Extreme Values of the Edge-Neighbor-Connectivity

Margaret B. Cozzens* † & Shu-Shih Y. Wu

Department of Mathematics Northeastern University Boston, MA 02115, USA

Abstract. The edge-neighbor-connectivity of a graph G is the minimum size of all edge-cut-strategies of G, where an edge-cut-strategy consists of a set of common edges of double stars whose removal disconnects the graph G or leaves a single vertex or \emptyset . This paper discusses the extreme values of the edge-neighbor-connectivity of graphs relative to the connectivity, κ , and gives two classes of graphs — one class with minimum edge-neighbor-connectivity, and the other one with maximum edge-neighbor-connectivity.

I. Introduction

Gunther and Hartnell [1] [2] [3] introduced the idea of modeling a spy network by a graph whose vertices represent the stations and whose edges represent lines of communication. If a station is destroyed, the adjacent stations will be betrayed so that the betrayed stations become useless to network as a whole. Therefore, instead of considering the connectivity of a communication graph, in [5] we discussed the neighbor-connectivity[‡] of a communication graph (removing some vertices and all of their adjacent vertices). Similarly, we can consider the edge analogue of (vertex) neighbor-connectivity: remove some edges, their incident nodes, and all of their incident edges.

Suppose that G=(V,E) is a graph. Let e be any edge in G. $N(e)=\{f\in E(G) | f\neq e, e \text{ and } f \text{ are adjacent}\}$ is the open edge-neighborhood of

^{*} Currently at the National Science Foundation Education and Human Resources Directorate

[†] The work is partially supported by a grant (No. 591700) from the Office of Naval Research.

A vertex set S is called a vertex-cut-strategy of a graph G if the removal of the closed neighborhood of S disconnects the graph G or leaves a clique or Ø. The neighbor-connectivity of G is the minimum size of all vertex-cut-strategies of G.

e, and $N[e] = N(e) \cup \{e\}$ is the closed edge-neighborhood of e. The double star with a common edge e is the closed neighborhood of e and the two vertices incident with e, denoted by DS(e). An edge e in G is said to be subverted when the DS(e) is deleted from G. In other words, if e = [a, b], $G - DS(e) = G - \{a, b\}$. A set of edges $S=\{e_1, e_2, e_3, ..., e_m\}$ is called a subversion strategy if each of the edges in G has been subverted. Let G/G be the survival-subgraph left after each edge of G has been subverted from G. A subversion strategy G is called an edge-cut-strategy of G if the survival-subgraph G/G is disconnected, or is a single vertex, or is G. The edge-neighbor-connectivity, G is the minimum size of all edge-cut-strategies G of G.

 $\{e_1, e_2\}$ is a minimum edge-cut-strategy of G, hence $\Lambda(G) = 2$.

Figure 1

Note that the edge-neighbor-connectivity of a graph G is not always equal to the neighbor-connectivity of the line graph of G. Two examples are given here, and demonstrate that they are equal in some cases, but unequal in other cases.

Example 2: Let G be a star with n edges, $(n \ge 1)$, so $\Lambda(G) = 1$. Then the line graph of G, L(G), is the complete graph with n vertices, so the neighbor-connectivity of L(G) is 0. Therefore the edge-neighbor-connectivity of G \ne the neighbor-connectivity of the line graph of G.

Example 3: Let G be a double star, as shown in Figure 2. Thus the line graph of G, L(G), is shown in Figure 3.

Figure 2

Figure 3

The edge-neighbor-connectivity of G = The neighbor-connectivity of L(G) = 1.

In this paper we give extreme values of the edge-neighbor-connectivity of graphs with the connectivity, κ . Then the relationship between the edge-neighbor-connectivity, Λ , and the edge-connectivity, λ , will be easily obtained, as shown later. Furthermore, for any fixed integers, m and n, we give two classes of graphs with order m, and connectivity n, where one class of the graphs has minimum edge-neighbor-connectivity, and the other has maximum edge-neighbor-connectivity.

