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Abstract. We show how a claw-free well-covered graph containing no 4-cycle, with
any given independence number m, can be constructed by linking together m sub-
graphs, each isomorphic to either K2 or K3. We show further that the only well-
covered connected claw-free graphs containing no 4-cycle that cannot be constructed
in this way are K and the cycle graphs on 5 and 7 vertices respectively.

1. Introduction

In this paper, G will denote a finite simple connected graph with vertex set V(G)
and edge set E(G). We shall further assume that G is claw-free (thatis, G contains
no induced subgraph isomorphic to K 3) and that G contains no 4-cycle as a (not
necessarily induced) subgraph.

AsetJ C V(Q) is said to be independent if no pair of vertices of J is adjacent.
The size of the largest maximal independent set is called the independence number
of G and denoted by A(G). In 1970, Plummer [5] introduced the concept of a
well-covered graph, as a graph in which every maximal independent set has the
same size, 8(G). These graphs are of interest because whereas the problem of
determining the independence number of an arbitrary graph is NP-complete, in
the case of a well-covered graph, it can be found by determining the size of any
one maximal independent set.

Various approaches to the problem of characterizing families of well-covered
graphs have been tried and the reader is referred to [9] for an excellent survey
of progress. One approach has been to restrict the cycle lengths contained in the
graph. Well-covered graphs of girth 8 or more have been characterized by Fin-
bow and Hartnell [1]; their result was extended to include well-covered graphs
of girth 5 or more by Finbow, Hartnell and Nowakowski [2]. The same three
authors [3] have also characterized well-covered graphs containing no cycles of
length 4 or 5. However, when the cycle restriction is relaxed so that only cycles of
length 4 are debarred, the problem of characterization appears much more difficult.
Gasquoine, Hartnell, Nowakowski and Whitehead [5] have described techniques
for building a family of connected well-covered graphs containing no 4-cycles.
Twenty-seven graphs in this family, that are also edge-critical with respect to the
property of being well-covered, are illustrated in an appendix to [5]. The authors
also give seven other examples of such edge-critical graphs known to them: K,
K3, K3, Cs and three graphs on respectively 13, 14 and 16 vertices. Of these 34
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graphs, 20 can be used as building blocks, in a manner described in [S], to pro-
duce well-covered graphs of larger order. However, no complete characterization
of well-covered graphs containing no 4-cycles is given. In this paper, we add the
extra restriction that the graph is claw-free.

It follows from a result of van Rooij and Wilf {10], that a claw-free graph con-
taining no 4-cycle is necessarily a line graph. The graphs characterized in this
paper are therefore a subclass of well-covered line graphs. The edge analogue of
the well-covered property for graphs is the property that every maximal matching
in a graph G is also a maximum. Such graphs are called equimatchable. Thus a
graph G is equimatchable if and only if its line graph L(G) is well-covered. The
problem of characterizing equimatchable graphs was first suggested by Griinbaum
[4] in 1974. A characterization has been given by Lewin in [7] and a good char-
acterization, that leads to a polynomial recognition algorithm, by Lesk, Plummer
and Pulleybank in [6]. However, neither of these characterizations is descriptive.

2. Notation and Preliminary Results

We shall use the following notation. Let v € V(G). Then we denote the neigh-
bourhood of v by N(v) and the closed neighbourhood, N(v) U {v}, by N{v].
For any subset S C V(G), (S) denotes the subgraph of G induced by S. With
a slight abuse of notation, we shall denote the independence number of (S) by
B(8S). A cycle graph on = vertices will be denoted by C,. The minimum vertex
degree in G is denoted by §(G).

Lemma 1. When B(G) = 1, then G is isomorphic to one of Ky, K, or K.

Proof: Since B(G) = 1, V(Q) is a clique. The result follows by observing' that
G contains no 4-cycle. |

Lemma 2. Letv € V(G). Then B{N(v)) < 2 and, when B(N(v)) = 2, then
(N(v)) is disconnected and each of its two components is isomorphic to either
K 1 or K.

