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ABSTRACT. In this paper, constructions of simple cyclic 2-designs
are given. As a consequence, we determined the existence of
simple 2-(q,k,)) designs for every admissible parameter set
(g,k,\) where ¢ < 29 is an odd prime power, with two un-
decided parameter sets (g, k, ) = (29, 8,6) and (29,8, 10).

1 Imtroduction
A t-design with parameters v,k and ), or simply a t-(v, k, A) design, is a
pair (V,B) where V is a v-set and B is a collection of k-subsets (called
blocks) of V' such that each ¢-subset of V is contained in exactly A blocks
of B. A t-(v,k, ) design is called simple if it contains no repeated blocks.
A 2-(v,k,)) design is also known as a balanced incomplete block de-
sign and is denoted B(k, A;v). It can be easily checked that the following
conditions are necessary for the existence of a simple 2-(v, k, \) design:

AMp-1)=0 (mod (k - 1))
A(v-1)=0 (mod (k(k —1)))

A< (k i) )

The parameter set (v, k, A) is called admissible if it satisfies (1). For given
v and k, any A satisfying (1) is also called admissible.

Since the complement of a simple 2-(v, k, \) design is a simple 2-(v, k, (”"2
—A) design and complementing each block with respect to V yields a 2-
(v,v— k, A(v—2)(v—3) /(k(k —1))) design, we need only to consider all
the admissible parameter sets (v, k, A) satisfying k < v/2 and X < (}22)/2.
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The existence of simple 2-designs has been studied extensively. But even
for v < 30, there are many admissible parameter sets (v, k, A) for which
the existence of simple 2-designs are still to be determined. The interested
reader may refer to [1].

The purpose of this paper is to give new constructions for simple 2-designs
and as a consequence, we determined the existence of simple 2-(g, k, A)
designs for every admissible parameter set (g, k, \) where ¢ < 29 is an odd
prime power, with two undecided parameter sets (g,k, A) = (29,8,6) and
(29,8, 10).

2 Doubly cyclic 2-designs without repeated blocks

Let v = q be an odd prime power and V = GF(q) be the finite field of
order ¢. For z € GF(q) and B = {a;,a2,...,ax} a k-subset of GF(q), let
B+z = {a1 +z,... ,6x + z}, and let (B) be the set of all the distinct
k-subsets of the form B + x, we call (B) an orbit generated by B and say
that B is a base block of (B). Let g be a fixed primitive element of GF(q).
For 0 <t < (g—3)/2, let ¢*- B = {¢* a1,...,8' ax}. Let {(B)} be the
union of all the distinct orbits of the form (g% B), 0 <t < (¢-3)/2. {(B)}
is called the orbit family generated by B. Obviously for any two k-subsets
By, and By, we have (B,) = (Bz) or (B1)N(B2) = ¢ and {(B1)} = {(B2)}
or {(B1)} N {(B2)} = ¢. So all the k-substes of GF(q) can be partitioned
into disjoint orbits and all the k-subsets of GF(q) can be partitioned into
disjoint orbit families.

Lemma 1. Let n be the number of orbits contained in {(B)}, then n |
(g-1)/2.

Proof : Since for any 0 < ¢;,¢2 < (g —3)/2, we have g2. B = gta—tigh. B,
so any two orbits (g% - B) and (g9%2- B) repeat the same times. The conclu-
sion then follows. : ‘ O

Let (GF(q), B) be a 2-(v, k, ) design. It is called cyclic if (B) C B for
every B € B. A simple cyclic 2-design (GF(q), B) is called doubly cyclic
if B = Up<i<cB; such that there exists a B; € B for each 0 < i < ¢, such
that B, C {(B.)} and B; = {(B;)},0<i<ec-—1.

In this paper, we always use Ag to denote the smallest value of A satisfying
(1). The following lemma is obvious:
Lemma 2. For any admissible A\, we have A = 0 (mod )o).

Since q is an odd prime power, then k(k — 1)/2 is always admissible if
v = q. Thus, by Lemma 2, k(k — 1)/2 =0 (mod )o).

Now we use the difference method to give the following construction for
doubly cyclic 2-designs. For undefined concepts, the reader may refer to

[6].

