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Abstract

Let F, = GF(q") denote the finite field of order g™, and let
U. = U, F.. Explicit permutation-type formulas for the Frobenius
map ¢ (defined by ¢(z) = z?) on F, and on U, are obtained by
using the well-known number = (%) (the number of monic irreducible
polynomials of degree 7 in F)[z]). Some results in [1] and [2] can
be obtained from these formulas. Moreover, some other results are
also given by using P6lya’s counting theory.

1 Introduction.

Throughout this note, we let F;, = GF(g™) denote the finite field of order
g", where n is a positive integer and g is a prime power. Fj is usually
written as F', and the set-theoretic union U, F; is denoted by U, (Note that
F; C F; if and only if i divides 7). By using the Lagrange interpolation
formula, every function f : F,, — F, can be represented by a unique
polynomial f(z) of degree less than ¢™ in F,[z]. It is also known ([1],
Lemma 1) that every function g : U, — Uj, can be represented by a unique
polynomial g(z) of degree less than |Uy| with coefficients in the extension
field E.(= Fp)of F\, F3,- - -, F,, wherem = L.C.M.{1,2,---,n}. Such
polynomials f(z) € Fy[z] and g(z) € Ey[z] are called the representing
polynomials of the functions f : F, — F, and g : U, — Uy, respectively.
The function ¢ on Fy, (U, respectively) with the representing polynomial
¢(z) = z7 is called the Frobenius map on F, (Up,, respectively). It is
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well-known (cf. [5, p. 351]) that ¢ is a permutation of F;,. Then it is easily
seen that y(z) also represents a permutation of Uy. In this note we use the
well-known number 7 (%) (the number of monic irreducible polynomials
of degree 1 in F([z]) to give explicit permutation-type formulas for the
Frobenius map ¢ on F, and on U,. (A permutation ¢ on an m-set S is
said to be of type (n1, n2, - - -, Ny, ) if the number of k-cycles in o is 7y for
k=1,2,---,m. Wealsosay that (ny, na, - -, 7y ) is the permutation-type
of o on S.) As applications, some results of [1] and [2] follow as corollaries
and other results are also given by using P6lya’s counting theory.

2 Permutation-Type Formulas of ¢.

Theorem 2.1 The permutatzon ¢ on F, defined by o(z) = m“ is of the
type (A1, X2, -+, An, 0, - -, 0) where

A = {7"(7:), if i|n,

0, otherwise.

The permutation of p on U, = UL, F; defined by o(z) = z? is of the
type (W(l)a W(2)1 et ,7!'(72.),0, tet )0)

Proof. For any z in Un,z € F; for some i < n. So 2?9 = z, that
is, ¢*(z) = z. Hence z is in a k-cycle of the permutation ¢ on U,
with k¥ < ¢ < n. Then there is no cycle of length greater than = in this
permutation. Therefore, all the numbers after the first n entries in the
permutation-type of ¢ on U,, must be equal to 0. It is easily seen that this

conclusion also holds for the permutation-type of ¥ on F,.

Let Up denote the empty set. Then U, is the disjoint union of the
non-empty sets U;\U;_; for ¢ = 1,2, -, n. Itis clear that for any ¢ and
nwith1 <4< n,z € U;\Ui_ if and only if ¢ = z and 2% # z for
any j with 1 < j < 7. Thus, we see that z € U;\U;—; if and only if =
is in an i-cycle of the permutation ¢ on U,. In fact, this conclusion also
holds for ¢ = 1, since ¢ € U)\Up = F if and only if 29 = z. From the
above, the number of i-cycles of the permutation ¢ on U, depends only on
the action of ¢ on U;\U;_), and so only on i. Therefore, there is a fixed
sequence m;, ™My, - * *, Mk, - « -, such that (my, ma, - -+, My, 0,- - -,0)is the
type of ¢ on U,. Now we consider the action of permutanon pon Fy,.
Let (A, X2, 5 An, 0, - +,0) be its type. Since ¢™(z) = z¢ = z for any
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T € F,, the length of each cycle must divide n. Thus, A; = 0if i } n. For
the case of i|n, since U;\U;_; C F, C U,, z is in an i-cycle of ¢ on F, if
and only if z is in an i-cycle of ¢ on U,. Thus we have \; = m; for i|n.
Finally, we show that m; = (i) for all <. Since (A1, X2, - -, An,0,:+,0)
is the type of p on Fy,, ¢™ = |F,| = 2ijnt A = Tjjnt - my. From the
proved fact that my, my, - - -, my, - - - is a fixed sequence, we see that m; is
a function of ¢ defined for every integer 7. Hence we may use the Mtbius
inversion formula to obtain

1 i
mi = > ul(d)gs
dji
which is equal to 7 (z) for all 3.
This completes the proof for Theorem 2.1.

3 Applications

From the permutation-type of ¢ on U, we immediately have the following
Corollary 3.1 [1,p. 149] |Un| = X0 im(2).

Let A(g") denote the group of all permutations of F, which commute
with ¢, and let .A(g,n) denote the group of all permutations of U, which
commute with . The formulas for |A(¢")| and |.A(g,n)| were obtained
in {2] and [1], respectively. Now we can easily obtain these formulas in
a unified way. Recall the following elementary result from permutation
group theory: If o belongs to the symmetric group S, of degree n and
o is of the type (7,72, -, Ty), the centralizer of ¢ in S, has the order
[Tz & - (7:)!. Then we immediately obtain the following corollaries 3.2
and 3.3 from Theorem 2.1.

