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Abstract

This paper sketch the method of studying the Multiplier Con-
jecture that we presented in [1], and add one lemma. Applying
this method we obtain some partial solutions for it: in the case
% = 2n,, the Second Multiplier Theorem holds without the assump-
tion “7n; > X ", except that one case is yet undecided where ny is
odd and 7||v and t = 3,5, or 6 (mod 7), and for every prime divisor
p(# 7) of v such that the order w of 2 mod p satisfies that 2|ﬂ'f)-;
in the case n = 3n, and (v,3- 11) = 1, then the Second Multiplier
Theorem holds without the assumption “ n; > A ?, except that one
case is yet undecided where 7, can not divide by 3 and 13||v and the
order of t mod 13 is 12, 4 or 6, 2, and for every prime divisor p(# 13)
of v such that the order w of 3 mod p satisfies that 2|9—('f)- These
distinctly improve McFarland’s corresponding results and Turyn’s
result.

§1. Introduction
Multiplier Theorem . Let G be an abelian group with a (v,
ky A )-difference set D, and let p be a prime dividing n but not v. If
P> A, then pp i g— gP (Vg € G ) is a multiplier of D.
The condition “p > A is crucial to all known proofs of the Multi-
plier Theorem. However, no examples are known showing that this
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restriction is necessary. The following has been conjectured.

Multiplier Conjecture . The Multiplier Theorem holds without
the assumption that p > .

Since then virtually all further multiplier theorem have arisen in
an attempt to weaken the condition p > A.

In 1955 Bruck( [2] ) proved the following theorem which is called
Second Multiplier Theorem, where the assumption “p > A” is re-
placed by “n; > A”.

Second Multiplier Theorem . Let G be an abelian group
with a (v, k, ))-difference set D, and let vo be the ezponent of G,
let ny be a divisor of n. = k — X such that (ny,v) =1, and n1 > A.
Suppose that t is an integer such that for every prime divisor p ofny,
there ezists a positive integer j such that t = pi(mod vg). Then
we cgv— gt (Vg € G ) is a multiplier of D.

In 1963 Newman ( [3] ) proved : If » = 2p and G is a cyclic group,
then the assumption “p > A" can be replaced by “(v,7) =1".

In 1964 Turyn( [4] ) proved : If » = 2p", then the assumption
“p > A\ ” can be replaced by “ r is odd ”.

In 1970 McFarland( [5], [6] or [7] ) proved : If n = 2ny, then the
assumption “z; > A" can be replaced by “ v and 2-7 are coprime ”;
if n = 3n,, then the assumption “n; > A" can be replaced by “v and
2.3-11- 13 are coprime”; if » = 4n;, then the assumption “n; > A"
can be replaced by “v and 2-3 -7 - 31 are coprime”; etc.

In 1987 Wa Xiao-hong ( [8] ) proved : If = = n; and G is a
cyclic group with prime order, then the assumption “n; > A" may
be removed.

In 1992 we( [1] ) presented a character approach to the Multiplier
Conjecture, and proved : if n = 3n; and (v,3-13) = 1, then in the
majority of the cases the assumption “n; > A" may be removed.

This paper sketch the method of studying the Multiplier Conjec-
ture that we presented in [1], and add one lemma. Applying this
method we prove :



(1) If n = n,, then the assumption “n; > A" may be removed;

(2) If n = 2n;, then the assumption “n; > A\” may be removed,
except that one case is yet undecided where n; is odd and 7|jv and
t=3,5,or 6 (mod 7), and for every prime divisor p(# 7) of v such
that the order w of 2 mod p satisfies that 2|i‘i-(u‘,11;
(3) If n = 3n; and (v,3- 11) = 1, then the assumption “ n; > X
may be removed, except that one case is yet undecided where n;
can not divide by 3 and 13||v and the order of ¢t mod 13 is 12, 4 or
6, 2, and for every prime divisor p(# 13} of v such that the order w
of 3 mod p satisfies that 2|95—('f)-

These distinctly improve McFarland’s corresponding results, New-
man’s result and Turyn’s result. Wu'’s result is merely a particular
case of (1).

