{l_s}^{t_s}$, set

$$\chi_g\left(g_{l_1}^{r_1}\cdots g_{l_s}^{r_s}\right)=\omega_1^{r_1t_1}\cdots \omega_s^{r_st_s},$$

then $g \mapsto \chi_g$ is an isomorphism of G onto \hat{G} . We rewrite χ_{g_i} as χ_i . Thus $g_i \mapsto \chi_i$ $(1 \le i \le v)$ is an isomorphism of G onto \hat{G} , where χ_1 is the principal character of G. Clearly

$$\sum_{l=1}^{v} \chi_l(g_1) = v. \tag{2}$$

By the second orthogonality relation of characters we have

$$\sum_{l=1}^{v} \chi_l(g_j) = 0, \qquad 2 \leq j \leq v. \tag{3}$$

Let v_0 be the exponent of G, then $\chi_l(g_j)$ is a v_0_th root of 1, $1 \le l \le v$, $1 \le j \le v$.

Let $\overline{\chi_l}$ denote the character afforded by the contragredient representation of the representation χ_l . By [9] we have

$$\overline{\chi_l}(g_j) = \overline{\chi_l(g_j)}, \quad 1 \le l, j \le v.$$
 (4)

and

$$\overline{\chi_l} = {\chi_l}^{-1} \qquad 1 \le l \le v. \tag{5}$$

Let $D=\{g_{r_1},\cdots,g_{r_k}\}$ is a subset of G. Consider the group algebras QG and $Q\hat{G}$ over the rational field Q. Since g_1,g_2,\cdots,g_v is a basis of QG, by the definition of difference set D is a (v,k,λ) -difference set if and only if

$$\sum_{i=1}^{k} g_{r_i} \cdot \sum_{j=1}^{k} g_{r_j}^{-1} = kg_1 + \lambda \sum_{l=2}^{v} g_l$$
$$= ng_1 + \lambda \sum_{l=1}^{v} g_l, \quad (6)$$

where $n = k - \lambda$. Since $G \cong \hat{G}$, we get $QG \cong Q\hat{G}$. Thus D is a (v, k, λ) -difference set if and only if

$$\sum_{i=1}^k \chi_{r_i} \cdot \sum_{j=1}^k \overline{\chi_{r_j}} = n\chi_1 + \lambda \sum_{l=1}^v \chi_l. \quad (7)$$

We denote the character ring of G by char(G).

Let d be a positive integer. Consider the following equations:

$$\begin{cases} \sum_{l=1}^{v} c_l = d, & (8) \\ \sum_{l=1}^{v} c_l^2 = d^2, & (9) \\ \xi \bar{\xi} = d^2 \chi_1, & (10) \end{cases}$$

where $\xi = \sum_{l=1}^{v} c_l \chi_l$, $\bar{\xi} := \sum_{l=1}^{v} c_l \overline{\chi_l}$, and c_1, \dots, c_v are integers. The equation (10) implies (9).

Clearly $\xi_1 = d\chi_s \quad \forall \chi_s \in \hat{G}$ are solutions of (8), (9) and (10). They are called trivial solutions.

Definition 1. Let d be a positive integer. A solution $\xi \in char(G)$ of (8), (9) and (10) is called nontrivial if $\xi \neq d\chi_s \quad \forall \chi_s \in \hat{G}$.

Theorem 1. Let G be an abelian group with a (v, k, λ) -difference set $D = \{g_{r_1}, \cdots, g_{r_k}\}$. Let $g_i \longmapsto \chi_i \ (1 \le i \le v)$ be an isomorphism of G onto its character group \hat{G} , where χ_1 is the principal character of G. Let $n = dn_1$ and $(n_1, v) = 1$. Let t be an integer meeting the conditions of the Second Multiplier Theorem. If there is a condition C so that no nontrivial solution ξ of (8) and (10) also satisfies

$$\sum_{i=1}^{k} \chi_{r_i}^{t} \cdot \sum_{j=1}^{k} \overline{\chi_{r_j}} = n_1 \xi + \lambda \sum_{l=1}^{v} \chi_l, \qquad (11)$$

then we can replace " $n_1 > \lambda$ " by condition C in the Second Multiplier Theorem.

Proof. It follows immediately from the theorem 1 in [1].

Definition 2. If a nontrivial solution $\xi = \chi_{l_m}(\sum_{i=1}^{m-1} c_{l_i}\chi_{l_i} + c_{l_m}\chi_1)$ such that $\chi_{l_i}(1 \le i \le m-1)$ are in a cyclic group $<\chi_u>$, then ξ is called a cyclic solution and χ_u is called a generator of ξ . If $\chi_{l_i}(1 \le i \le m-1)$ are in a group with prime order p, then ξ is called a p-solution.