232



Theorem 1. For given q and k, let k(k — 1)/2 = eXg. If there exist
e — 1 disjoint doubly cyclic 2-(q, k, Xo) designs. Then there exists a simple
2-(q, k, \) design for every admissible .

Proof: Let B = {a;, a2, ... ,ax} be a k-subset of GF(q). For any d;,dz €
GF(q) \ {0}, there must exist 0 < ¢t < (g — 3)/2 such that dz = ¢* d), or
dy = —g'dy. If dy = a;—aj, thendy = g* (a;—a;) or da = ¢* (a;—a;). Thus,
if we let B be the collection of (g—1)/2 orbits (¢- B), 0 < t < (g—3)/2, then
(GF(q),B) is a cyclic 2-(q, k, k(k — 1)/2) design, but it is not necessarily
simple. By the proof of Lemma 1, if some orbit appears m times in B,
then each orbit appears m times in B. Let By be the set of all distinct
blocks of B, then (GF(q), By) is a doubly cyclic 2-(q, k, A) design for some
Al(k(k — 1)/2). Since all the k-subsets of GF(q) can be partitioned into
disjoint orbit families and each orbit family is the block set of some doubly
cyclic 2-(q, k, 8, A\o) design with 1 < s < e. Let By, Bs,...,B._; be the
e—1 disjoint cyclic 2-(g, k, Ao) design. Obviously if an orbit family contains
all the orbits of one or more disjoint doubly cyclic 2-designs, the remaining
orbits also form the block set of some doubly cyclic 2-design.

Now for an admissible A, we always have A =0 (mod A¢) by Lemma 2. If
A < (822) — k(k—1)/2, we choose approprietely some of the disjoint doubly
cyclic 2-designs which are disjoint with B; for 1 < i < e—1, to form a simple
cyclic 2-(q, k, \') design, denoted (GF(q), Bo), such that A — )\’ = s\¢ where
1 < s <e-1. Let B =U{_¢B;, then (GF(q), B) is a simple cyclic 2-(g, k, \)
design. If A > (822)—k(k—1)/2,let A= (§"2)—s)o, 1 < s < e~1. Let B be
the set of k-subsets obtained by taking out all the blocks of B, Bs,... ,B;
from the set of all k-subsets of GF(q), then (GF(q), B) is a simple cyclic
2-(g, k, A) design. This completes the proof. (m]

As a direct consequence, we have the following corollary:

Corollary. If Ao = k(k —1)/2, then there exists a simple cyclic 2-(q, k, \)
design for each admissible A.

Similar to Theorem 1, we can prove the following theorem:

Theorem 2. For given q and k, let k(k —1)/2 =€ X9, 2°"! <e < 2°. If
there exists a doubly cyclic 2-(q, k, 2*\o) design for 0 < i < ¢ —1 such that
these ¢ 2-designs are disjoint, then there exists a simple cyclic 2-(q, k, \)
design for each admissible .

3 Existence of simple cyclic 2-designs of small orders

As an application of the theorems proved in the previous section, we give
constructions of a series of simple 2-designs whose existence are previously
unknown.
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Theorem 3. There exists a simple cyclic 2-(q, k,\) design for each ad-
missible parameter set (q,k,)) if (q,k) = (25,11), (27,4), (27,5), (27,7),
(27,8), (27, 10), (27,11), (29,6), (29,10), and (29, 11).

Proof: It can be checked that in each case, we have Ao = k(k —1)/2. The
conclusion then follows from the corollary of Theorem 1. a

Theorem 4. There exists a simple cyclic 2-(q, k, \) design for each admis-
sible parameter set (g, k, A) if (g, k) = (29,9), (29,12), and (29, 13).