”

§2. A Method of Studying the Multiplier Conjecture

A method of studying the Multiplier Conjecture contains the fol-
lowing lemma 1, theorem 1, lernma 2, lemma 3, lemma 4, and lemma
5.

Lemma 1. Let G be an abelian group with a (v, k, X )- difference
set D, and let vy be the ezponent of G. Setn =k —\. Letn =dn, (d
is a positive integer ), and (n1,v) = 1. Suppose that t is an integer
such that for every prime divisor p of ny, there exists a posstive
integer j such thatt = p’(mod ). Set yy :g— g*, Vg€ G. If
every prime divisor q of d satisfy g|ni1, then y; is a multiplier of D.

Proof. See [1].

We denote the complex character group of an abelian group G by
G. Let G ={g1,92, - ,gv}, where gy =1.  Supposed that

G=<g, >X<g,>%X--X<g,>. (1)

Let the order of g;; be p;*', 1 < ¢ < 8. Let w; be a primitive p;*/ th
root of 1,1 < ¢ < 5. Given g =g;,** ---g1,**, set
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then g — x, is an isomorphism of G onto G. We rewrite Xg; 38 Xi-
Thus g; = xi (1 £ ¢ < v ) is an isomorphism of G onto G, where
x1 is the principal character of G. Clearly

Y xilg) =v. )
=1

By the secohd orthogonality relation of characters we have
v
Y oxilg) =0, 2<ji<v. (3)
=1

Let vp be the exponent of G, then x;(g;) is a vo_th root of 1,
1<i<v,1<5<.

Let X7 denote the character afforded by the contragredient repre-
sentation of the representation x;. By [9] we have

xilg;) = xilgj)y 1<Li<v.  (4)
and
Xi=xi"' 1<Li<o. (5)

Let D = {gr,,-** +gr,} is a subset of G. Consider the group
algebras QG and QG over the rational field Q. Since g1,92,"** ,gv
is a basis of QG, by the definition of difference set D is a (v,k, \)-
difference set if and only if

k k v
N gD gt =ka+2) @
=1 j=1 1=2

v
=ng1 +2)_gi, (6)
=1

where n = k — . Since G & G, we get QG = QG. Thus D is a
(v, k, A)-difference set if and only if

k k v
Yo e X =mxa+ 2 xie (7)
=1 =1 =1



We denote the character ring of G by char(G).
Let d be a positive integer. Consider the following equations :

( Vv
Y oa=4, (8)
=1

| icﬂ ) ©)
=1
\ Eé= d2X17 (10)

where £ = Y, aixt, € = Y ), aXi, and ¢1,--- ,c, are integers.
The equation (10) implies (9).

Clearly ¢, = dx, Vx., € G are solutions of (8), (9) and (10).
They are called trivial solutions. :

Definition 1. Let d be a positive integer. A solution ¢ € char(G)
of (8), (9) and (10) is called nontrivial if £ # dx, Yx, €G.

Theorem 1. Let G be an abelian group with a (v, k, X )-difference
setD={g,,,--* ,gr,}. Letgi — xi (1 <1< v )be an isomorphism
of G onto its character group G, where X1 8 the principal character
of G. Let n = dny and (n1,v) = 1. Lei t be an integer meeting the
condstions of the Second Multsplier Theorem . If there 3 a condition
C 80 that no nontrivial solution € of (8} and (10) also satisfies

k k v
ZX!‘.'"ZX_";="‘1€+AZXI’ (11)
i=1 Jj=1 i=1

then we can replace “ny > A" by condition C in the Second Multiplier
Theorem.

Proof. It follows immediately from the theorem 1 in [1].