II. The Upper and Lower Bounds of the Edge-Neighbor-Connectivity

Let G be a graph and $\kappa(G)$ be the connectivity of the graph G. [x] is the smallest integer greater than or equal to x. [x] is the greatest integer less than or equal to x.

Lemma 2.1. If a graph G has a cut vertex then $\Lambda(G) = \kappa(G) = 1$.

Proof: Let v be a cut vertex of G. Then G-v contains at least two components. If each of the components contains a single vertex, then G is a star. Hence any one edge forms an edge-cut-strategy of G. If at least one of the components, G_1 , G_2 , ..., G_r $(r \ge 2)$, contains at least two vertices, without loss of generality, we may assume that G_1 contains at least two vertices. Now the subversion of any one edge connecting v and a vertex in G_1 disconnects the graph G. Therefore $\Lambda(G) = \kappa(G) = 1$. QED.

Lemma 2.2. Let G be a graph, and $T = \{e_1, e_2, ..., e_t\}$ be an edge set in G. Then $\Lambda(G) \leq \Lambda(G/T) + t$.

Proof: Let $T = \{e_1, e_2, ..., e_t\}$ be any edge set in G, and let $\Lambda(G/T) = n$.

Let edge set $T_1 = \{f_1, f_2, ..., f_n\}$ be a minimum edge-cut-strategy of G/T. Hence, $T \cup T_1$ is an edge-cut-strategy of G, and $\Lambda(G) \leq |T_1 \cup T| = |T_1| + |T| = n + t = \Lambda(G/T) + t$. QED.

Lemma 2.3. Let G be a graph. If M is a maximum matching in G, then $\Lambda(G) \leq |M|$.

Proof: We show that M is an edge-cut-strategy of G. If it is not, then there exist at least two vertices v_1, v_2 in G/M, and there is a $v_1 - v_2$ path in G/M. Hence there is a matching M' in G with |M'| > |M|, a contradiction. Therefore M is an edge-cut-strategy of G, and $\Lambda(G) \leq |M|$. QED.

Since the number of the edges in a maximum matching in a graph G is less than or equal to $\lfloor \frac{|V(G)|}{2} \rfloor$, it follows that:

Lemma 2.4. For any graph $G = (V, E), \Lambda(G) \leq \lfloor \frac{|V|}{2} \rfloor$.

The following result is central to this paper as it provides bounds for $\Lambda(G)$.

Theorem 2.5. $\left\lceil \frac{\kappa}{2} \right\rceil \leq \Lambda \leq \kappa$

Proof: First, we show that $\lceil \frac{\kappa}{2} \rceil \leq \Lambda$.

Let $\Lambda(G) = n$, and the edge set $T = \{[u_1, v_1], [u_2, v_2], ..., [u_n, v_n]\}$ be a minimum edge-cut-strategy of G. Thus if the survival-subgraph G/T is a single vertex, or is \emptyset , then $|V(G)| \leq 2n + 1$ or 2n. Hence $\kappa(G) \leq 2n$ or 2n - 1. If the survival-subgraph G/T is disconnected, then the vertex set $S = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ is a vertex cutset of G, and hence $\kappa(G) \leq |S| \leq 2n$.

Assume that $\Lambda(G) < \lceil \frac{\kappa(G)}{2} \rceil$, hence either

(1) if $\kappa(G) = 2r$ is even, then $\Lambda(G) < \frac{\kappa(G)}{2} = r$, and $\kappa(G) > 2\Lambda(G) = 2n$, a contradiction;

or

(2) if $\kappa(G) = 2r + 1$ is odd, then $\Lambda(G) < r + 1$, and $2r \ge 2\Lambda(G) = 2n$, hence $\kappa(G) = 2r + 1 > 2n$, a contradiction.

Therefore we have $\lceil \frac{\kappa}{2} \rceil \leq \Lambda$.

Next we prove that $\Lambda \leq \kappa$ by induction on κ . The result is true if $\kappa = 0$, since then G must be either trivial or disconnected. Suppose that it holds for all graphs with connectivity less than m, and let G be a graph with $\kappa(G) = m > 0$. If m = 1 then by Lemma 2.1, $\Lambda(G) = \kappa(G) = 1$.