Let G be an abelian group of order v. Decompose G as a product of cyclic groups with prime power order. Given any prime divisor p of v, there are only four possible cases:

Case 1. There is at least one generator with order p^e , e > 1;

Case 2. No generator have order $p^{e}(e > 1)$, but there are at least two generators with order p;

Case 3. $p||v \text{ and } v \neq p$;

Case 4. v = p.

In the case 1 set $v_1 = p^e$. In the case 2 set $v_1 = p$. In the case 3 set $v_1 = pp_2$, where p_2 is another prime divisor of v. Let ς be a primitive v_1 -th root of 1. $Q(\varsigma)$ denotes the v_1 -th cyclotomic field. B denotes the ring of algebraic integers in $Q(\varsigma)$. For integer t meeting the conditions of the Second Multiplier Theorem we have $(t, v_0) = 1$. Thus $(t, v_1) = 1$. Hence there is a Q-automorphism σ_t of $Q(\varsigma)$ such that $\sigma_t(\varsigma) = \varsigma^t$. Let $(d) = D_1D_2\cdots D_r$, where (d) donotes the ideal generated by a positive integer d in B, and $D_i(i = 1, \dots, r)$ are prime ideals in B.

Condition A. σ_t such that either

$$\sigma_t(D_{i_1})\cdots\sigma_t(D_{i_h})D_{i_{h+1}}\cdots D_{i_{2h}}=(d)$$

for any r-th permutation $i_1 \cdots i_h i_{h+1} \cdots i_r$, or

$$\sigma_t(D_{i_1})\cdots\sigma_t(D_{i_h})D_{i_{h+1}}\cdots D_{i_{2h}}\neq (d)$$

for any r_th permutation $i_1 \cdots i_h i_{h+1} \cdots i_r$, where 2h = r.

Lemma 2. Let G be an abelian group with a (v, k, λ) -difference set $D = \{g_{r_1}, \cdots, g_{r_k}\}$. Let $g_i \longmapsto \chi_i$ $(1 \le i \le v)$ be the isomorphism of G onto its character group \hat{G} , where χ_1 is the principal character of G. Let $n = dn_1$ and $(d, n_1) = 1$, and (d, v) = 1, and let t be an integer meeting the conditions of the Second Multiplier Theorem. Let $\xi_p = \chi_b(\sum_{i=1}^{m-1} c_{l_i} \chi_w^{s_i} + c_{l_m} \chi_1)$ be a p-solution of the equations (8), (9) and (10), where $0 < s_i < p$, $i = 1, \cdots, m-1$. Suppose that

 $v \neq p$. If p > m and σ_t satisfying the condition A, then ξ_p do not satisfy the equation (11).

Proof. Since the order of χ_w is p, so is that of g_w . Let

$$G = \langle g_{l_1} \rangle \times \langle g_{l_2} \rangle \times \cdots \times \langle g_{l_s} \rangle, \tag{1}$$

where the order of g_{l_i} be $p_i^{\alpha_i}$, $1 \le i \le s$. We can assume that $p_1 = p$, and $g_w = g_{l_1}^{p^{s-1}}$, where $e = \alpha_1$. Let ω_i be a primitive $p_i^{\alpha_i} \pm h$ root of $1, 1 \le i \le s$. Set $g_{l_2}' = g_{l_2}^{p_2^{\alpha_2-1}}$. Thus

$$\chi_w(g_{l_1}) = \omega_1^{1 \cdot p^{*-1}} \omega_2^{0 \cdot 0} \cdots \omega_s^{0 \cdot 0} = \omega_1^{p^{*-1}}, \tag{12}$$

$$\chi_w(g_{l_2}') = \omega_1^{0 \cdot p^{s-1}} \omega_2^{p_2^{\alpha_2 - 1} \cdot 0} \cdots \omega_s^{0 \cdot 0} = 1, \quad if \quad s > 1$$
 (13)

$$\chi_w(g_w) = \omega_1^{p^{\bullet-1} \cdot p^{\bullet-1}} \omega_2^{0 \cdot 0} \cdots \omega_s^{0 \cdot 0} = 1, \quad if \quad e > 1.$$
 (14)

Set $\varepsilon = \omega_1^{p^{\bullet-1}}$, then ε is a primitive p-th root of 1. We have

$$\xi_p(g_{l_1}) = \chi_b(g_{l_1}) \left(\sum_{i=1}^{m-1} c_{l_i} \varepsilon^{s_i} + c_{l_m} \right), \tag{15}$$

$$\xi_p(g_{l_2}') = \chi_b(g_{l_2}') (\sum_{i=1}^{m-1} c_{l_i} + c_{l_m}) = d \cdot \chi_b(g_{l_2}'), \quad if \quad s > 1, \quad (16)$$

$$\xi_p(g_w) = \chi_b(g_w) \left(\sum_{i=1}^{m-1} c_{l_i} + c_{l_m} \right) = d \cdot \chi_b(g_w), \quad if \quad e > 1.$$
 (17)