Proof: In each case, we have Ay = k(k—1)/4. By Theorem 1, we prove the
. theorem by constructing a doubly cyclic 2-(29, 9, 18) design and a doubly
cyclic 2-(29, 12, 33) design as follows:

A doubly cyclic 2-(29, 9, 18) design:

B:  {0,1,2,3,4,5,6,11,14},
{0,4,8,12,13,9,5, 14, 2},
{0,5,10,14,9,4,1,3,12},
{0,6,12,11,5,1,7,8,3}, (mod 29)
{0,7,14,8,1,6,13,10, 11},
{0,9,11,2,7,13,4,12, 10},
{0,13,3,10,86,7,9,2, 8},

A doubly cyclic 2-(29, 12, 33) design:

B:  {0,1,2,3,4,5,8,10,11,12,13,14},
{0,4,8,12,13,9,3,11,14,10,6,2},
{0,5,10,14,9,4,11,8,3,2,7,12},
{0,6,12,11,5,1,10,2,8,14,9,3}, (mod 29)
{0,7,14,8,1,6,2,12,10,3,4,11},
{0,9,11,2,7,13,4,3,12,8, 1,10},
{0,13,3,10,6,7,12,14,2,11,5,8}.

For (q,k) = (29,13), since (?7) = 39 (mod 78), then there must exist a
doubly cyclic 2-(29, 13, 39) design. The conclusion then follows. a

Theorem 5. If k = 6 or 7 then there exists a simple cyclic 2-(25, k, \)
design for each admissible parameter set. :

Proof: In these cases, we have A9 = k(k — 1)/6, by Theorem 2, we need
only to construct a doubly cyclic 2-(25, k, k(k — 1)/6) design and a doubly
cyclic 2- 2-(25, k, k(k—1)/3) design. Let g be a primitive element of G F'(25)
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with g° +4g + 2 = 0, Base blocks:

(k’ )‘) = (67 5):
{1,446 "%, ¢'%, 4%},
{%, 4% 9'% 9", 9%, 0%},

(k, A) = (6,10):
{1,0.6% 9% 9", 5"},
{92, 93, glo, gll’gIB’glg}’
{g*.6° 9", 9", 6%, %'},

{¢% 9", 9,9"%,9%,9%},

(K, 2) = (7,7):
{0,1,4% 6% 9%, 4%, 4%},

{0,4% 4% 9%, 9", 9%, 4%%},

(k, X) = (7,14):
{0,1,9,6%, 6%, 9", '},
{0, 92, 93’ glo’ gll,gls’ 919},
{0, 94,95’912’913, 20’921}’
{0’ 96’ 97, 914’915, 922,923}’

This completes the proof.

{0,9,6°,6°, 9,9
{0,4% ¢7,9", 9%, 9%, 9%}

{9,9° 9% 9", 9", 9%},
{6% 4", 9", 9%, ¢"°, 9%}

{9.9%.6° 9" ", 9"},
{93’ 94,911, 912, g19’ 20}.
{s° 6%, 9", 9", 8*', 6%},
{97, 98,915' gls’ 23’ 1}.

17’ 21}’

{0,9,9% 4% 9", 9",9"%},

{0,6% g% ", 9'%,9%,9%}.
14 21 22}.

{0,6°,9% 9"%,9",9%,9
{0,97, 4% 9%, 4%, 95,1}

a

Theorem 6. There exists a simple cyclic 2-(25,8, ) design for each ad-

missible ).

Proof: In this case, A\; = 7, by Theorem 2, we need only to construct a
doubly cyclic 2-(25,8,7) design, a doubly cyclic 2-(25, 8, 14) design and a
doubly cyclic 2-(25, 8,21) design. Let g be a primitive element of GF(25)

with g2 + 4g + 2 = 0. Base blocks:
A doubly cyclic 2-(25, 8, 7) design:

6 9

{1,6% 4% 6° 9'%,9'%, 98, %'},

{9.9%,9",9"% 9" 9% g

19, 22}’

{d% 4% 6% 9", 9", 9", 9%, 4}
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A doubly cyclic 2-(25, 8, 14) design:

{1,9,9% 9", 9" ‘3, 9'8,9"%},

{9,9%9".9% 4", .9‘9,9”}.

{g% ys,gs,gg,y 9%,9%"}
15 21

{6% 9% d°.9'% 95,9 g 922},
{¢*, 9%, 9" 9",9'%, 4", %, 6%},
{d° 9% 9", 9"%,9'7, 9", 9%, 1}.