Hence we merely need to show the result for the case of m > 1.

- If |V(G)| = m+1 and $\kappa(G) = m$, then $G = K_{m+1}$, a complete graph. A matching with size $\lfloor \frac{m+1}{2} \rfloor$ in G is a minimum edge-cut-strategy of G, hence $\Lambda(G) = \lfloor \frac{m+1}{2} \rfloor \leq m = \kappa(G)$.
- If |V(G)| > m+1 and $\kappa(G) = m$, then let $S = \{v_1, v_2, ..., v_m\}$ be a minimum vertex cutset of G and G S is disconnected. Now we consider the induced subgraph $\langle S \rangle$:
- Case (1) There is an edge in $\langle S \rangle$, say $e = [v_i, v_j], i \neq j$. The subversion of e produces a subgraph $G' = G/\{e\}$ with $\kappa(G') \leq m-2$, since $S-\{v_i, v_j\}$ is a vertex cutset of G'. By induction on κ , $\Lambda(G') \leq \kappa(G') \leq m-2$. Hence, by Lemma 2.2, $\Lambda(G) \leq \Lambda(G') + 1 \leq (m-2) + 1 = m-1 < \kappa(G) = m$.
- Case (2) There is no edge in $\langle S \rangle$ (i.e. $\langle S \rangle$ is a subgraph of m isolated vertices). Assume that G-S contains t components, G_1 , G_2 , ..., G_t ($t \geq 2$). $|V(G_1)|+|V(G_2)|+...+|V(G_t)| \geq m$, otherwise $V(G_1)\cup V(G_2)\cup ...\cup V(G_t)$ is a vertex cutset of G with the size smaller than G. Each vertex in G is joined to each component of G-G, otherwise a proper subset of G is a vertex cutset of G. If the number of the components of G-G, G, is greater than or equal to G, then the subversion of G edges, each of which has one different end in G and the other end in G (these G edges may have the same ends in G disconnects the graph G. Hence, the remainder of the proof considers the case where G-G contains only two components, G and G. Again we emphasize that $|V(G_1)|+|V(G_2)|\geq m$ and each vertex in G is joined to some vertices in G and some vertices in G.
- Let $V(G_1) = \{u_1, u_2, ..., u_p\}$, $V(G_2) = \{w_1, w_2, ..., w_q\}$, and $S = \{v_1, v_2, ..., v_m\}$. If p+q = m or m+1, then |V(G)| = 2m or 2m+1, and by Lemma 2.4, $\Lambda(G) \leq \lfloor \frac{|V(G)|}{2} \rfloor = m$. If $p+q \geq m+2$, then we consider two possibilities:
- (i) p < m+1 (and therefore $q \ge 2$) —— the m edges of the subversion strategy are chosen in the following way:
- (a) each of v_1 , v_2 , v_3 , ..., v_{p-1} 's is an end of one of the chosen p-1 edges, and each of these p-1 edges has the other end in G_1 , and
- (b) each of the remaining v_i 's (i.e. v_p , v_{p+1} , ..., v_m 's) is an end of one of the remaining m-(p-1) edges, and each of these m-(p-1) edges has the other end in G_2 .
- (ii) $p \ge m+1$ the m edges of the subversion strategy are chosen as follows:

Each of $v_1, v_2, v_3, ..., v_m$'s is an end of one of the chosen m edges, and each of these m edges has the other end in G_1 .

The subversion of the m edges in above two possibilities disconnects the graph G, since the subversion of these m edges removes all vertices in S, but leaves some vertices in G_1 , and some vertices in G_2 . Thus $\Lambda(G) \leq m = \kappa(G)$.

Therefore $\lceil \frac{\kappa}{2} \rceil \leq \Lambda \leq \kappa$. QED.

Corollary 2.6. $\Lambda \leq \lambda$.

