When is a complex matrix a character table?
A reduction to vertex independence
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ABSTRACT. In [3] R. Brauer asked the question: When is an
n X n complex matrix X the ordinary character table of some
finite group? It is shown that the problem can be reduced in
polynomial time to that of VERTEX INDEPENDENCE. We
also pose and solve some (much) simpler problems of a related
combinatorial nature.

1 Multiplicity structures

Definition 1. In (18, 19] a multiplicity structure (MS) of order n is defined
as a pair u = (h, ), where h is a sequence h; of n positive integers and 04
is an array v, (i,7,k =1,2,...,n) of n® non-negative integers satisfying

hghj = Z hk‘)fs- (1)

k=1

- In the sequel we let g = Y_T hy, choose a fixed set G of order g and a
fixed partition of G into disjoint sets C; with |C;| = h; (i = 1,2,.. .y 7).
For a € Ck put v = 7§ By (1) we can draw up a g x g multiplication
table in such a way that any block C; x C; has a repeated exactly vy times
for a € G, and we say that the corresponding binary operation ‘o’ and the
multiplicity structure u are compatible.

If (G,0) is a group and the C; are its conjugate classes, we call  the
conjugate class (CC) structure of (G,0). Then by convention, C; = {e},
where e is the neutral element. Besides this CC structure there are many
ways in which an MS can arise in a group; see for example [12, 1, 11].
Related concepts can be found in [6, 7, 8, 13, 14, 4].
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2 The conjugate class structure

Brauer’s problem is equivalent to asking for a characterization of those

MS’s which are CC structures [5, 9]. Thus, for a given n x n complex

matrix X = [xj] to be the ordinary character table of some finite group,

necessarily the columns X; must be mutually orthogonal closed under

complex conjugation and have lengths given by |X;|? = ;» Where h} is a

positive integer. Putting g = h{, the numbers h; = /hj are mtegers, row
=[1,...,1], column X; >0 and the equations

h XXX
2 = ”"E @
r=1

have to define an MS u = (h,~). Then, provided X has these properties, u
is the CC structure of a group (G, o) iff X is the character table of (G, o).

3 Other notation

Given a finite simple graph H = (V, E), with vertex set V and edge set E, a
set S C V is independent if no two vertices of S form an edge and the vertez
independence number a(H) is the largest size of an independent set [2].
The problem VERTEX INDEPENDENCE ie the determination of a(H)
is equivalent to many other combinatorial problems; for example, through
a construction of E. Lawler, to THREE DIMENSIONAL MATCHING
[15, 10].

In what follows, if m > 0 is an integer, we let [m] = {1,...,m]}, so that
[0] = 0. Disjoint unions are written as sums.

4 Main result

Theorem 1. [19]. Let u = (h,v) be an MS such that the integers h;
divide g = Y1 hy with hy = 1 and 4}, = 1. Then there is a graph H
constructible from p in polynomial time such that u is a conjugate class
structure iff H has independence number a(H) = g°.

Proof: Partition a set G of order g > 2 into n classes C; with |C;| = h; as
above with C; = {e}. The partition defines an equivalence relation ‘=’ on
G. The vertex set of our graph X is the union

V=ZC¢ijxCkaxGxGx [+E] x [g/h4],
ik

and two distinct vertices (written as strings) £ = abezyz fr and
& =a'b'dz'y’ 2 f'r' form an edge if at least one of the following conditions
holds:
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(i) abc=a'b'c.
(ii) ab=a't!, z#z'.
(iif) be=a't!, y#=z'.
(iv) zc=a't, z#<.
(v) ay=2a't, z#<2.
(vi) a=ad\b=b,c=d,z=2,f=f.
(vii) bz =b'z’, a#a'.
(viii) ez =a'z/, b#V.
(ix) & = achey'bf'r’, z#b.
(x) € =abaxz2fr,&’ = abaz’z' f'r, b#V.