If e > 1, then set $v_1 = p^e$. If e = 1 and $p_2 = p$, then set $v_1 = p$. If p||v|, then set $v_1 = pp_2$ because of $v \neq p$. Let ζ be a primitive v_1 -th root of 1. $Q(\zeta)$ denotes the v_1 -th cyclotomic field. B denotes the ring of algebraic integers in $Q(\zeta)$. By [10] $B = Z[\zeta]$. Clearly $\varepsilon = \zeta^{\frac{v_1}{p}}$. Since p > m and $\phi(v_1)$ consecutive powers of ζ are linearly independent, we get

$$\sum_{i=1}^{m-1} c_{l_i} \varsigma^{s_i \frac{v_1}{p}} + c_{l_m} \neq d.$$

Since ξ_p is a nontrivial solution, $0 \neq |c_{l_m}| < d$. Thus for any unit γ in B we have

$$\sum_{i=1}^{m-1} c_{l_i} \zeta^{s_i \frac{v_1}{p}} + c_{l_m} \neq d\gamma.$$

Hence

$$(\xi_p(g_{l_1})) \neq (d), \tag{18}$$

and if e > 1 we have

$$(\xi_p(g_w)) = (d),$$
 (19)

and if s > 1 we have

$$(\xi_{p}(g_{l_{2}}')) = (d),$$
 (20)

By (7) and (3) for any $g_j \in G(2 \le j \le v)$ we have

$$\sum_{i=1}^k \chi_{r_i}(g_j) \cdot \sum_{i=1}^k \overline{\chi_{r_i}}(g_j) = n.$$
 (21)

Let q be any prime divisor of n_1 . Since $(n_1, v_0) = 1$, we get $(q, v_1) = 1$. Thus by [11] (q) is unramified in $Q(\varsigma)$. Hence $(q) = Q_1Q_2\cdots Q_h$, where $Q_1,Q_2,\cdots Q_h$ are different prime ideals in B. Since $(q, v_1) = 1$, the Frobenius automorphism for (q) in $Q(\varsigma)$ is σ_q , where $\sigma_q(\varsigma) = \varsigma^q$ (See [10]). Thus $\sigma_q(Q_i) \subseteq Q_i, i = 1, \cdots, h$. Since $Gal(\mathfrak{Q}(\varsigma)/\mathfrak{Q})$ transitively acts on the set $\{Q_1, \cdots, Q_h\}$ (see [10]), we have $\sigma_q(Q_i) = Q_i, 1 \le i \le h$. Since for every prime divisor q of n_1 there exists a positive integer j such that $t \equiv q^j \pmod{v_0}$, we have $(t, v_0) = 1$. Thus $(t, v_1) = 1$. Hence there is a Q-automorphism σ_t of $Q(\varsigma)$ such that $\sigma_t(\varsigma) = \varsigma^t$. Since $t \equiv q^j \pmod{v_0}$ and $v_1|v_0$, we get $t \equiv q^j \pmod{v_1}$. Thus $\sigma_t = \sigma_q^j$. Hence $\sigma_t(Q_i) = Q_i, 1 \le i \le h$. Let $(n_1) = Q_1Q_2\cdots Q_l$, where $Q_1, Q_2, \cdots Q_l$ are prime ideals in B. By the above argument we have $\sigma_t(Q_i) = Q_i$ $(1 \le i \le l)$.

Let $(d) = D_1 D_2 \cdots D_r$, where D_1, D_2, \cdots, D_r are prime ideals in B. From (21) we get

$$\left(\sum_{i=1}^{k} \chi_{r_i}(g_j) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right) = (n)$$

$$= (d)(n_1) = D_1 \cdots D_r Q_1 \cdots Q_l, \quad 2 \le j \le v$$
(22)

If e > 1 we take $g_j \in \langle g_{l_1} \rangle$, otherwise we take $g_j \in \langle g_{l_1} \rangle \times \langle g_{l_2} \rangle$. Thus $\sum_{i=1}^k \chi_{r_i}(g_j) \in B$, and $\sum_{i=1}^k \overline{\chi_{r_i}}(g_j) \in B$. Since the factorization of an ideal in B as a product of prime ideals is unique and $(d, n_1) = 1$, we can suppose that

$$\left(\sum_{i=1}^{k} \chi_{r_i}(g_j)\right) = D_{j_1} \cdots D_{j_k} Q_{k_1} \cdots Q_{k_t}, \tag{23}$$

where $1 \le h < r$. Thus

$$\left(\sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right) = \overline{D}_{j_1} \cdots \overline{D}_{j_k} \overline{Q}_{k_1} \cdots \overline{Q}_{k_t}. \tag{24}$$