Definition 2. If a nontrivial solution ¢ = x; (E,";ll axi; +
¢1,,X1) such that x;,(1 < ¢ < m — 1) are in a cyclic group < xu >,
then ¢ is called a cyclic solution and X, is called a generator of £.
If x,(1 £¢ < m~1) are in a group with prime order p, then ¢ is
called a p-solution.



Let G be an abelian group of order v. Decompose & as a product
of cyclic groups with prime power order. Given any prime divisor p
of v, there are only four possible cases :

Case 1. There is at least one generator with order p°, e > 1;

Case 2. No generator have order p®(e > 1), but there are at least
two generators with order p;

Case 3. p|lv and v # p;

Case 4. v = p.

In the case 1 set v; = p°. In the case 2 set v; = p. In the case
3 set v; = ppa, where p is another prime divisor of v. Let ¢ be a
primitive v;-th root of 1. Q(¢) denotes the v;-th cyclotomic field. B
denotes the ring of algebraic integers in Q(¢). For integer ¢ meeting
the conditions of the Second Multiplier Theorem we have (t,v0) = 1.
Thus (¢,v;) = 1. Hence there is a Q-automorphism o¢ of Q(¢) such
that o¢(¢) = ¢f. Let (d) = D1.D3---D,, where ( d ) donotes the
ideal generated by a positive integer d in B, and D;(i = 1,---,7)
are prime ideals in B.

Condition A. o¢ such that either

ot(Dix) v 'a‘(ka)th+1 Tt Dl'zh = (d)
for any r_th permutation ¢; - - ia%th+1 " 3y, OT
o¢(Di,) - 0¢(Di,)Diyy, -+ Digs # (d)

for any r_th permutation ¢, - “$hih41 - tr , Where 2h = 1.

. Lemma 2. Let G be an abelian group with a (v, k, X )-difference set
D={gr, " +gn} Letgir—xi (1<i<v ) be the ssomorphism
of G onto its character group G, where X1 is the principal character
of G. Let n = dny and (d,n1) =1, and (d,v) = 1, and let ¢ be an
integer meeting the conditions of the Second Multiplier Theorem. Let
&= x{,(zimz_ll el Xw® + clax1) be a p-solution of the equations (8),
(9} and (10), where 0 < 8; < p, i=1,---,m— 1. Suppose that

10



v # p. If p > m and oy satisfying the condition A, then §p do not

satisfy the equation (11).
Proof. Since the order of x, is p, so is that of g,,. Let

G=<g,>X< g, >X-X<q, >, (1)

where the order of g;; be p{*, 1 < i < 8. We can assume that p; = p,
and gy = ¢,”""", where ¢ = a;. Let w; be a primitive p{’ th root
of 1,1 <1< 8. Set g;,' = glapgz_l. Thus

o—1
0-0 | 0-0 =wlp

- W (12)

Xwlgr,) = Wit wy
Xw(glg') — wlo-}”—lwzp;‘i“l.o . __wao.o = 1, if s> 1 (13)

Xw(gw) =wlp-—l‘po—lw20-0__.w80-0 — 1’ if e> 1. (14)

k]

Set ¢ = wlp'_l, then ¢ is a primitive p_th root of 1. We have

m-—1
Eplar,) = xsla1,) (D i +a), (15)

=1
m-—1

Elan’) = xola N > a +ai) = dxslon’)s if s>1, (16)

Sp(gw) = Xb(gw)(z: cl; + Cl,,.) =d- Xb(gw)7 if e>1. (17)

=1

If e > 1, then set v; = p®. If e = 1 and pa = p, then set v; = p.
If pjlv , then set v; = ppy because of v # p. Let ¢ be a primitive
v;-th root of 1. Q(¢) denotes the v,-th cyclotomic field. B denotes

the ring of algebraic integers in Q(¢). By [10] B = Z[¢]. Clearly
€=¢s. Since p > m and ¢(v)) consecutive powers of ¢ are linearly

independent, we get

m—1 v
Z 01'.5‘6"-5" +c, #d.
=1

11



Since £, is a nontrivial solution, 0 # |¢,,| < d. Thus for any unit
in B we have

m—1 Y
Y as® T +a, # d.
=1

Hence .