Proof: Since $\kappa(G) \leq \lambda(G)$, for any graph G, and by Theorem 2.5, it is followed that $\Lambda(G) \leq \lambda(G)$, for any graph G. QED.

Let G be a graph, S be a minimum vertex cutset of G, and <S> be the induced subgraph of S in G, then we have the following corollaries:

Corollary 2.7. If $\langle S \rangle$ contains the components $\langle S_1 \rangle$, $\langle S_2 \rangle$, ..., $\langle S_t \rangle$, with $|V(\langle S_i \rangle)| \geq 2$, for all i = 1, 2, ..., t, then $\Lambda(G) \leq \kappa(G) - t$.

Proof: $\langle S_1 \rangle$, $\langle S_2 \rangle$, ..., $\langle S_t \rangle$ are components in $\langle S \rangle$, and $|V(\langle S_i \rangle)| \geq 2$, for all i, so there is at least one edge, $e_i = [u_i, v_i]$, in each component $\langle S_i \rangle$, i = 1, 2, ..., t. The subversion of $\{e_1, e_2, ..., e_t\}$ produces a subgraph G', and $S' = S - \{u_1, u_2, ..., u_t, v_1, v_2, ..., v_t\}$ is a vertex cutset of G'. Hence $\kappa(G') \leq |S'| = \kappa(G) - 2t$. By Theorem 2.5, $\Lambda(G') \leq \kappa(G') \leq \kappa(G) - 2t$. Therefore by Lemma 2.2,

 Λ (G) $\leq \Lambda$ (G') + $t \leq (\kappa$ (G) -2t) + $t = \kappa$ (G) -t. QED.

Corollary 2.8. Let the edge set $M = \{e_1, e_2, ..., e_m\}$ be a maximum matching in $\langle S \rangle$, then $\Lambda(G) \leq \kappa(G) - m$.

Proof: Let G' = G/M, $e_i = [u_i, v_i]$, where u_i, v_i are in S, i = 1, 2, ..., m. Then $S = \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_m\}$ is a vertex cutset of G'. Hence $\kappa(G') \leq \kappa(G) - 2m$. By Lemma 2.2 and Theorem 2.5, $\Lambda(G) \leq \Lambda(G') + m \leq \kappa(G') + m \leq (\kappa(G) - 2m) + m = \kappa(G) - m$. QED.

Corollary 2.9. If $\langle S \rangle$ has a maximum matching with the size $\lfloor \frac{|S|}{2} \rfloor$, then $\Lambda(G) = \lceil \frac{\kappa(G)}{2} \rceil$.

Proof: By Theorem 2.5, $\lceil \frac{\kappa(G)}{2} \rceil \le \Lambda(G) \le \kappa(G)$; by Corollary 2.8, $\Lambda(G) \le \kappa(G) - \lfloor \frac{|S|}{2} \rfloor$. It follows that $\lceil \frac{\kappa(G)}{2} \rceil \le \Lambda(G) \le \lceil \frac{\kappa(G)}{2} \rceil$. Therefore $\Lambda(G) = \lceil \frac{\kappa(G)}{2} \rceil$. QED.

Corollary 2.10. If |S| is even, and <S> has a perfect matching, then

 Λ (G) = $\frac{\kappa(G)}{2}$. Conversely, if $\Lambda(G) = \frac{\kappa(G)}{2}$ then either $G = K_{2n+1}$, a complete graph with order 2n + 1, or there is a minimum vertex cutset, S, of G, and the induced subgraph, $\langle S \rangle$, has a perfect matching.

Proof: A perfect matching in $\langle S \rangle$ is a maximum matching in $\langle S \rangle$, and the size of a perfect matching is $\frac{|S|}{2} = \frac{\kappa(G)}{2}$. Hence by Corollary 2.9 we obtain

$$\Lambda (G) = \frac{\kappa(G)}{2}.$$

Conversely, assume that $T = \{[u_1, v_1], [u_2, v_2], ..., [u_n, v_n]\}$ is a minimum edge-cut-strategy of G, then G/T is \emptyset , trivial, or disconnected. Since $\kappa(G) = 2\Lambda(G) = 2n$, the order of G must be greater than or equal to 2n+1. Thus G/T is either trivial or disconnected. If G/T is trivial, then $G = K_{2n+1}$. If G/T is disconnected, then the vertex set $S = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ is a minimum vertex cutset, and $\langle S \rangle$ has a perfect matching T. QED.