where $\overline{D}_i := \{\overline{z} | z \in D_i\}$, etc. Set $\sigma_t(S) := \{\sigma_t(s) | s \in S\}$ for any subset S of B. If $\sigma_t(D_i) \neq D_i$ $(1 \leq i \leq r)$, then one get

$$\{\overline{D}_{j_1}, \cdots, \overline{D}_{j_h}\} = \{D_{j_{h+1}}, \cdots, D_{j_r}\},$$

$$\{\overline{Q}_{k_1}, \cdots, \overline{Q}_{k_t}\} = \{Q_{k_{t+1}}, \cdots, Q_{k_t}\}.$$

$$(25)$$

thus r = 2h. Clearly $\sigma_t|_B$ is an automorphism of B. Thus

$$\left(\sum_{i=1}^k \chi_{r_i}^{t}(g_j)\right) = \sigma_t(D_{j_1}) \cdots \sigma_t(D_{j_h}) Q_{k_1} \cdots Q_{k_t}, \qquad (26)$$

From (26), (24), (23) and (22) one get

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_j) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right)$$

$$= (n_1)\sigma_t(D_{j_1}) \cdots \sigma_t(D_{j_h})D_{j_{h+1}} \cdots D_{j_r}. \tag{27}$$

Case 1. e > 1.

By the condition A there are only two cases:

Case 1.1) σ_t such that $\sigma_t(D_{j_1})\cdots\sigma_t(D_{j_h})D_{j_{h+1}}\cdots D_{j_r}=(d)$ for any r_th permutation $j_1\cdots j_h j_{h+1}\cdots j_r$.

In this case we have

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_j) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right) = (n_1)(d), \quad \forall g_j \in \langle g_{l_1} \rangle. \tag{28}$$

If ξ_p satisfy (11), then

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_{l_1}) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_{l_1})\right) = (n_1)(\xi_p(g_{l_1})). \tag{29}$$

From (28) and (29) we get $(\xi_p(g_{l_1})) = (d)$. This contradicts (18).

Case 1.2) σ_t such that $\sigma_t(D_{j_1}) \cdots \sigma_t(D_{j_h}) D_{j_{h+1}} \cdots D_{j_r} \neq (d)$ for any r-th permutation $j_1 \cdots j_h j_{h+1} \cdots j_r$.

In this case we have

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_j) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right) \neq (n_1)(d), \quad \forall g_j \in \langle g_{l_1} \rangle. \tag{30}$$

If ξ_p satisfy (11), then

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_w) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_w)\right) = (n_1)(\xi_p(g_w)) = (n_1)(d).$$

This contradicts (30).

Hence in the case 1 ξ_p dose not satisfy the equation (11).

Case 2. e = 1 and $p_2 = p$.

Case 2.1) σ_t such that $\sigma_t(D_{j_1})\cdots\sigma_t(D_{j_h})D_{j_{h+1}}\cdots D_{j_r}=(d)$ for any r_th permutation $j_1\cdots j_h j_{h+1}\cdots j_r$.

In this case we have (28) for $g_j \in \langle g_{l_1} \rangle \times \langle g_{l_2}' \rangle$. If ξ_p satisfy (11), then we have (29). Thus $(\xi_p(g_{l_1})) = (d)$. This contradicts (18).

Case 2.2) σ_t such that $\sigma_t(D_{j_1}) \cdots \sigma_t(D_{j_h}) D_{j_{h+1}} \cdots D_{j_r} \neq (d)$ for any r_th permutation $j_1 \cdots j_h j_{h+1} \cdots j_r$.

In this case we have

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_j) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_j)\right) \neq (n_1)(d), \quad (31)$$

where $g_j \in \langle g_{l_1} \rangle \times \langle g_{l_2}' \rangle$. If ξ_p satisfy (11), then

$$\left(\sum_{i=1}^k \chi_{r_i}^{t}(g_{l_2}') \cdot \sum_{i=1}^k \overline{\chi_{r_i}}(g_{l_2}')\right) = (n_1)(\xi_p(g_{l_2}')) = (n_1)(d).$$

This contradicts (31).

Hence in the case 2 ξ_p dose not satisfy the equation (11). Case 3. p||v.

It is similar to the case 2 that ξ_p does not satisfy (11). The lemma 3 lemma 4 and lemma 5 see [1].

§3. Some Partial Solutions for the Multiplier Conjecture

Let G be an abelian group with a (v, k, λ) -difference set D, and let v_0 be the exponent of G. In this section we follow notations in the lemma 2.

Theorem 2. If $n = n_1$, then the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ".

Proof. In this case d = 1. Thus it immediately follows from the Lemma 1 or the theorem 1.

Theorem 3. If $n=2n_1$, then the Second Multiplier Theorem holds without the assumption ${}^an_1 > \lambda$, except that one case is yet undecided where n_1 is odd and 7||v| and $t \equiv 3,5$, or $6 \pmod{7}$, and for every prime divisor $p(\neq 7)$ of v such that the order w of $2 \pmod p$ satisfies that $2|\frac{\phi(p)}{m}|$.