Proof: Since G contains no induced subgraph isomorphic to K 3, it follows that
B(N(v)) < 2, forall v € V(G). Further, since G contains no 4-cycle, N(v)
contains no path of length 2. Thus, when g(N(v)) = 2, then N(v) is discon-
nected and the result follows. 1

It follows from Lemma 2 that, for any v € V(G), the induced subgraph v €
V(G) is one of the three possibilities shown in Figure 1.

The following result is well known and has appeared in several other papers
on well-covered graphs (see e.g. [2], where a more general version is proved as
Lemma 1).

Lemma 3. Suppose that B(G) > 2. Let v € V(G) and denote the subgraph
G — N[v] by H. Then H is well-covered and B(H) = B(G) — 1.
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® (i) (iii)
Figure 1

Proof: Since B(G) > 2, V(H) # 0. Let J be any maximal independent set in
H. Then J U {v} is a maximal independent set in G. Thus |J] = 8(G) — 1, for
all choices of J , and hence H is well-covered. |

Corollary 3.1. Suppose B(G) > 2. Let v € V(G) be such that B{(N (v)) = 2
and let a,b be independent vertices in N(v). Let J be a maximal independent
setin H = G — N[v). Then J contains a neighbour of a or a neighbour of b.

Proof: Suppose there is a maximal independent set J in H containing no neigh-
bour of either a or b. Then J U {a, b} is a maximal independent set in G. But by
Lemma 3, (G) = |J| + 1, so this is impossible. ]

We make the following definitions. A basic subgraph is an induced subgraph
B, isomorphic to K3 or K3,and such that B contains a vertex u for which N[u] =
V(B); the vertex u is called a hidden vertex of B. Thus, when B & K5, ahidden
vertex of B has degree 1in G; and when B & K3, a hidden vertex of B has degree
2inG.

Taking a hidden vertex of a basic subgraph as the vertex v of Lemma 3, we have
the following corollary.

Corollary 3.2. Suppose B(G) > 2 and G contains a basic subgraph B. Then
G — V(B) is well-covered with independence number f(G) - 1.

3. A Construction

We show in this section how a claw-free well-covered graph containing no 4-
cycle, with any given independence number m, can be constructed by linking
together m basic subgraphs.

Theoremd. Suppose G is agraph such that V(G) can be partitioned into subsets

Vi, Va,..., Vi, such that (V;) is a basic subgraph, s = 1,2,...,m. Then G is
well-covered. Further, G is claw-free and contains no 4-cycle if and only if the
following conditions are also satisfied:

(a) there is at most one edge between the sets V; and Vi.t #J;
(b) if z; € V; is adjacent to both z; € V; and to =i € Vi, where i,j,k are
distinct, then x; and x are also adjacent;
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(c) a vertex of V; is adjacent to a vertex of at most two other subsets in the
partition, distinct from V;.

Proof: We first show that G is well-covered. Since the vertices of each subset
{(Vi),i=1,2,...,m, form a clique, at most one vertex from each subset can be
included in any maximal independent set in G. However, since each subset V;
contains a vertex v; such that N[v;] C V;, every maximal independent set must
include a vertex of V;. Hence G is well-covered, with 8(G) = m.

The proof is concluded by noting that each of the three conditions (a), (b), (c)
is necessary for G to contain no 4-cycle, and that taken together they are also
sufficient. The conditions (b) and (c) are each necessary to ensure that G is claw-
free and, taken together, they are also sufficient. ]

If G satisfies the conditions of Theorem 4 and is also connected, we shall call
G a basic chain.

