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Abstract. The edge-neighbor-connectivity of a graph G is the minimum
size of all edge-cut-strategies of G, where an edge-cut-strategy consists of a
set of common edges of double stars whose removal disconnects the graph
G or leaves a single vertex or ). This paper discusses the extreme values
of the edge-neighbor-connectivity of graphs relative to the connectivity, «,
and gives two classes of graphs — one class with minimum edge-neighbor-
connectivity, and the other one with maximum edge-neighbor-connectivity.

1. Introduction

Gunther and Hartnell [1] [2] [3] introduced the idea of modeling a spy
network by a graph whose vertices represent the stations and whose edges
represent lines of communication. If a station is destroyed, the adjacent
stations will be betrayed so that the betrayed stations become useless to
network as a whole. Therefore, instead of considering the connectivity of
a communication graph, in [5] we discussed the neighbor-connectivity} of
a communication graph (removing some vertices and all of their adjacent
vertices). Similarly, we can consider the edge analogue of (vertex) neighbor-
connectivity: remove some edges, their incident nodes, and all of their
incident edges.

Suppose that G=(V,E) is a graph. Let e be any edge in G. N(e) =
{f € E(G) |f # ¢, e and f are adjacent} is the open edge-neighborhood of
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1 A vertex set S is called a vertez-cul-strategy of a graph G if the removal
of the closed neighborhood of S disconnects the graph G or leaves a clique
or 0. The neighbor-connectivity of G is the minimum size of all vertex-cut-
strategies of G.
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e, and N[e] = N(e)U{e} is the closed edge-neighborhood of . The double
star with a common edge e is the closed neighborhood of e and the two
vertices incident with e, denoted by DS(e). An edge e in G is said to be
subverted when the DS(e) is deleted from G. In other words, if e = [a, ],
G - DS(e) = G — {a,b}. A set of edges S={ey,e2,¢€3,....em} is called a
subversion strategy if each of the edges in S has been subverted. Let
G/S be the survival-subgraph left after each edge of S has been subverted
from G. A subversion strategy S is called an edge-cut-strategy of G if
the survival-subgraph G/S is disconnected, or is a single vertex, or is 0.
The edge-neighbor-connectivity, A(G), of G is the minimum size of all
edge-cut-strategies S of G.

Example 1:

{e1,e2} is a minimum edge-cut-strategy of G, hence A(G) = 2.

Figure 1

Note that the edge-neighbor-connectivity of a graph G is not always
equal to the neighbor-connectivity of the line graph of G. Two examples are
given here, and demonstrate that they are equal in some cases, but unequal
in other cases. :

Example 2: Let G be a star with n edges, (n > 1), so A(G) = 1. Then the
line graph of G, L(G), is the complete graph with n vertices, so the neighbor-
connectivity of L(G) is 0. Therefore the edge-neighbor-connectivity of G #
the neighbor-connectivity of the line graph of G.

Example 3: Let G be a double star, as shown in Figure 2. Thus the line
graph of G, L(G), is shown in Figure 3.
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L(G):

m edges n edges

Figure 2 Figure 3

The edge-neighbor-connectivity of G = The neighbor-connectivity of L(G)
=1

In this paper we give extreme values of the edge-neighbor-connectivity
of graphs with the connectivity, k. Then the relationship between the
edge-neighbor-connectivity, A, and the edge-connectivity, A, will be easily
obtained, as shown later. Furthermore, for any fixed integers, m and n,
we give two classes of graphs with order m, and connectivity n, where one
class of the graphs has minimum edge-neighbor-connectivity, and the other
has maximum edge-neighbor-connectivity.

II. The Upper and Lower Bounds of the
Edge-Neighbor-Connectivity

Let G be a graph and «(G) be the connectivity of the graph G. [z] is
the smallest integer greater than or equal to z. |z is the greatest integer
less than or equal to z.

Lemma 2.1. If a graph G has a cut vertex then A(G) = «(G) = 1.