(€plar,)) # (d), (18)

and if e > 1 we have

(éplgw)) = (d), (19)

and if ¢ > 1 we have

(ep(gh’)) = (d)$ (20)

By (7) and (3) for any g; € G(2 < j £ v) we have

k k
Y xrilgi) - Y Xrilgs) = n. (21)
=1 i=1

Let ¢ be any prime divisor of n;. Since (n1,%) = 1, we get
(g,v1) = 1. Thus by [11] (¢) is unramified in Q(¢). Hence (¢) =
Q1Qa- - Qs, where Q;,Q2,---Q; are different prime ideals in B.
Since (g,v1) = 1, the Frobenius automorphism for ( q ) in Q(¢) is
g, Where ag(¢) = ¢7 (See [10] ). Thus 04(Q;) € Qiy¢ =1, ,h.
Since Gal(®(s)/®@) transitively acts on the set {Qy,---,Qn} (see
[10] ), we have 64(Q:) = Q:,1 < ¢ < h. Since for every prime divisor
g of n; there exists a positive integer j such that t = ¢ (mod ), we
have (t,v9) = 1. Thus (¢,v1) = 1. Hence there is a Q-automorphism
o¢ of Q(¢) such that o¢(s) = ¢f. Since t = g/(mod vo) and v; |vo, we
get t = ¢/(mod ;). Thus o = o4’ Hence 0¢(Qi) = Qi, 1 < i < h.

Let (n1) = Q1Q32--- @i, where @1,Q2,---Q; are prime ideals in
B. By the above argument we have 0 (Q;) =Q; (1 <i<{).

12



Let (d) = DDy -- - D,, where Dy,Dg,--- ,D, are prime ideals in
B. From (21) we get

k k
(D2 xrilgi) - D Xml95)) = (m)
i=1 i=1

=(d)(n1) =D1---D;Qy---Qi, 2<j<w (22)

If e > 1 we take g; €< g1, >, otherwise we take g €< g, > X<
k R .
g1y’ >. Thus o7, x,.(g;) € B, and X.;_, X7;(g;) € B. Since the
factorization of an ideal in B as a product of prime ideals is unique
and (d,n;) = 1, we can suppose that

k
(ZXr,-(gj)) =Dj1”'Dth"’1"'an (23)

where 1 < o < r. Thus
k — — — —
(>_xw9;)) =Dy, ---D;, @k, -+~ Q- (24)
—

where D; = {z|z € D;}, etc. Set 6((S) := {o¢(s)|s € S} for any
subset S of B. If 0¢(D;) # D; (1 <i <), then one get

{I—jjn"' ’th} = {Djh+n"' 7Djr}’ ‘ (25)
{akn"' ’61;':} = {Qk:“"" ’Qk:}°

thus » = 2h. Clearly o¢|p is an automorphism of B. Thus
k
(2_xr!(g)) = 0e(Dj) -~ 01 (Ds)Qk, - Qe (26)
Ci=1

From (26), (24), (23) and (22) one get

k k
(_Z xr: (g5) - Zx_r.-(yj))

=(n1)oe(D;,) - - 0¢ (D5, ) Dy, , , -+ Dy,

r

(27)

13



Case l.e> 1.

By the condition A there are only two cases :

Case 1.1) o¢ such that o¢(Dj,) - 0¢(Dj,)Djy, -+ Dy, = (d) for
any r_th permutation j - - jaJh+1- " Jr-

In this case we have

k k
(3" Xt lg) - D Xmilgi)) = (m1)(d), Voj €<gr >.  (28)
i=1 i=1

If &, satisfy (11), then

k k
O xetl@) - X lan)) = () (Gplan))- (29)
i=1 =1

From (28) and (29) we get (£p(g1,)) = (d). This contradicts (18).
Case 1.2) o¢ such that o¢(Dj,)---0t(D;,)Djn,, -+ Dj, # (d) for
any r_th permutation jy - - jhjh+1° " Jr-
In this case we have

k k
(3 xet(g) - D Xmile) # () (d), Vg €<ar, >.  (30)
i=1

i=1

If &, satisfy (11), then

k k
(3 xritlgw) - 2 Krilgw)) = (1) (Eplaw)) = (71) ().
=1 =1

This contradicts (30).