Proof. If $2|n_1$, then by the lemma 1 we obtain that μ_t is a multiplier of D.

Now we suppose that n_1 is odd. In this case n isn't a square. Thus v has to be odd.

By the theorem 1 it is sufficient to prove that no nontrivial solution ξ of the following equations

$$\begin{cases} \sum_{l=1}^{v} c_l = 2, & (32) \\ \xi \bar{\xi} = 4\chi_1. & (33) \end{cases}$$

also satisfies the equation (11).

By the theorem 2 in [1] if (v,2) = 1, then all the nontrivial solutions of (32) and (33) are 7-solutions which have the form:

$$\xi = \chi_b(\chi_u + \chi_u^2 + \chi_u^4 - \chi_1), \tag{34}$$

where χ_u is any element of order 7 in \hat{G} , and χ_b is any element of \hat{G} . If (v,7)=1, then there is only trivial solution of (32) and (33), and the assumption " $n_1 > \lambda$ " may be removed. Now suppose that 7|v. If v=7, then it is easy to see that there are only two cases satisfying $\lambda(v-1)=k(k-1)$: $k=3, \lambda=1, n=2$, or $k=4, \lambda=2, n=2$. In these cases we get $n=n_1$, this contradicts the assumption $n=2n_1$. Hence $v\neq 7$. Let

$$G = \langle g_{l_1} \rangle \times \langle g_{l_2} \rangle \times \cdots \times \langle g_{l_s} \rangle, \quad (1)$$

where the order of g_{l_i} be $p_i^{\alpha_i}$, $1 \le i \le s$. We can assume that $p_1 = 7$, and $g_u = g_{l_1}^{7^{s-1}}$, where $e = \alpha_1$. Set $g_{l_2}' = g_{l_2}^{p_2^{\alpha_2-1}}$.

Case 1. e > 1.

In this case $v_1 = 7^e$. Since $(2,7^e) = 1$, (2) is unramified in $Q(\varsigma)$. Let $(2) = D_1D_2\cdots D_r$, where D_i $(1 \le i \le r)$ are different prime ideals in B. We denote the residue class degree of D_i by f_i $(1 \le i \le r)$. Since $Gal(Q(\varsigma)/Q)$ transitively acts on the set $\{D_1, D_2, \cdots, D_r\}$, we have $f_1 = f_2 = \cdots = f_r =: f$. Since $\sum_{i=1}^r e_i f_i = \phi(7^e)$, where e_i is the ramification index of D_i (see [11]), $1 \cdot r \cdot f = \phi(7^e) = 6 \cdot 7^{e-1}$. It is not difficult to see that the order of 2 mod 7^e is $3 \cdot 7^{e-1}$. Since f is equal to the order of 2 mod 7^e , we get r = 2.

Hence $(2) = D_1D_2$. Since $Gal(Q(\varsigma)/Q)$ transitively acts on the set $\{D_1, D_2\}$, $\sigma_t(D_i) = D_i$ (i = 1, 2), or $\sigma_t(D_1) = D_2$ and $\sigma_t(D_2) = D_1$. Hence σ_t such that either $\sigma_t(D_{i_1})D_{i_2} = (2)$ for any 2_th permutation i_1i_2 , or $\sigma_t(D_{i_1})D_{i_2} \neq (2)$ for any 2_th permutation i_1i_2 . Since 7 > 4 and σ_t satisfy the condition A, by the lemma 2 ξ do not satisfy the equation (11).

Case 2. e = 1 and $p_2 = 7$.

In this case $v_1 = 7$. Similarly we can show that σ_t satisfy the condition A. Hence in the case 2 ξ does not satisfy (11).

Case 3. 7||v|.

Since v is odd, $p_2 \neq 2$. In the case $3 \ v_1 = 7 p_2$, and ζ is a primitive $7 p_2$ -th root of 1. Set $\eta = \zeta^7$, then η is a primitive p_2 -th root of 1. We denote the p_2 -th cyclotomic field by $Q(\eta)$. B_1 denotes the ring of algebraic integers in $Q(\eta)$. Since $(2, p_2) = 1$, (2) is unramified in $Q(\eta)$. Let $(2)_1 = H_1 \cdots H_r$, where $(2)_1$ denotes the ideal generated by 2 in B_1 , and H_1, \cdots, H_r are different prime ideals in B_1 . From (21) we get

$$\left(\sum_{i=1}^{k} \chi_{r_i}(g_{l_2}') \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_{l_2}')\right)_1 = (2)_1(n_1)_1. \tag{35}$$

It follows that 2|r.

Let the order of $2 \mod p_2$ is w.

Case 3.1) Let $\frac{\phi(p_2)}{w}$ is odd.