Proof: Let v be a cut vertex of G. Then G—v contains at least two com-
ponents. If each of the components contains a single vertex, then G is a
star. Hence any one edge forms an edge-cut-strategy of G. If at least one
of the components, Gy, Ga, ..., G, (r > 2), contains at least two vertices,
without loss of generality, we may assume that G, contains at least two
vertices. Now the subversion of any one edge connecting v and a vertex in
G disconnects the graph G. Therefore A(G) = x(G) = 1. QED.

Lemma 2.2. Let G be a graph, and T = {e;, e3, .., €1} be an edge set in
G. Then A(G) < A(G/T) +t.

Proof: Let T = {e,, ey, ...,€;} be any edge set in G, and let A(G/T) = n.
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Let edge set T, = {f1, f2,.--, fn} be a minimum edge-cut-strategy of G/T.
Hence, T U T, is an edge-cut-strategy of G, and A(G) < |T,U T| = |T;|+|T|
=n+t=A(G/T) +¢. QED.

Lemma 2.3. Let G be a graph. If M is a maximum matching in G, then
A(G) £ M].

Proof: We show that M is an edge-cut-strategy of G. If it is not, then there
exist at least two vertices vy,v2 in G/M, and there is a vy — v, path in
G/M. Hence there is a matching M’ in G with [M’| > [M], a contradiction.
Therefore M is an edge-cut-strategy of G, and A(G) < [M|. QED.

Since the number of the edges in a maximum matching in a graph G
is less than or equal to [MZ)EHJ, it follows that:

Lemma 2.4. For any graph G = (V, E), A(G) < |_l¥l_|

The following result is central to this paper as it provides bounds for

A(G).

Theorem 2.5. [§] <A<«
Proof: First, we show that [§] < A.

Let A(G) = n, and the edge set T = {[uy,v1], [u2,v2], ..., [un,vn]} be
a minimum edge-cut-strategy of G. Thus if the survival-subgraph G/T is
a single vertex, or is @, then [V(G)| < 2n+ 1 or 2n. Hence £(G) < 2n or
2n — 1. If the survival-subgraph G/T is disconnected, then the vertex set
S = {u;,u2,...,Un,v1,V2,..., V5 } is a vertex cutset of G, and hence k(G) <
IS] < 2n.

Assume that A(G) < [ﬁzgl] , hence either
(1) if &(G) = 2r is even, then A(G) < Z&) = r, and «(G) > 2A(G) = 2n,
a contradiction;
or
(2) if k(G) = 2r + 1 is odd, then A(G) < r+ 1, and 2r > 2A(G) = 2n,
hence k(G) = 2r 4+ 1 > 2n, a contradiction.

Therefore we have [§] < A.

Next we prove that A < & by induction on . The result is true if
k& = 0, since then G must be either trivial or disconnected. Suppose that
it holds for all graphs with connectivity less than m, and let G be a graph
with £(G) = m > 0. If m = 1 then by Lemma 2.1, A(G) = &(G) = 1.
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Hence we merely need to show the result for the case of m > 1.

If [V(G)|=m+1 and n(G) =m, then G = K41 , a complete graph.
A matching with size [—"'—_I in G is a minimum edge-cut-strategy of G,
hence A(G) = | 2] < m = «(G).

If [V(G)] > m+ 1 and k(G) = m, then let S = {v;,v2,...,um} be a
minimum vertex cutset of G and G — S is disconnected. Now we consider
the induced subgraph <S>:

Case (1) There is an edge in <S>, say e = [v;,v;],i # j. The subversion
of e produces a subgraph G'=G/{e} with x(G’) < m - 2, since S—{v;, v;}
is a vertex cutset of G’. By induction on &, A(G’) < k(G’) < m—2. Hence,
by Lemma 2.2, A(G) S A(G)+1<(m—-2)+1=m-1< «(G) =

Case (2) There is no edge in <S> (i.e. <S> is a subgraph of m isolated
vertices). Assume that G—S contains ¢t components, G, Ga, ..., Gt (t > 2).
[V(G1)I+|V(G2)|+...4|V(G:)| > m, otherwise V(G;)UV(G2)U ... UV(G;)
is a vertex cutset of G with the size smaller than S. Each vertex in S is joined
to each component of G—S, otherwise a proper subset of S is a vertex cutset
of G. If the number of the components of G—S, ¢, is greater than or equal
to 3, then the subversion of m edges, each of which has one different end
in S and the other end in G, (these m edges may have the same ends in
G1), disconnects the graph G. Hence, the remainder of the proof considers
the case where G—S contains only two components, G; and G,. Again we
emphasize that |V(G;)| + [V(G2)] > m and each vertex in S is joined to
some vertices in G, and some vertices in G,.