Hence in the case 1 £, dose not satisfy the equation (11).

Case 2. e=1 and p3 = p.

Case 2.1) o; such that o¢(Dj,) - 0¢(Djn)Djyy, -~ Dj. = (d) for
any 7_th permutation ji -« - jajn+1- " Jre

In this case we have (28) for g; €< g1, > X < g, >. If &p satisfy
(11), then we have (29). Thus (¢, (g1,)) = (d). This contradicts (18).

Case 2.2) o¢ such that o¢(Dj,) - 0¢(Dj,)Djpy, -+ Dy # (d) for
any r_th permutation ji -+ jajh+1"" “Jre

14



In this case we have
k k
(3 x-'e5) - D_Tmles) # (1) (@),  (31)
i=1 i=1
where g; €< g1, > X < g1,’ >. If §, satisfy (11), then

k k
(22t o)+ 2T (01,)) = (1) (Elan,)) = (m1)(@)-

This contradicts (31).
Hence in the case 2 £, dose not satisfy the equation (11).
Case 3. pljv.
It is similar to the case 2 that £, does not satisfy (11). i
The lemma 3 lemma 4 and lemma 5 see [1].

§3. Some Partial Solutions for the Multiplier Conjecture

Let G be an abelian group with a (v,k, \)_difference set D, and
let vy be the exponent of G. In this section we follow notations in
the lemma 2.

Theorem 2. Ifn = n,, then the Second Multiplier Theorem holds
without the assumption “ng > X .

Proof. In this case d = 1. Thus it immediately follows from the
Lemma 1 or the theorem 1.

Theorem 8. If n = 2n,, then the Second Multiplier Theorem
holds without the assumption “ny > X 7, ezcept that one case is yet
undecided where ny is odd and 7||v and t = 3,5, or 6 (mod 7), and
Jor every prime divisor p(# 7) of v such that the order w of 2 mod p
satisfies that 2|ﬂf)-

Proof. If 2|n,, then by the lemma 1 we obtain that yx; is a multi-
plier of D.

Now we suppose that n; is odd. In this case n isn’t a square. Thus
v has to be odd.

15



By the theorem 1 it is sufficient to prove that no nontrivial solution
¢ of the following equations

Y oa=2, (32)
=1
£§=4x1. (33)

also satisfies the equation (11).
By the theorem 2 in [1] if (v,2) = 1, then all the nontrivial solu-
tions of (32) and (33) are 7-solutions which have the form:

&= xp(xu + xu’ + xu* = x1)5 (34)

where y is any element of order 7 in G, and 3 is any element of éG.

If (v,7) = 1, then there is only trivial solution of (32) and (33), and
the assumption “n; > A" may be removed. Now suppose that 7}v.
If v = 7, then it is easy to see that there are only two cases satisfying
Mv—1)=k(k—-1): k=3,A=1n=2, ork=4,A=2,n=2.1n
these cases we get n = n), this contradicts the assumption n = 2n,.
Hence v # 7. Let

G=<gi,>X<G,>%x<g,> . (1)

where the order of g;; be p*, 1 < i < s. We can assume that p; = 7,
and gy = g1,7" , where e = oy Set g1," = g;,"’:’_l

Case 1. e> 1.