We now describe a recursive method for constructing a basic chain, with inde-
pendence number m, from a given sequence of m basic subgraphs, By, B3, ..., Bm,
where for2 < 1 < m — 2, not both B; and B;,; are isomorphic to K;. We adopt
the notation that V(B;) = {v.-,a;}, when B; & Kp,and V(B;) = {v,-, a,-,b.-},
when B; & K, where in either case, v; denotes a hidden vertex of B;. Then, the
graph G; is defined recursively as follows:

G\ = By,
V(Gy) =V(Gi-1) UV(B)),2 <i<m;

When B, & K3, then

E(Gn)UE(B)U{aibi1} when By & K3,2<i<m;

E(G))=
(G1) {E(Gi-l)UE(Bi)U{aiai-haibr'-Z} when B ¥ K,,2<i<m.

When By ¥ K, then

E(G2)=E(G1)UE(B;)U{e20a1};

E(G3)=E(G2)UE(B;)U{a3az,a3a1}; whenB; & K,

E(Gl)={E‘(GH)UE(B.')U{O.‘b.‘-l} when B ¥ K3,3 <i<m;
E(Gi1) UE(B;)U{a;ia;, a,-b,'_z} when B,y 2 K,,4 <1< m.

An example of a basic chain constructed by this algorithm, with B; & B, &
K, is illustrated in Figure 2(i), where strong lines represent the edges of basic
subgraphs and weak lines represent the edges linking them. It will be seen that
this gives an essentially linear method of linking the basic subgraphs. Other ways
of linking them to form a basic chain are possible, if a sufficient proportion of
them are isomorphic to K3. Examples are shown in Figure 2(ii) and 2(iii).
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Figure 2

4, The Characterization

We shall assume throughout this section that G is well-covered.
We first investigate the structure of G when G contains no basic subgraph. Thus,
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in particular, B(N(v)) = 2, forall v € V(G). Our strategy is to consider the
possible structure of the subgraph G— N[ v], and we start, in the following lemma,
by showing that G — N[+] is connected, forall v € V(G).

Lemma 5. Suppose B(G) > 2, and G contains no basic subgraph. Then for all
v € V(Q@), the subgraph H = G — N[v] is connected.

Proof: Suppose forsome v € V(G), the subgraph H is disconnected. By hypoth-
esis, v is not a hidden vertex of a basic subgraph and hence, by Lemma 2, (N (v))
has two components, A and B, say. Then wecan finda € V(A), b € V(B) such
that the neighbour(s) of a in H and the neighbour(s) of b in A are in different
components of H. Let z;,y1 (where possibly z) = y1) be the neighbours of a in
H and let 2, y> (where possibly z2 = y2) be the neighbours of b in /. Denote
the (distinct) components of H containing z; and y; by H;, ¢+ = 1,2. Note that
when z; # y; then z; and y; are adjacent, since G is claw-free.

Since G contains no basic subgraph, each of z1, 1, 72, y2 hasaneighbourin H,
which is not a vertex of either of the induced subgraphs {a, z;,y1) or {b, 22, 2).
Let z} (y}) be such a neighbour of =; (y;), in H;, where z} = ¢} if z; = y;,i=1,2.
Then, when z; # y;, we note that z; and y; are not adjacent, since G contains no
4-cycle. The restriction on 4-cycles also implies that when z; # y;, then z; # yi.
Denote by S the subset of distinct vertices from among z},y},z5,v3. Then §
is independent and can be extended to a maximal independent set J of H. We
note that J contains no vertex adjacent to either a or b. But this contradicts Corol-
lary 3.1, proving that G — N[v] is connected. |

Lemma 6. Suppose that B(G) > 2 and G contains no basic subgraph. Suppose
further that for some v € V(G), H = G— N[ v] contains a basic subgraph. Then

(a) each hidden vertex in H is adjacent to exactly one vertex of N(v); further,
no vertex in N(v) is adjacent to more than one hidden vertex in H;

() 8(G) =2, when H contains a basic K3, and §(G) < 3, when H contains
a basic K.

Proof: (a) Since G contains no basic subgraph, every hidden vertex in H is adja-
cent to at least one vertex of N(v). However, no vertex of H is adjacent to more
that one vertex of N(v), since then G would contain a 4-cycle through v.