Let V(G1) = {u1,uz,...,up}, V(G2) = {w1, wa, ...,w,}, and
S = {v1,v2,....,vm}. f p+¢ = mor m+1, then [V(G)| = 2m or 2m+1, and
by Lemma 2.4, A(G) < lngllj =m. If p+ ¢ > m+ 2, then we consider
two possibilities:

(i) » < m+ 1 (and therefore ¢ > 2) —— the m edges of the subversion
strategy are chosen in the following way:
(a) each of vy, va, vs, ..., vp_1’s is an end of one of the chosen p — 1

edges, and each of these p — 1 edges has the other end in G,
and

(b) each of the remaining v;’s (i.e. vp, p41, .., U ’s) is an end of one
of the remaining m — (p — 1) edges, and each of these m— (p—1) edges has
the other end in Gs.

(ii) p > m + 1 —— the m edges of the subversion strategy are chosen as
follows: v

Each of vy, v2, vg, ..., m’s is an end of one of the chosen m edges, and
each of these m edges has the other end in G;.
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The subversion of the m edges in above two possibilities disconnects
the graph G, since the subversion of these m edges removes all vertices in
S, but leaves some vertices in G;, and some vertices in G,. Thus A(G) <
m = &(G).

Therefore [§] < A < x. QED.

Corollary 2.6. A < A.

Proof: Since x£(G) < A(QG), for any graph G, and by Theorem 2.5, it is
followed that A(G) < A(G), for any graph G. QED.

Let G be a graph, S be a minimum vertex cutset of G, and {S> be
the induced subgraph of S in G, then we have the following corollaries:

Corollary 2.7. If <S> contains the components <S;>, <S,>, ..., <5;>,
with | V(<S;>) | > 2, for all i = 1,2, ..., ¢, then A (G) < &(G) —t.

Proof: <§;>, <S2>, ..., <5;> are components in <S>, and

|[V(<S;i>)| > 2, for all 4, so there is at least one edge, e; = [u;, v;], in each
component <S;>, i = 1,2, ...,t. The subversion of {e;,e3,...,e:} produces
a subgraph G/, and §' = S —{uy,uz,...,us, v1,v2,...,0¢} is a vertex cutset
of G'. Hence & (G') < |S'| = & (G) —2t. By Theorem 2.5,

A (G) <& (G') £ £ (G) —2t. Therefore by Lemma 2.2,

AG) SA(G)+t<(k(G) -2t)+t =« (G) —t. QED.

Corollary 2.8. Let the edge set M = {e), e, ...,em } be a maximum match-
ing in <S>, then A (G) < #(G) —m.

Proof: Let G' = G/M, ¢; = [u;,v;], where u;,v; arein S, i = 1,2,...,m.
Then S —{uy,ua,...,um, v1,v2,...,Um } is a vertex cutset of G’. Hence

k (G') £ & (G) —2m. By Lemma 2.2 and Theorem 2.5,
AGSAG)+m<k(G)+m<(k(G) —2m)+m =k (G) —m.
QED.

Corollary 2.9. If <S> has a maximum matching with the size LI%I-j, then
AG) = =71,

Proof: By Theorem 2.5, [%2] < A(G) < #(G); by Corollary 2.8, A(G) <
k(G) — ng.lJ It follows that ['—‘%c—;-l] <AG) L [ﬂzgl] Therefore A(G) =
r=6). QED.

Corollary 2.10. If |S| is even, and <S> has a perfect matching, then



AG) = 5(-29 Conversely, if A(G) = %G) then either G= Kan 4. 2 com-
plete graph with order 2n + 1, or there is a minimum vertex cutset, S, of
G, and the induced subgraph, <S>. has a perfect matching.