Since the residue class degree f of H_i is equal to w, $r = \frac{\phi(p_2)}{w}$. This contradicts 2|r. Hence the case 3.1) is impossible.

Case 3.2) Let $2|\frac{\phi(p_2)}{w}$.

Set $\varepsilon = \zeta^{p_2}$, then ε is a primitive 7-th root of 1. We denote the ring of algebraic integers in $Q(\varepsilon)$ by B_0 . Since (2,7)=1, (2) is unramified in $Q(\varepsilon)$. Let $(2)_0=P_1\cdots P_r$, where $(2)_0$ denotes the ideal generated by 2 in B_0 , and P_1,\cdots,P_r are different prime ideals in B_0 . Since the order of 2 mod 7 is 3, $r=\phi(7)/3=2$. Hence $(2)_0=P_1P_2$.

Since $\sigma_t(\varepsilon) = \zeta^{tp_2} = \varepsilon^t$, $\sigma_t|_{Q(\varepsilon)}$ is a Q-automorphism of $Q(\varepsilon)$. Since $Gal(Q(\varepsilon)/Q)$ permutes $\{P_1, P_2\}$ transitively, the homomorphic image of $Gal(Q(\varepsilon)/Q)$ is a group of order 2. We denote the image of $\sigma_t|_{Q(\varepsilon)}$ by $\tilde{\sigma}_t|_{Q(\varepsilon)}$.

Case 3.2.1) Let $t \equiv 1, 2, \text{ or } 4 \pmod{7}$.

Since the order of $\sigma_t|_{Q(\varepsilon)}$ is equal to the order of $t \pmod{7}$ in $(Z/(7))^*$, in the case 3.2.1) the order of $\sigma_t|_{Q(\varepsilon)}$ is 1 or 3. Thus $\tilde{\sigma}_t|_{Q(\varepsilon)} = 1$. Hence it is easy to see that

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{-t}(g_{l_1}) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_{l_1})\right)_0 = (n_1)_0(2)_0. \tag{36}$$

If ξ satisfy (11), then

$$\left(\sum_{i=1}^{k} \chi_{r_i}^{t}(g_{l_1}) \cdot \sum_{i=1}^{k} \overline{\chi_{r_i}}(g_{l_1})\right)_{0} = (n_1)_{0}(\xi(g_{l_1}))_{0}.$$

Thus $(\xi(g_{l_1}))_0 = (2)_0$. Since 7 > 4, it is similar to the proof of the lemma 2 that $(\xi(g_{l_1}))_0 \neq (2)_0$. Hence ξ does not satisfy (11).

By the argument above we obtain that if $n = 2n_1$, then the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ", provided that one of the following conditions holds:

- (i) $2|n_1$;
- (ii) n_1 is odd, and v can not divide by 7;
- (iii) n_1 is odd, and $7^2|v$;
- (iv) n_1 is odd, and 7||v, and t is a quadratic residue mod 7.

The remaining undecided case is: n_1 is odd, and 7||v, and t is a quadratic nonresidue mod 7, and for every prime divisor $p(\neq 7)$ of v such that the order w of 2 mod p satisfies that $2|\frac{\phi(p)}{w}$.

The proof of the theorem 3 is completed now.

Theorem 4. If $n = 3n_1$ and $(v, 3 \cdot 11) = 1$, then the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ", except that one case is yet undecided where n_1 can not divide by 3 and 13||v||

and the order of t mod 13 is 12, 4 or 6, 2, and for every prime divisor $p \neq 13$ of v such that the order w of 3 mod p satisfies that $2 \left| \frac{\phi(p)}{w} \right|$.

Proof. If $3|n_1$, then by the Lemma 1 we obtain that μ_t is a multiplier of D.

Now we suppose that n_1 can not divide by 3. In this case n isn't a square. Thus v has to be odd.

By the theorem 1 it is sufficient to prove that the condition $(v, 3 \cdot 11) = 1$ " such that no nontrivial solution of the following equations

$$\begin{cases} \sum_{l=1}^{v} c_l = 3, \\ \xi \bar{\xi} = 9\chi_1. \end{cases}$$
 (37)

also satisfies (11).

By the theorem 2 in [1] if $(v, 2 \cdot 3 \cdot 11) = 1$, then all the nontrivial solutions of (37) and (38) are 13-solutions.

If (v,13)=1, then there is only trivial solution of (37) and (38), so that the assumption " $n_1 > \lambda$ " may be removed. Now we consider the case 13|v. If v=13, it is easy to see that there are only two cases satisfying $\lambda(v-1)=k(k-1)$: $k=4, \lambda=1, n=3$, or $k=9, \lambda=6, n=3$. In these cases we get $n=n_1$, this contradicts the assumption $n=3n_1$. Hence $v\neq 13$. Take any 13 solution ξ . In the decomposition (1) of G we can assume that $p_1=13$.

Case 1. e > 1.