In this case v; = 7¢. Since (2,7¢) = 1, (2) is unramified in Q(¢).
Let (2) = Dng -++D,, where D; (1 < ¢ < r) are different prime
ideals in B. We denote the residue class degree of D; by f; (1 <i <
t). Since Gal(Q(s)/Q) transitively acts on the set {D1,D3,:-- ,D:},
we have fi = fa = --- = f, =: f. Since Yoi—eifi = 6(7°), where
¢; is the ramification index of D; (see [11]), 1-r- f = ¢(7°) =
6-7¢"! . It is not difficult to see that the order of 2 mod 7° is
3.7¢"1 _ Since f is equal to the order of 2 mod 7%, we get r = 2.

16



Hence (2) = Dy D,. Since Gal(Q(s)/Q) transitively acts on the set
{D,,D,}, oe(D;) = D;(i =1,2), or o¢(D,) = D, and at(Dg) = Dj.
Hence o¢ such that either o¢ (D;,) D;, = (2) for any 2_th permutation
{113, or 6¢(D;,) D;, # (2) for any 2_th permutation ¢,¢5. Since 7 > 4
and o satisfy the condition A, by the lemma 2 ¢ do not satisfy the
equation (11).

Case 2. e=1land py =7.

In this case v; = 7. Similarly we can show that o; satisfy the
condition A. Hence in the case 2 £ does not satisfy (11).

Case 3. 7||v.

Since v is odd, ps # 2. In the case 3 v; = 7p,, and ¢ is a primitive
Tpa-th root of 1. Set 9 = ¢7, then 7 is a primitive pa-th root of 1.
We denote the p;-th cyclotomic field by Q(n). B; denotes the ring
of algebraic integers in Q(n). Since (2,p3) = 1, ( 2 ) is unramified in
Q(n). Let (2); = H; --- H,, where (2); denotes the ideal generated
by 2in By, and Hy,--- ,H, are different prime ideals in B;. From
(21) we get

k k
O xrilars) - Y Xr(ar,)), = Diln1)s-  (35)
=1 i=1

It follows that 2}r.

Let the order of 2 mod p; is w.

Case 3.1) Let ﬂ‘%ﬂ is odd.

Since the residue class degree f of H; is equal to w, r = ﬂf,—g-)-.
This contradicts 2|r. Hence the case 3.1} is impossible.

Case 3.2) Let 2[2(2a), |

Set ¢ = ¢?2, then ¢ is a primitive 7_th root of 1. We denote the
ring of algebraic integers in Q(¢) by Bo. Since (2,7) =1, (2) is
unramified in Q(¢). Let (2)o = Py ---P,, where (2)o denotes the
ideal generated by 2 in By, and Py, - - , P, are different prime ideals
in Bo. Since the order of 2 mod 7 is 3, r = ¢(7)/3 = 2. Hence
(2)0 = P1 Pg.

17



Since o¢(€) = ¢'P* = ¢, otlg(, is a Q-automorphism of Q(e).
Since Gal(Q(c) /Q) permutes {P;, P} transitively, the homomorphic
image of Gal(Q(c)/Q) is a group of order 2. We denote the image
of otlge) By Filg(o)-

Case 3.2.1) Let t = 1,2, or 4 (mod 7).

Since the order of o¢ |Q(£) is equal to the order of t(mod 7) in
(Z/(7))*, in the case 3.2.1) the order of o¢|g( is 1 or 3. Thus
Gt|gey = 1- Hence it is easy to see that

k k
" xitlan) - Y Kmlan))g = (m1)o (2o (36)
i=1 i=1

If ¢ satisfy (11), then

k k
(30 xrilan) - 22 Xl ))g = (ma)o(€lor)o-

Thus (£(g1,))o = (2)o. Since 7 > 4, it is similar to the proof of the
lemma 2 that (€(g1,))o 7 (2)o. Hence £ does not satisfy (11).

By the argument above we obtain that if n = 2n;, then the Sec-
ond Multiplier Theorem holds without the assumption “n; > A7,
provided that one of the following conditions holds:

(i) 2fn1;

(il) n, is odd, and v can not divide by 7;

(iii) »; is odd, and 72}v;

(iv) n1 is odd, and 7||v, and ¢ is a quadratic residue mod 7.