Proof: A perfect matching in <S> is a maximum matching in <S>, and

the size of a perfect matching is l%'- = %G) Hence by Corollary 2.9 we
obtain

A(G) = 23,

Conversely, assume that T = {[uy, v1], [u2,va], ..., [Un,vs]} is a minimum

edge-cut-strategy of G, then G/T is @, trivial, or disconnected. Since
#(G) = 2A(G) = 2n, the order of G must be greater than or equal
to 2n + 1. Thus G/T is either trivial or disconnected. If G/T is triv-
ial, then G = Kzn41. If G/T is disconnected, then the vertex set S =
{u1,u2, ..., un,v1,02, ..., 05} is a minimum vertex cutset, and <S> has a
perfect matching T. QED.

The following result shows when the edge-neighbor-connectivity of the
graph G reaches the maximum value.

Corollary 2.11. If A(G) = «(G) = m, then for any minimum vertex
cutset S of G, <S> must be a subgraph of m isolated vertices.

Proof: Let S = {v,v3,...,um} be a minimum vertex cutset of G. If there
is an edge e = [v;,v;](i # j) in <S>, then the subversion of e produces a
subgraph G’ with £(G’) < m — 2. Hence A(G') < m — 2. But by Lemma
22, M(G)SAG)+1<(m—2)+1=m~1, a contradiction. Therefore
<S> must be a subgraph of m isolated vertices. QED.

The converse of the above theorem is not true, as shown by the follow-
ing example:

Example 4:




k(G) = 3. <S> is a subgraph of 3 isolated vertices, {a,b,c}
{e1,e2} is the minimum edge-cut-strategy, so A(G) = 2.

The following is a simple example for some results of this section.

S oo oo ccecy

Example 5:

Figure 5

S = {a,b,c,d} is the minimum vertex cutset, so k(G) = 4. By Theorem
25,2 = [5%611 < A(G) £ k(G) = 4. Since <S> has no perfect matching,

by Corollary 2.10, A(G) # "—(291 = 2. Since <S> is not a subgraph of 4
isolated vertices, by Corollary 2.11, A(G) # #(G) = 4. Therefore A(G) = 3.

III. Graphs with the Minimum and Maximum
Edge-Neighbor-Connectivity

For any fixed integers, n and m, m > n + 1, we give two classes of
graphs with order m, connectivity n, and where one class of graphs has
minimum edge-neighbor-connectivity and the other has maximum edge-
neighbor-connectivity.

The Harary graph, Hn m, is constructed as follows:

Case 1. n is even. Let n = 2r. Then Hj,m, has vertices 0,1,2,..,.m -1
and two vertices i and j are adjacent if i — r < j < i+ r (where addition is
taken modulo m).

H, s is shown in Figure 6.
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4
Figure 6

Case 2. nisodd (n > 1) and miseven. Let n = 2r +1 (r > 0).
Then Har41,m is constructed by first drawing Har m, and then adding edges
joining vertex i to vertex i + 2 for 1 <i< Z.

Hj g is shown in Figure 7.

0
7 1
6 2
Hs's:
5 3
4
Figure 7

Case 3. nisodd (n > 1) and mis odd. Let n = 2r +1 (r > 0).
Then Hary1,m is constructed by first drawing Ha, ,,, and then adding edges
[0, 271] and [0, 2FL), and [i,i + 2] for 1< i < mol,

Hs g is shown in Figure 8.
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H5'92

Figure 8

The Harary graph, H, ., is a graph with order m, connectivity n,
and with minimum edge-neighbor-connectivity, as shown by the following
result:

Theorem 3.1. A(Hnm) = [5] = I'i(—H—z"'ﬂz'l, for any integers n,m,n > 4
andm>n+1.

Proof: Let H, . have vertices 0,1,2,..,m — 1. Then, as shown in [4],
k(Hnm) =n.

Case 1. n is even (n > 4).