In this case $v_1 = 13^e$. Since $(3,13^e) = 1$, (3) is unramified in $Q(\varsigma)$. Let $(3) = D_1 D_2 \cdots D_r$, where D_i $(1 \le i \le r)$ are different prime ideals in B. Clearly the order of 3 mod 13 is 3. It is not difficult to see that the order of 3 mod 13^e is $3 \cdot 13^{e-1}$. Thus the residue class degree f of D_i $(1 \le i \le r)$ is equal to $3 \cdot 13^{e-1}$. Hence $r = \phi(13^e)/f = 4$, and $(3) = D_1 D_2 D_3 D_4$. Since $Gal(Q(\varsigma)/Q)$ permutes $\{D_1, D_2, D_3, D_4\}$ transitively, there is a homomorphism of $Gal(Q(\varsigma)/Q)$ into the symmetric group S_4 . We denote the homomorphic image of $Gal(Q(\varsigma)/Q)$ by H. $\tilde{\sigma_t}$ denotes the homomorphic image of σ_t . Since there is a primitive root for 13^e , $(\mathbb{Z}/(13^e))^*$ is a cyclic

group. Since $Gal(Q(\varsigma)/Q) \cong (\mathbb{Z}/(13^e))^*$, $Gal(Q(\varsigma)/Q)$ is a cyclic group of order $12 \cdot 13^{e-1}$. Let the order of H be s, then $s|12 \cdot 13^{e-1}$ and s|24. Thus s|12. Since H is transitive on $\{D_1, D_2, D_3, D_4\}$, s=4 and $H=<(a_1a_2a_3a_4)>$, where $a_1a_2a_3a_4$ is a permutation of 1234. It is not difficult to see that if the order of t mod 13^e are $12 \cdot 13^{\alpha}$ and $4 \cdot 13^{\alpha}$, or $6 \cdot 13^{\alpha}$ and $2 \cdot 13^{\alpha}$, or $3 \cdot 13^{\alpha}$ and 13^{α} , then the order of $\tilde{\sigma}_t$ are 4, or 2, or 1, respectively.

Case 1.1) Let the order of $t \mod 13^e$ are $3 \cdot 13^{\alpha}$, or 13^{α} .

In this case $\tilde{\sigma}_t = 1$. Thus $\sigma_t(D_{i_1})\sigma_t(D_{i_2})D_{i_3}D_{i_4} = (3)$ for any 4_th permutation $i_1i_2i_3i_4$.

Case 1.2) Let the order of $t \mod 13^e$ are $6 \cdot 13^{\alpha}$, or $2 \cdot 13^{\alpha}$.

In this case the order of $\tilde{\sigma}_t$ is 2. We denote the complex conjugate by τ . Clearly the order of τ is 2, and $\tau \in Gal(Q(\varsigma)/Q)$. Thus $\tilde{\sigma}_t = \tilde{\tau}$. Hence

$$\sigma_t(D_{i_1})\sigma_t(D_{i_2})D_{i_3}D_{i_4} = D_{i_3}^2D_{i_4}^2 \neq (3)$$

for any 4-th permutation $i_1i_2i_3i_4$.

Case 1.3) Let the order of $t \mod 13^e$ are $12 \cdot 13^{\alpha}$, or $4 \cdot 13^{\alpha}$.

In this case the order of $\tilde{\sigma_t}$ is 4. Thus $\sigma_t(D_{i_1})\sigma_t(D_{i_2})D_{i_3}D_{i_4} \neq (3)$ for any 4-th permutation $i_1i_2i_3i_4$.

Hence in the case 1 σ_t satisfy the condition A. Since 13 > 9, by the lemma 2 ξ does not satisfy the equation (11).

Case 2. e = 1 and $p_2 = 13$.

In this case $v_1 = 13$. It is similar to the case 1 that σ_t satisfy the condition A. Hence ξ does not satisfy the equation (11).

Case 3. 13||v|.

In this case $v_1=13p_2$. Set $\eta=\zeta^{13}$, then η is a primitive p_2 -th root of 1. We denote the p_2 -th cyclotomic field by $Q(\eta)$. B_1 denotes the ring of algebraic integers in $Q(\eta)$. Since (v,3)=1, $(p_2,3)=1$. Thus (3) is unramified in $Q(\eta)$. Let $(3)_1=H_1\cdots H_r$, where $(3)_1$ denotes the ideal generated by 3 in B_1 , and H_1,\cdots,H_r are different

prime ideals in B_1 . From (21) we get

$$\left(\sum_{i=1}^{k} \chi_{r_{i}}(g_{l_{2}}') \cdot \sum_{i=1}^{k} \overline{\chi_{r_{i}}}(g_{l_{2}}')\right)_{1} = (3)_{1}(n_{1})_{1}.$$

It follows that 2|r.

Let the order of 3 mod p_2 is w.