The remaining undecided case is : n, is odd, and 7||v, and ¢ is a
quadratic nonresidue mod 7, and for every prime divisor p(# 7) of v
such that the order w of 2 mod p satisfies that 2|£Ef)-.

The proof of the theorem 3 is completed now. [

Theorem 4. If n = 3n; and (v,3 - 11) = 1," then the Second
Multiplier Theorem holds without the assumption “ny > X 7, ezcept
that one case is yet undecided where ny can not divide by 8 and 13||v

18



and the order of t mod 13 is 12, 4 or 8, 2, and for every prime divisor
p(# 13) of v such that the order w of 8 mod p satisfies that 2|ﬂ‘£‘ll

Proof. If 3|n;, then by the Lemmma 1 we obtain that yx is a mul-
tiplier of D.

Now we suppose that n; can not divide by 3. In this case n isn’t
a square. Thus v has to be odd.

By the theorem 1 it is sufficient to prove that the condition ‘(v,3-
11) = 1” such that no nontrivial solution of the following equations

> a=3, (37)

§€ =9x1. (38)
also satisfies (11).

By the theorem 2 in [1] if (v,2 -3 - 11) = 1, then all the nontrivial
solutions of (37) and (38) are 13-solutions.

If (v,13) = 1, then there is only trivial solution of (37) and (38),
so that the assumption “n; > A\” may be removed. Now we consider
the case 13|v. If v = 13, it is easy to see that there are only two
cases satisfying AM(v—1) =k(k—1): k=42 =1Ln=3,0rk =
' 9,A = 6,n = 3. In these cases we get n = ny, this contradicts the
assumption n = 3n;. Hence v # 13. Take any 13_solution . In the
decomposition (1) of G we can assume that p; = 13.

Case 1. e > 1. :

In this case v; = 13%. Since (3,13%) = 1, (3) is unramified in
Q(¢). Let (3) = DyDs---D,, where D; (1 < ¢ < r) are differ-
. ent prime ideals in B. Clearly the order of 3 mod 13 is 3. It is
not difficult to see that the order of 3 mod 13¢ is 3 - 13*~!. Thus
the residue class degree f of D;(1 < ¢ < ) is equal to 3 - 13°~1.
Hence r = ¢(13°%)/f = 4, and (3) = D1 Dy D3D;. Since Gal(Q(¢)/Q)
permutes { D, Dy, D3, Dy} transitively, there is a homomorphism of
Gal(Q(¢)/Q) into the symmetric group S;. We denote the homomor-
phic image of Gal(Q(¢)/Q) by H. J¢ denotes the homomorphic im-
age of g;. Since there is a primitive root for 13¢, (Z/(13%))* is a cyclic
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group. Since Gal(Q(¢)/Q) = (Z/(13%))*, Gal(Q(¢)/Q) is a cyclic
group of order 12 - 13°!. Let the order of H be s, then s[12-13°"!
and s|24. Thus 8|12. Since H is transitive on {Dl,DQ,Da;D4},
¢ = 4 and H =< (ajaza3as) >, where ayazaza4 is a permutation
of 1234. It is not difficult to see that if the order of ¢ mod 13° are
12-13* and 4 - 13*, or 6 - 13* and 2- 13%, or 3 - 13% and 137, then
the order of 6; are 4, or 2, or 1, respectively.

Case 1.1) Let the order of ¢ mod 13° are 3 - 13%, or 13°.

In this case 6; = 1. Thus o¢(D;,)o¢(D;,)Di,Di, = (3) for any
4_th permutation ¢1¢2¢3%4.

Case 1.2) Let the order of ¢ mod 13° are 6 - 13%, or 2-13°.