Now leta € N(v) and suppose a is adjacent to vertices z,y € V( H) such that
z,y are hidden vertices of basic subgraphs of /. Then since G is claw-free, z,y
are adjacent and hence, since they are both hidden vertices, they are vertices of
the same basic subgraph B, say, of H. Clearly B % K3, since otherwise G would
contain a 4-cycle through a and the vertices of B. So the only possibility is that
B 2 K, and hence B = (z,y). However, this is only possible if B = H. But
then (a, 7, y) is a basic subgraph of G, contrary to hypothesis. Thus each vertex
of N(v) is adjacent to at most one hidden vertex of H.

(b) This follows immediately, from the first assertion in (a). [ |

194



Lemma 7. Suppose B(G) > 2 and G contains no basic subgraph. Let v be a
vertex of minimum degree 5(G) and suppose that H = G — N[ v] is isomorphic
fo a basic chain. Then either f(G) = 2, H ¥ K; and G ¥ Cs; or B(G) = 3,
H is a chain of two basic K3 ’s and G = C;.

Proof: It follows from Lemma 6, that two cases can arise, according to whether
6(G) =2 0ré(@G) =3.

Case(a)  Suppose §(@) = 2 (so that (N'[v]) is given by Figure 1(i)); then
by Lemma 6(a), H contains exactly two hidden vertices, each adjacent to a distinct
vertex of N(v). Since each basic subgraph in the chain contains a hidden vertex,
H contains at most two basic subgraphs. Now, if H contains a basic K3, then
two vertices of this K3 must be hidden, by the 4-cycle restriction. But this would
imply that H contains at least three hidden vertices in all, so this possibility does
not arise. Thus either H & K, and G ¥ Cs or H is a chain of two basic K3’s
and G = (. Itis easily seen that both Cs and C; are well-covered, so both these
possibilities arise. We note that 8(Cs) = 2 and §(Cy) = 3.

Case (b) Suppose 6(G) = 3 (so that (N[v]) is given by Figure 1(ii)). By
Lemma 6(b), every basic subgraph in the chain H is a basic K3. Further, since
[N(v)] = 3, it follows from Lemma 6(a) that H contains exactly three hidden
vertices, each adjacent to a distinct vertex of N(v). Denote the vertex of degree 1
in N[v] by b. Then since §(G) = 3, b has two neighbours, say u, w, in H, where
we may take u to be the (unique) hidden vertex adjacent to b. Then since G is
claw-free, the vertices u, w are adjacent. But this implies that w is in the same
basic subgraph as u (since u is a hidden vertex). However, this is impossible,
since otherwise G would contain a 4-cycle through b and the three vertices of this
basic subgraph. Hence this case does not arise. [ ]

Lemma 8. Suppose B(G) > 2 and G contains no basic subgraph. Let v be a
vertex of minimum degree §(G). Then H = G — N[v] is not isomorphic to any
of Ky,Cs or C;.

Proof: Suppose first that H = K, and let V(H) = {w}. Then since deg gw >
deggv > 2, w is adjacent to at least two vertices of N(v). But this is impossible,
since then G would contain a 4-cycle through v and w. Thus H ¥ K.

Next suppose that H is isomorphic to one of Cs or C; and let @,z be two
adjacent vertices with e € N(v) and z € V(H). Now z has two neighbours in
H and hence one of these, y say, must also be adjacent to a, since G is claw-free.
Thus the vertices of H adjacent to a vertex of N(v) occur in pairs; hence (since
in either case, V( H) has odd size), there is at least one vertex of H of degree 2 in
G. Thus §(G) = 2 and we may assume that (N[ v]) is given by Figure 1(i), with
N(v) = {a, b}, where a, b are independent vertices.