Let n = 2r. Then the vertex set S = the set of neighbors of vertex 0 =
{1,2,...,r,m=1,m—-2,m-3,...,m—r} is a minimum vertex cutset of Hy m.
By the construction of Hy m, there is a perfect matching in <S>. If r is
even, then {[1,2], [3,4], ..., [r= 1,7}, [m=1,m=2], .., [m—(r—1),m—r]}
is a perfect matching in <S>. If r is odd, then {[r,r — 1}, [r — 2,r — 3},
v [3,2), l,m=1], [m=2,m=3], ..., [m— (r = 1),m = r]} is a perfect
matching in <S>. By Corollary 2.10, A(Ham) = & = [2&am)],

Case 2. nisodd and m iseven (n >4 and m > n+1).
Let n = 2r + 1. Then the vertex set S = the set of neighbors of vertex 0 =
{1,2,3,...,r,m—1,m-2,..,m—r, 2} is a minimum vertex cutset of Hn m.
By the construction of Hy, m, the number of edges in a maximum matching
Min <S> isr = | %Ham)) By Corollary 2.9, A(Hnm) = [2Ep=)] = [2].

Case 3. nisodd and misodd (n >4 and m > n+1).
Let n = 2r + 1. Then the vertex set S = the set of neighbors of
vertex 1 = {2,3,4,...,r+1,0,m—1,m-2,..., m—(r—1), 22} is a minimum
vertex cutset of H, m. By the construction of Hy, r,, the number of edges
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in a maximum matching M in <S> is r = [ﬂﬂ—;'ﬂlj Hence by Corollary
2.9, we have A(Hp m) = [*H2m)] = [2]. QED.

The cases of n = 2 and n = 3 about Theorem 3.1 are discussed in the
appendix.

We have shown a class of graphs with minimum edge-neighbor-
connectivity. If the edge-neighbor-connectivity of the graph G reaches the
maximum value, £(G), then is there a bound on the maximum value of the
connectivity? Lemma 2.4 trivially answers this question:

Theorem 3.2. Let G be a graph with the order m. If A(G) = #(G), then
#(G) < |3
Proof: A(G) < |7 by Lemma 24, so if k(G) = A(G), then x(G) < [Z].

For any fixed integers r,¢, the complete bipartite graph K, ; is a simple
bipartite graph with bipartition (X,Y) in which each vertex of X is joined
to each vertex of Y, and |X| = r,|Y| = t. It is clear that if » < ¢ then
k(Ky.) = r and A(K, ;) = r. Hence, for any fixed integers n,m, n < L2,
there exists a graph with order m, connectivity n, and maximum edge-
neighbor-connectivity, as described in the following theorem.

Theorem 3.3. For any fixed integers n,m, n < | 2], there exists a graph
with order m, connectivity n, and maximum edge-neighbor-connectivity.

Proof: For any fixed integers n,m,n < | 3], construct a complete bipartite
graph Kn m-n whose order is m. Since n < ||, n < m — n. Therefore,
A(Kpn m-n) = £(Kn,m-n) = n. That means the edge-neighbor-connectivity,
A, reaches the maximum value. QED.

Appendix
The Cases of n = 2 and n = 3 about Theorem 3.1

For the case of n = 2: The Harary graph H, m = H2 ;n = Cpn (m-cycle).
(1) m=3. A(Has) = A(Cs) = 1 = [H22)],

(2) m > 4. A(Hym) = A(Cm) =2 # [22)] = 1.
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For the case of n = 3:

(1) m=4. Hym = Hs 4 = Ky. It is clear that A(Hz4) = A(Kq) =2 =
(s, ~

(2) m = 6. Any set of two edges cannot be an edge-cut-strategy of Hss,
so A(Hsg) > 2. By Lemma 2.4, A(Hss) < [M%ﬁﬂj = 3. Therefore
A(Hsg) = 3 # [HH2e)] = 2,

(3) m is even and m > 8. The edge set {[i,i + Z],[i + 2,i + 2+ F]}, for
i=0,1,2,..,F -3, is an edge-cut-strategy of Haz m, so A(H3m) < 2. By

Theorem 2.5, A(Hz ) > [22:2)] = 2. Therefore A(Ham) = [2E2m)].

(4) misodd and m > 5. The edge set {[i, i+24L], [i+2,i+2+ 241}, for i =
0,1,2, ,(1”-.;—1) — 3, is an edge-cut-strategy of H3 m, so A(H3m) < 2. By

Theorem 2.5, A(Hz,m) > r‘—(H;—"‘)'l = 2. Therefore A(Hzm) = [—"(”,;-"‘)]_
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