In this case the order of ¢ is 2. We denote the complex conjugate
by 7. Clearly the order of 7 is 2, and 7 € Gal(Q(¢)/Q). Thus 6¢ = 7.
Hence '

ot(D;,)ot(Di,) Di, Di, = Di,2D; 2 # (3)

for any 4_th permutation ¢;¢9¢3¢4.

Case 1.3) Let the order of ¢ mod 13° are 12-13%, or 4 - 13°.

In this case the order of 6; is 4. Thus o¢(D;,)o¢(Di,)Di,D;, # (3)
for any 4_th permutation iyi3¢3%4.

Hence in the case 1 o¢ satisfy the condition A. Since 13 > 9, by
the lemma 2 ¢ does not satisfy the equation (11).

Case 2. e=1 and p;, = 13.

In this case v; = 13. It is similar to the case 1 that o; satisfy the
condition A. Hence & does not satisfy the equation (11).

Case 3. 13||v.

In this case v; = 13pg. Set 7 = ¢13, then 7 is a primitive p;_th
root of 1. We denote the py_th cyclotomic field by Q(n). B; denotes
the ring of algebraic integers in Q(n). Since (v,3) = 1, (p2,3) = 1.
Thus ( 3 ) is unramified in Q(7). Let (3); = H; --- H,, where (3);
denotes the ideal generated by 3 in By, and H,,--- , H, are different
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prime ideals in B;. From (21) we get

k k .
(O xrilon') - Y Xmlon")), = 3)1(ma)s1-
i=1 =1

It follows that 2|r.

Let the order of 3 mod p; is w.

Case 3.1) Let 9‘;(53)_ is odd.

Since the residue class degree f of H; is equal to w, r = 9;(5_2).
This contradicts 2|r. Hence the case 3.1) is impossible.

Case 3.2) Let 2|ﬂ5ﬂ.

Set € = ¢P?, then ¢ is a primitive 13-th root of 1. We denote the
ring of algebraic integers in Q(¢) by By. Since (3,13) = 1, (3)
is unramified in Q(¢). Let (3)o = Py --- P,, where (3)o denotes the
ideal generated by 3 in By, and Py,--- , P, are different prime ideals
in By. Since the order of 3 mod 13is 3, r = ¢(13)/3 = 4. Hence
(3)o = PP, P3 P;.

Since o¢(e) = ¢tP2 = ¢, 0tlg(e) is a Q-automorphism of Q(e).
Since Gal(Q(c) /Q) permutes {P;, Py, P;, Py} transitively, the ho-
momorphic image H of Gal(Q(¢)/Q) is a cyclic group of order 4.
We denote the image of gt|g(,) by dtlg -

Case 3.2.1) Let the order of ¢ mod 13 is 3 or 1.

Since the order of o¢ IQ(:) is equal to the order of {(mod 13) in
(Z/(13))*, &}|Q(c) = 1. Hence it is easy to see that

k k
O xrt ) - Y X l91))g = (01)o(3)o-
i=1 =1
If € satisfy (11), then

k k
(E xri (g1,) 'Zx_n(gh))o = (n1)o(&(g1,))o-
i=1 =1

Thus (£(g1,))o = (3)o- Since 13 > 9, it is similar to the proof of the
lemma 2 that (€(g1,))o # (3)o. Hence ¢ does not satisfy (11).
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By the argument above we obtain that if » = 3n; and (v,3-11) =1,
then the Second Multiplier Theorem holds without the assumption
“my > A", provided that one of the following conditions holds:

(i) 3|n1;

(ii) »1 can not divide by 3, and v can not divide by 13;

(iii) =1 can not divide by 3, and 13%|v;

(iv) n1 can not divide by 3, and 13||v, and the order of ¢ mod 13
is3orl.

The remaining undecided case is : n; can not divide by 3, and
13||v, and the order of ¢ mod 13 is 12,4 or 6,2, and for every prime
divisor p(# 13) of v such that the order w of 3 mod p satisfies that
9|82}, '

The proof of the theorem 4 is completed now. 1

Acknowledgement. The author is thankful to the referee for
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