Now suppose that H is the 5-cycle zyzws, where z,y € N(a), z,w € N(b).
But then {v, z, w} and {a, w} are both maximal independent sets in G, which is
impossible, since G is well-covered. Thus H# ¢ Cs.
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Lastly, suppose that H is the 7-cycle zyzwstu, where z,y € N(a). Just two
possibilities arise according to whether N(b) N H = {z,w} or {w, s}. Butin
either case, G contains the maximal independent sets {v, z, w,t} and {a, w,t},
which is again impossible, since G is well-covered. Thus H ¥ C,, completing
the proof of the lemma. |

In the next two lemmas, we consider the structure of & in the case when G
contains a basic subgraph B.

Lemma 9. Suppose B(G) > 2 and G contains a basic subgraph B. Let H be
a connected component of G — V(B). Then H is not isomorphic to any of K,,
Cs or Cy.

Proof: Let v denote a hidden vertex of B, so that V( B) = N[v]. We shall adopt
the notation that V(B) = {v,a} when B & K, and V(B) = {v,a,b} when
B = K3. Let z denote a vertex of H adjacent to the vertex ¢ € B. We note that
a is the only vertex of B adjacent to z, by the 4-cycle restriction.

Suppose first H & K, so that V(H) = {z}. We extend {a} to a maximal
independent set J in G and note that J contains no neighbour of either z or v.

.Then (J — {a}) U {v, z} is also a maximal independent set in G of size |J| + 1.
But this is impossible, since G is well-covered. Hence H ¥ K.

Now suppose that H is isomorphic to Cs or C;. In either case, z has two
independent neighbours in H and hence one of these, say y, must also be adjacent
to a, since G is claw-free; further, z,y are the only vertices of H adjacent to
a, by Lemma 2. When H % Cs, then H — N[a] is a path zws, say. Then
both {a, w} and {a, 2, s} are maximal independent sets in the induced subgraph
G' = (V(B) UV(H)). Let J U{a,w} be a maximal independent set in G. Then
J U {a, 2, s} is also a maximal independent set in G, but of different cardinality.
However, this is impossible, since G is well-covered. Thus H ¥ Cs. A similar
argument shows that I/ ¥ C;. |

Lemma 10. Suppose B(G) > 2 and G contains a basic subgraph B such that
each component of G — V(B) is a basic chain. Then G is also a basic chain.

Proof: Let v denote a hidden vertex of B, so that V(B) = N[v]. We shall adopt
the notation that V(B) = {v,a} when B ¥ K, and V(B) = {v,a,b} when
B = K;.Let H = G — V(B). Then by Corollary 3.2, B(H) = B(G) — 1 > 1.
Since H is a basic chain, there exists a partition {V},V2,...,V;,} of V(H) such
that (V;) is a basic subgraph of H,i = 1,2,...,m. Then §(H) = m and hence
B(G@) = m + 1. We show first that {V;,Va,..., Vi, V(B)} is a partition of
V(G), such that (W1}, {V2),...,{Vm), B are basic subgraphs of G. Thus, we
need to show that (V;) has a hidden vertex inG,i=1,2,...,m.

Suppose that (V;) has no hidden vertex. Then since (V;) is a basic subgraph
of H, we may assume that there is an edge between V; and V(B),say z € Vj is
- adjacentto a € V(B).
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Suppose first that (V) & K, and V) = {z,y}. Then the vertex y is not also ad-
jacentto a vertex of B. For, by the 4-cycle restriction, this would be possible only
if y were adjacent to a. In this case, we extend {a} to a maximal independent set
J inG. Then a is the only vertex of V(B) UV, in J. Observing that any maximal
independent set in G contains at most one vertex from each of V3, V4, ..., Vi,
we have |J| < m, contradicting the supposition that G is well-covered. Thus y
is adjacent to a vertex of V2 U V3 U - -+ U V;,. Now suppose (Vi) & K3 and
Vi = {z,y,z}. Then, by the 4-cycle restriction, za is again the only edge be-
tween V; and V(B). Thus, in either case, y has a neighbour y' € V3, say. Also,
when (V}) & K3, 2 has a neighbour 2' € V4, say, where V;, V3, V3 are distinct
subsets in the partition of V( H); by condition (a). Further, the vertices ¢’ and 2’
are independent, since otherwise yy'z'z would be a 4-cycle in G. Then the set
{a,y'} when (V1) & K3, 0r {a,y',2'} when (Vi) & K3, can be extended to give
a maximal independent set of size at most m in G, which is impossible, since G
is well-covered. Thus (V1),(V2),...,{Vm), B are basic subgraphs of G.