The following result shows when the edge-neighbor-connectivity of the graph G reaches the maximum value.

Corollary 2.11. If $\Lambda(G) = \kappa(G) = m$, then for any minimum vertex cutset S of G, $\langle S \rangle$ must be a subgraph of m isolated vertices.

Proof: Let $S = \{v_1, v_2, ..., v_m\}$ be a minimum vertex cutset of G. If there is an edge $e = [v_i, v_j](i \neq j)$ in $\langle S \rangle$, then the subversion of e produces a subgraph G' with $\kappa(G') \leq m-2$. Hence $\Lambda(G') \leq m-2$. But by Lemma 2.2, $\Lambda(G) \leq \Lambda(G') + 1 \leq (m-2) + 1 = m-1$, a contradiction. Therefore $\langle S \rangle$ must be a subgraph of m isolated vertices. QED.

The converse of the above theorem is not true, as shown by the following example:

Figure 4

 $\kappa(G) = 3$. $\langle S \rangle$ is a subgraph of 3 isolated vertices, $\{a, b, c\}$ $\{e_1, e_2\}$ is the minimum edge-cut-strategy, so $\Lambda(G) = 2$.

The following is a simple example for some results of this section.

G: G: S

Figure 5

 $S = \{a, b, c, d\}$ is the minimum vertex cutset, so $\kappa(G) = 4$. By Theorem 2.5, $2 = \lceil \frac{\kappa(G)}{2} \rceil \le \Lambda(G) \le \kappa(G) = 4$. Since $\langle S \rangle$ has no perfect matching, by Corollary 2.10, $\Lambda(G) \ne \frac{\kappa(G)}{2} = 2$. Since $\langle S \rangle$ is not a subgraph of 4 isolated vertices, by Corollary 2.11, $\Lambda(G) \ne \kappa(G) = 4$. Therefore $\Lambda(G) = 3$.

III. Graphs with the Minimum and Maximum Edge-Neighbor-Connectivity

For any fixed integers, n and m, $m \ge n + 1$, we give two classes of graphs with order m, connectivity n, and where one class of graphs has minimum edge-neighbor-connectivity and the other has maximum edge-neighbor-connectivity.

The Harary graph, $H_{n,m}$, is constructed as follows:

Case 1. n is even. Let n = 2r. Then $H_{2r,m}$ has vertices 0, 1, 2, ..., m-1 and two vertices i and j are adjacent if $i - r \le j \le i + r$ (where addition is taken modulo m).

 $H_{4,8}$ is shown in Figure 6.

Figure 6

Case 2. n is odd (n > 1) and m is even. Let n = 2r + 1 (r > 0). Then $H_{2r+1,m}$ is constructed by first drawing $H_{2r,m}$, and then adding edges joining vertex i to vertex $i + \frac{m}{2}$ for $1 \le i \le \frac{m}{2}$. $H_{5,8}$ is shown in Figure 7.

Figure 7

Case 3. n is odd (n > 1) and m is odd. Let n = 2r + 1 (r > 0). Then $H_{2r+1,m}$ is constructed by first drawing $H_{2r,m}$, and then adding edges $[0, \frac{m-1}{2}]$ and $[0, \frac{m+1}{2}]$, and $[i, i + \frac{m+1}{2}]$ for $1 \le i < \frac{m-1}{2}$. $H_{5,9}$ is shown in Figure 8.

Figure 8

The Harary graph, $H_{n,m}$, is a graph with order m, connectivity n, and with minimum edge-neighbor-connectivity, as shown by the following result:

Theorem 3.1. $\Lambda(H_{n,m}) = \lceil \frac{n}{2} \rceil = \lceil \frac{\kappa(H_{n,m})}{2} \rceil$, for any integers $n, m, n \geq 4$ and m > n + 1.