Case 3.1) Let $\frac{\phi(p_2)}{m}$ is odd.

Since the residue class degree f of H_i is equal to w, $r = \frac{\phi(p_2)}{w}$. This contradicts 2|r. Hence the case 3.1) is impossible.

Case 3.2) Let $2|\frac{\phi(p_2)}{w}$.

Set $\varepsilon = \zeta^{p_2}$, then ε is a primitive 13-th root of 1. We denote the ring of algebraic integers in $Q(\varepsilon)$ by B_0 . Since (3,13)=1, (3) is unramified in $Q(\varepsilon)$. Let $(3)_0=P_1\cdots P_r$, where $(3)_0$ denotes the ideal generated by 3 in B_0 , and P_1,\cdots,P_r are different prime ideals in B_0 . Since the order of 3 mod 13 is 3, $r=\phi(13)/3=4$. Hence $(3)_0=P_1P_2P_3P_4$.

Since $\sigma_t(\varepsilon) = \varsigma^{t\,p_2} = \varepsilon^t$, $\sigma_t|_{Q(\varepsilon)}$ is a Q-automorphism of $Q(\varepsilon)$. Since $Gal(Q(\varepsilon)/Q)$ permutes $\{P_1, P_2, P_3, P_4\}$ transitively, the homomorphic image H of $Gal(Q(\varepsilon)/Q)$ is a cyclic group of order 4. We denote the image of $\sigma_t|_{Q(\varepsilon)}$ by $\tilde{\sigma_t}|_{Q(\varepsilon)}$.

Case 3.2.1) Let the order of t mod 13 is 3 or 1.

Since the order of $\sigma_t|_{Q(\varepsilon)}$ is equal to the order of $t \pmod{13}$ in $(Z/(13))^*$, $\tilde{\sigma_t}|_{Q(\varepsilon)} = 1$. Hence it is easy to see that

$$\left(\sum_{i=1}^{k} \chi_{r_{i}}^{t}(g_{l_{1}}) \cdot \sum_{i=1}^{k} \overline{\chi_{r_{i}}}(g_{l_{1}})\right)_{0} = (n_{1})_{0}(3)_{0}.$$

If ξ satisfy (11), then

$$\left(\sum_{i=1}^{k} \chi_{r_{i}}^{t}(g_{l_{1}}) \cdot \sum_{i=1}^{k} \overline{\chi_{r_{i}}}(g_{l_{1}})\right)_{0} = (n_{1})_{0} (\xi(g_{l_{1}}))_{0}.$$

Thus $(\xi(g_{l_1}))_0 = (3)_0$. Since 13 > 9, it is similar to the proof of the lemma 2 that $(\xi(g_{l_1}))_0 \neq (3)_0$. Hence ξ does not satisfy (11).

By the argument above we obtain that if $n = 3n_1$ and (v, 3.11) = 1, then the Second Multiplier Theorem holds without the assumption " $n_1 > \lambda$ ", provided that one of the following conditions holds:

- (i) $3|n_1;$
- (ii) n_1 can not divide by 3, and v can not divide by 13;
- (iii) n_1 can not divide by 3, and $13^2|v$;
- (iv) n_1 can not divide by 3, and 13||v|, and the order of $t \mod 13$ is 3 or 1.

The remaining undecided case is: n_1 can not divide by 3, and 13||v|, and the order of $t \mod 13$ is 12,4 or 6,2, and for every prime divisor $p(\neq 13)$ of v such that the order w of $3 \mod p$ satisfies that $2|\frac{\phi(p)}{w}|$.

The proof of the theorem 4 is completed now.

Acknowledgement. The author is thankful to the referee for suggestions.

References

- [1] Qiu Weisheng, A Character Approach to the Multiplier Conjecture and a New Result on It, submitted.
- [2] R.H. Bruck, Difference Sets in a Finite Group, Trans. Amer. Math. Soc, 78(1955), 464-481.
- [3] M. Newman, Multipliers of Difference Sets, Canad. J. Math., 15(1963), 121-124.
- [4] R.J.Turyn, The Multiplier Theorm for Difference Sets, Canad. J. Math.,
- 16(1964), 386-388.
- [5] R.L.McFarland, On Multipliers of Abelian Difference Sets, Ohio State University, Ph.D.dissertation, 1970.
- [6] E.S.Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, 1983, 196-218.
- [7] D.Jungnickel, Design Theory: An Update, ARS Combinatoria, 28(1989), 129-199.

- [8] Wu Xiao-Hong, A Multiplier Theorem of Cyclic Difference Sets, Kaxue Tongbao, 9(1987), 718-719.
- [9] C. W. Curtis & I. Reiner, Representation Theory of Finite Groups and Associated Algebras, Wiley-Interscience, New York, 1962.
 - [10] R.L.Long, Algebraic Number Theory, Dekker, New York, 1977.