Finally, we note that as G is claw-free and contains no 4-cycle, then conditions
(a), (b), (c) of Theorem 4 hold. Then, since by assumption G is connected, we
conclude that G is a basic chain. |

Theorem 11. Let G be a connected well-covered claw-free graph containing no
4-cycle. Then either G is a basic chain or G is isomorphic to one of the graphs
Ki,Cs or Cq.

Proof: We have established in Theorem 4 and Lemmas 1 and 7 that all these cases
can arise. It remains to show that these are the only possibilities. We shall prove
this by induction on S(G), making repeated use of Lemma 3 and Corollary 3.2.

We introduce some notation. In the case where G contains a basic subgraph B,
let V(B) = {v,a} when B = K3 and V(B) = {v,a,b} when B & K3, where v
denotes a hidden vertex of B. We denote the subgraph G — V(B) = G — N[v]
by H. In the case where G contains no basic subgraph, we let v denote a vertex
of G’ of minimum degree §( G) and, as above, we denote the subgraph G — N[v]
by H.

We first establish the theorem in the cases when 8(G) < 3.

Case (a) B(G) = 1. The result was established in Lemma 1.

Case (b) B(G) = 2. ByLemma 3, B(H) = 1 and H satisfies the condi-
tions of the theorem. Hence, by Lemma 1, H is isomorphic to one of K;, K5 or
K3. Suppose first that G contains no basic subgraph. Then by Lemma 8, H ¥ K,
and soby Lemma 7, H % K, and G & Cs. Now suppose that G contains a basic
subgraph B. Then by Lemma 9, H ¥ K. Hence by Lemma 10, G is a basic
chain,

Case (c) B(G) = 3. Thenby Lemma 3, 8( H) = 2 and H is well-covered.
Clearly, H is claw-free and contains no 4-cycle. Suppose first that G contains no
basic subgraph. Then by Lemma 5, H is connected and hence, by case (b) above,
H is a basic chain or H = Cs. The latter alternative is impossible, by Lemma 8.
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Hence G & Cy, by Lemma 7. Now suppose that G contains a basic subgraph
B. Then by Corollary 3.2, H is well-covered with S( H) = 2. By Lemma 9, no
component of H is isomorphic to K or Cs. Thus each component of H is a basic
chain and hence, by Lemma 10, G is also a basic chain.

This establishes the truth of the theorem when 8(G) < 3. Now suppose that
the theorem is true for all graphs G such that 1 < B(G) < m; let G be a graph
satisfying the conditions of the theorem, for which 8(G) = m, m > 4.

Assume first that G contains no basic subgraph. Then by Lemmas 3 and 5, H
also satisfies the conditions of the theorem with S( H) = m — 1. Hence either H
is a basic chain or m = 4 and H & Cj, by case (c) above. The first possibility
is ruled out by Lemma 7 and the second by Lemma 8. Thus we may assume
that G contains a basic subgraph B. Then by Corollary 3.2, H is well-covered
with 8(H) > 3. By Lemma 9, no component of H is isomorphic to one of K3,
Cs or C;. Hence, by cases (a) to () above and the induction hypothesis, each
component of H is a basic chain. But then G is also a basic chain, by Lemma 10,
and this is therefore the only possibility for G when m > 4. This completes the
proof of the theorem. [}
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