Proof: Let $H_{n,m}$ have vertices 0, 1, 2, ..., m-1. Then, as shown in [4], $\kappa(H_{n,m}) = n$.

Case 1. n is even $(n \ge 4)$.

Let n=2r. Then the vertex set S= the set of neighbors of vertex $0=\{1,2,...,r,m-1,m-2,m-3,...,m-r\}$ is a minimum vertex cutset of $H_{n,m}$. By the construction of $H_{n,m}$, there is a perfect matching in <S>. If r is even, then $\{[1,2],[3,4],...,[r-1,r],[m-1,m-2],...,[m-(r-1),m-r]\}$ is a perfect matching in <S>. If r is odd, then $\{[r,r-1],[r-2,r-3],...,[3,2],[1,m-1],[m-2,m-3],...,[m-(r-1),m-r]\}$ is a perfect matching in <S>. By Corollary 2.10, $\Lambda(H_{n,m})=\frac{n}{2}=\lceil\frac{\kappa(H_{n,m})}{2}\rceil$.

Case 2. n is odd and m is even $(n \ge 4$ and $m \ge n+1)$. Let n = 2r+1. Then the vertex set S = the set of neighbors of vertex $0 = \{1, 2, 3, ..., r, m-1, m-2, ..., m-r, \frac{m}{2}\}$ is a minimum vertex cutset of $H_{n,m}$. By the construction of $H_{n,m}$, the number of edges in a maximum matching M in $\langle S \rangle$ is $r = \lfloor \frac{\kappa(H_{n,m})}{2} \rfloor$. By Corollary 2.9, $\Lambda(H_{n,m}) = \lceil \frac{\kappa(H_{n,m})}{2} \rceil = \lceil \frac{n}{2} \rceil$.

Case 3. n is odd and m is odd $(n \ge 4$ and $m \ge n + 1)$. Let n = 2r + 1. Then the vertex set S = the set of neighbors of vertex $1 = \{2, 3, 4, ..., r+1, 0, m-1, m-2, ..., m-(r-1), \frac{m+3}{2}\}$ is a minimum vertex cutset of $H_{n,m}$. By the construction of $H_{n,m}$, the number of edges in a maximum matching M in $\langle S \rangle$ is $r = \lfloor \frac{\kappa(H_{n,m})}{2} \rfloor$. Hence by Corollary 2.9, we have $\Lambda(H_{n,m}) = \lceil \frac{\kappa(H_{n,m})}{2} \rceil = \lceil \frac{n}{2} \rceil$. QED.

The cases of n=2 and n=3 about Theorem 3.1 are discussed in the appendix.

We have shown a class of graphs with minimum edge-neighbor-connectivity. If the edge-neighbor-connectivity of the graph G reaches the maximum value, $\kappa(G)$, then is there a bound on the maximum value of the connectivity? Lemma 2.4 trivially answers this question:

Theorem 3.2. Let G be a graph with the order m. If $\Lambda(G) = \kappa(G)$, then $\kappa(G) \leq \lfloor \frac{m}{2} \rfloor$.

Proof: $\Lambda(G) \leq \lfloor \frac{m}{2} \rfloor$ by Lemma 2.4, so if $\kappa(G) = \Lambda(G)$, then $\kappa(G) \leq \lfloor \frac{m}{2} \rfloor$. QED.

For any fixed integers r,t, the complete bipartite graph $K_{r,t}$ is a simple bipartite graph with bipartition (X,Y) in which each vertex of X is joined to each vertex of Y, and |X| = r, |Y| = t. It is clear that if $r \leq t$ then $\kappa(K_{r,t}) = r$ and $\Lambda(K_{r,t}) = r$. Hence, for any fixed integers $n, m, n \leq \lfloor \frac{m}{2} \rfloor$, there exists a graph with order m, connectivity n, and maximum edgeneighbor-connectivity, as described in the following theorem.