Sufficiency. Let S C V be independent with |S| = g3. By rule (i) for
the formation of edges, there is a bijection abc — & = £(abc) = abezyz fr
between G® and S, so that the triple abc uniquely determines the other
entries of £. Rule (ii) defines a binary operation on G given by z =aob
where z is independent of c. Rule (iii) ensures that b o c= y and (iv) that
zoc = z while aoy = z by (v), so that the associative law holds. To
show compatibility, fix c and for z € G let J; be the collection of those
abczyzfr € S with ab € C; x C;. By rule (vi), |Jj5| < 7f; and using
equation (1),

hibg = 3 151 < D 2% = hihy,

z€CG zeG

from which compatibility follows.
Rules (vii) and (viii) ensure that (G, o) is a group, and since v}, = 1, the
neutral element must be e. Write the inverse of a as a~!, and let Z(a) be
the centralizer of a. To see that C; consists of complete conjugate classes,
let b€ C; and a € G. Find £ = £(aba™!) and &’ = £(aa™'b). If £ = ¢ then
aoboa~! = b while if £ # ¢, rule (ix) says that aoboa~! = b. Finally,
suppose that b # b’ are in Z(a) and a € C;. By (x) the last entries in £(aba)
and £(ab’a) must be distinct so that |Z(a)| < g/h;, with equality holding.
Hence C; is the conjugate class containing a.
Necessity. Suppose that u is the CC structure of the group (G, o). To each
ab € G? associate two integers (ab)’ > 1 and (ab)* > 1 so that the following
hold: Given 1 < ¢, j < n and z € G, the numbers (ab)’ run once through
[+%] as ab € C; x C; with ao b = z. For fixed a € C; we set (ab)* =1 if
b ¢ Z(a) and let (eb)* run through [g/k;] as b € Z(a). Then the elements
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abc{a o b)(bo c)(aoboc)(ab)'(ab)* for abc € G® form an independent set in
H, and a(H) = ¢° by rule (i).

Since H has clearly been constructed from u in polynomial time [10], the
statement follows. 0

Remark 1. Taking the observations of section (2) into consideration, we

have clearly reduced (in polynomial time) the original form of Brauer’s
problem to VERTEX INDEPENDENCE.

Remark 2. The assumed properties of x are extremely meagre. It is
just possible that by adding sufficiently many known properties, enough
structure may be introduced to make some equivalent of the combinatorial
problem more tractable. Among the more elementary of these are the
following 5, 9]:

(i) ri=1
(ii) 23 'ij’)';k = Ea 71"’07;7«:

(iii) There is an involution r « 7 of [n] which leaves 1, h and +}; invariant
and allows hi7f; to be symmetric in all its indices.

Like these, further necessary properties of 1 can be inferred from those
of the x} and equation (2).

5 Some related problems and their solutions
(18, 19)

Theorem 2. A given MS p = (h,v) is compatible with a quasi-group (ie
a binary operation on G for which both cancellation laws hold) iff for each

tand k
n n
2 =2 =
=1 =1

Theorem 8. pu is compatible with a commutative binary operation iff
v = and for each i

> {hx: 4k isodd } < hi.

Theorem 4. The MS p is compatible with an operation ‘o’ such that
aob# boa for a# b iff hi =1 implies that

vk Slhe(hs+1) and v + 75 < hihj (i # 3).
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We omit the easy proofs of theorems 2 and 3.

Proof of Theorem 4: For Y C G x G, let Y’ = {(b,a): (a,b) € Y} and
diagY = {(a,b) € Y: a = b}. Calling Y. independent if Y NY’ C diagY,
these sets form the independent sets of a matroid [17) on G? with rank
function given by

p(X) = |X| = 51X 1 X'| - ldiagX]) (X € G?).

Although it is not immediately obvious, it is not hard to see that u is
compatible with a binary operation of the required kind iff the following
two conditions are valid:

(i) For each 1 < i < n there are disjoint independent sets X¢ of orders
& with
Y x¢=cCixc.
a€CG

(ii) For each pair 1 < i < j < n there are disjoint independent sets Y;} of
orders 7{; + 7% such that

Y Y5=CixCi+CixCu
a€CG

Now let M be the matroid restricted to C; x C; and truncated at 4§, and
for i < j let Njj be its restriction to C; x C; + C; x C; and truncated at
5 +75- The Nash-Williams formula [16, 17] applied to the union of the
matroids M over a € G then gives necessary and sufficient conditions for
(i) to hold, and similarly the union of the N{; determines the conditions for

(ii). These are the conditions of theorem 4. a
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