Corollary3.2  [2,p. 134]  |A(g")| = [Ty (m(d))! - d™(@).
Corollary 33  [1,p. 150]  |A(g,n)| = [T (x(d))! - d™(®.

Corollary 3.4 The number of functions f : F, — Fy, suchthat fo = of
isgivenby N = 7 .
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Proof. By Theorem 2.1,  has the type (A1, A2, - -, An, 0, - - -, 0) where
A = {ﬂ'(i)a "f iln:

0, otherwise.

From [3, p. 172], we have

N = f[ (Z kAk) " =11 (Z kvr(k)) ”w.

=1 \ k|: iln \ k|

Since
ﬂ%“()
we have ()
a{Ege)e)

From {5, Lemma 3.23] we have

Z#( ) {(1) :;Zli:ai;d1<d<i

k,d|kli ’ = ’

where the sum runs over k dividing ¢ and divisible by d. It follows that
ZZ#() le #( )}q"=q‘-
kli dlk dji |kdlkls

Therefore,
N = H( )w(t) Zilni«(i) =g

ijn

Corollary 3.5 Ler f : F,, — F, be a function with the representing
polynomial f € Fyz]. Then fo = ¢f on F,, ifand only if f € F|z].

Proof. The sufficiency is obvious, since for any f € F|z],
fo(z) = f(29) = [f(2)]® = ¢f(z) forallz € F,.
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By Corollary 3.4, N = ¢7", which is equal to the number of a}l polynomials
in F(z] with degree < g™. Then the necessity follows immediately.

We note that Corollary 3.5 can also be proved in a way similar to [2,
Lemma 1]. The Corollaries 3.4 and 3.5 are concerned with functions from

F, to F,,. Similarly we can obtain corresponding results for functions from
Un to U,.

Corollary 3.6 The number of functions f : U, — U, with fo = ©f is
qz:‘_l ur(s)

Corollary 3.7 Ler f : U, — Un be a function with the representing
polynomial f € Fp,[z] where m = L.C.M.{1,2,---,n}. Then fo = of
on Uy ifand only if f € Fz).
We note that Corollary 3.7 is already given as Lemma 2 in [1].

Now we tumn to other applications of Theorem 2.1.

Let G, = Autr F, be the Galois group of F, over F. Itis well-known
(cf. [4, p. 282]) that G, is a cyclic permutation group on F;, and that the
Frobenius map ¢ is a generator of Gn, i.e., Gn = {9, %, --,¢" = 1}.

Corollary 3.8 The cycle index of G, is given by

(%) 21 Z [ 0

k—l in m

(%%) =1 Z'ﬁ ( ) T =48,

ijn ("dj

where ¢ is the Euler totient function.

Proof. Let ¢ be of the permutation type (A1, A2, - -+, An, 0, - - -, 0). For any
positive integer k between 1 and n, o* splits each cycle of o with length i
into (i, k) cycles with length (#ci Then by the definition of cycle index,

= 7@, ifiln
A,_{o

, otherwise.
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so we have

(*) -2 (1 k)w(t

To prove the second equality in Corollary 3.8, we use T} to denote
H (t k)vr(t)
ijn

Then (*) can be written as
(1) Pg, == Tk

Note that for any i,n with i|n,(n,k;) = (n,k.) implies (i,k) =
(2, k2). It follows that (n,k;) = (n, k) implies Tx, = T,. For any d|n,
let Cq4 = the number of integers k& with (n,k) = dand 1 < k < n. Then
(1) can be written as

(2) = - Z CdTa.
dln
Since (n, k) = d if and only if (3, %) =1, we have Cg = ¢ (5). Then,
from (2), we obtain

(%%) =1 Z & ( ) H (= d),,(.)

dln

Define a relation ~ on the set of all functions from F;, to F, as follows:
f ~ g if and only if there is ¢ € Gy, such that fo = g. It is easily seen
that ~ is an equivalence relation. Let N, be the number of the equivalence
classes. We have

Corollary 39 N, = 1 Ty, ¢ (8) ¢* ZimED),

Proof. By the well-known Pélya’s Theorem (cf. (3, p.157]) N,
Pg, (¢",q™,- ). Then the result immediately follows from Corollary
3.8.

It is easily seen that Ny = ¢? = | FF|. So every function from F to F
is only equivalent to itself.
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Corollary 3.10 Every function from F, to F,, is only equivalent to itself if
andonlyifn = 1.

Proof. We only need to show the necessity. When » > 1,
2 (i, d)n(2) < Zur(z =q" foranyd,

ijn in
and the inequality is restrict for the case d = 1 since
> (5, 1)r(i) = dow(i) < Y ir(i) = g™
ijn i|n in

Then it follows from Corollary 3.9 that

Zq&( ) ™" = g™ since %;cp(%):

d|n
That is, N, < (g*)7 = |FF»|. It proves the necessity.

Finally, we point out that we can also use Theorem 2.1 and the de
Bruijn’s counting theorems [3, Theorems 5.3 and 5.4] to obtain corre-
sponding results.
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