Theorem 3.3. For any fixed integers $n, m, n \leq \lfloor \frac{m}{2} \rfloor$, there exists a graph with order m, connectivity n, and maximum edge-neighbor-connectivity.

Proof: For any fixed integers $n, m, n \leq \lfloor \frac{m}{2} \rfloor$, construct a complete bipartite graph $K_{n,m-n}$ whose order is m. Since $n \leq \lfloor \frac{m}{2} \rfloor$, $n \leq m-n$. Therefore, $\Lambda(K_{n,m-n}) = \kappa(K_{n,m-n}) = n$. That means the edge-neighbor-connectivity, Λ , reaches the maximum value. QED.

Appendix

The Cases of n = 2 and n = 3 about Theorem 3.1

For the case of n=2: The Harary graph $H_{n,m}=H_{2,m}=C_m$ (m-cycle).

(1)
$$m = 3$$
. $\Lambda(H_{2,3}) = \Lambda(C_3) = 1 = \lceil \frac{\kappa(H_{2,3})}{2} \rceil$.

(2)
$$m \ge 4$$
. $\Lambda(H_{2,m}) = \Lambda(C_m) = 2 \ne \lceil \frac{\kappa(H_{2,m})}{2} \rceil = 1$.

For the case of n=3:

- (1) m = 4. $H_{n,m} = H_{3,4} = K_4$. It is clear that $\Lambda(H_{3,4}) = \Lambda(K_4) = 2 = \left\lceil \frac{\kappa(H_{3,4})}{2} \right\rceil$.
- (2) m=6. Any set of two edges cannot be an edge-cut-strategy of $H_{3,6}$, so $\Lambda(H_{3,6})>2$. By Lemma 2.4, $\Lambda(H_{3,6})\leq \lfloor\frac{|V(H_{3,6})|}{2}\rfloor=3$. Therefore $\Lambda(H_{3,6})=3\neq \lceil\frac{\kappa(H_{3,6})}{2}\rceil=2$.
- (3) m is even and $m \geq 8$. The edge set $\{[i, i+\frac{m}{2}], [i+2, i+2+\frac{m}{2}]\}$, for $i=0,1,2,...,\frac{m}{2}-3$, is an edge-cut-strategy of $H_{3,m}$, so $\Lambda(H_{3,m}) \leq 2$. By Theorem 2.5, $\Lambda(H_{3,m}) \geq \lceil \frac{\kappa(H_{3,m})}{2} \rceil = 2$. Therefore $\Lambda(H_{3,m}) = \lceil \frac{\kappa(H_{3,m})}{2} \rceil$.
- (4) m is odd and $m \geq 5$. The edge set $\{[i, i+\frac{m+1}{2}], [i+2, i+2+\frac{m+1}{2}]\}$, for $i=0,1,2,...,(\frac{m-1}{2})-3$, is an edge-cut-strategy of $H_{3,m}$, so $\Lambda(H_{3,m}) \leq 2$. By Theorem 2.5, $\Lambda(H_{3,m}) \geq \lceil \frac{\kappa(H_{3,m})}{2} \rceil = 2$. Therefore $\Lambda(H_{3,m}) = \lceil \frac{\kappa(H_{3,m})}{2} \rceil$.

References

- [1] G. Gunther and B. L. Hartnell, On Minimizing the Effects of Betrayals in a Resistance Movement, Proc. Eighth Manitoba Conference on Numerical Mathematics and Computing, (1978), 285-306.
- [2] G. Gunther, Neighbour-Connectivity in Regular Graphs, Discrete Applied Math. 11, (1985), 233-243.
- [3] G. Gunther, On the Existence of Neighbour-Connected Graphs, Congressus Numerantium 54, (1986), 105-110.
- [4] F. Harary, The Maximum Connectivity of a Graph, Proc. Nat. Acad. Sci. (USA) 48, (1962), 1142-1146.
- [5] S.-S. Y. Wu and M. B. Cozzens, The Minimum Size of Critically m-Neighbour-Connected Graphs, Ars Combinatoria 29, (1990), 149-160.