Since the blocks of the doubly cyclic 2-(25, 8, 7) design and the blocks of
the doubly cyclic 2-(25, 8, 14) design are disjoint, then we obtain a doubly
cyclic 2-(25, 8, 21) design. This completes the proof. (m]

Theorem 7. There exists a simple cyclic 2-(25,12,\) design for each
admissible .

Proof: In this case, we have A\g = 11, by Theorem 2, we need only to
construct a doubly cyclic 2-(25,12,11) design, a doubly cyclic 2-(25, 12, 22)
design, a doubly cyclic 2-(25,12,33) design, a doubly cyclic 2-(25,12, 44)
design, and a doubly cyclic 2-(25,12, 55) design. Let g be a primitive ele-
ment of GF(25) with g2 +4g + 2 = 0. Base blocks:

A doubly cyclic 2-(25,12,11) design:

{1,4% 4% 4% 6%,9"%,9"%, 9", 9'%, 9"%, 0%, 6%},
{9.9% 6% 9", 9% 9", 9", 9%, 0", 9", 9%, 6%}

A doubly cyclic 2-(25, 12, 22) design:
{1,9,9%, 6% 4% ¢°. " ,913,9“’,9 7, 9%, ¢!
{9,9%9° 9% 9% 9", 9", 9", 9", 9", g%, 9”},
{9%,9% 4% 9", 9" y",y“,yl‘",g“,y“’,g”. 93},
{6%. 9%, 97,45 9", 9% 4'5,9'%, 9", 0%, 03, 1}.
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A doubly cyclic 2-(25, 12, 44) design:

{1,9,4% 9% 9% %, 9", 9", 9%, 4'7, g%, 01},

{g.9%.9% ¢* 0% 9'°, 9", 9'%, 9", 9%, 9", 0},

{92! 931 94, 957 gl()’guy 9121 9131 918) 9191 9201 921}1
{®.9% 6°. 9% 9", 9%, 9'3, 9%, 9%°, 6°°, 6%, g*%},
{g*,9° 4% 9",9'%,9%,9", 9%, 9%, 6%, 0% 0%},

{d°.9% 97, 4%, 9"3,9",9%%, 9%, 6%, 972, 93,1},

{d%.9", 4%, 4%, 9, 9%%,9'%, 97,62, g%, 1,4},

{97: 981 99: 910: 915’ 916’ 917: 918’ 923, 1,9, 92}'

Since the block sets of the doubly cyclic 2-(25,12, 11) design, the doubly
cyclic 2-(25,12,22) design, and the doubly cyclic 2-(25,12,44) design are
disjoint, then we obtain a doubly cyclic 2-(25, 12, 33) design, and a doubly
cyclic 2-(25,12, 55) design. This completes the proof. O

Theorem 8. There exists a simple cyclic 2-(25,4, \) design for each admis-
sible A. There exists a simple cyclic 2-(25,5,)) design for each admissible
A

Proof: Let g be a primitive element of GF(25) with g2 = 2¢g + 2. For
k=4, let {0,g°, g+, g%+} and {0, g%, g4+, g15+4} be the base blocks of
B;, 0 < i < 5, then (GF(25), B;), i =0,1,2,3,4,5 are 6 disjoint doubly
cyclic 2-(25,4, 1) designs. Thus, by Theorem 1, there exists a simple cyclic
2-(25,4, ) design for each admissible A. For k = 5, let g&+t. {0,1,2, 3, 4},
t =0,1,2,3,4,5, be the base blocks of B;, i = 0,1, where each orbit
contains 5 disjoint blocks. Then (GF(25), By) and (GF(25), B;) are two
disjoint doubly cyclic 2-(25, 5, 1) designs. Since (¥') = 942 (mod 10), then
there must be 9 more disjoint doubly cyclic 2-(25,5,1) designs or 4 disjoint
doubly cyclic 2-(25, 5, 1) designs and a doubly cyclic 2-(25, 5, 5) design. The
conclusion then follows from Theorem 1 or Theorem 2. a

4 Existence of simple 2-designs of small orders
To prove our main theorem, the following lemma is also needed:

Lemma 3 [2]. If (V,B) is a simple t-(v, k, \) design and D is a given set
of k-subsets of V such that:

o' > |B- D} ki(v - k)t | @)

then there exists a simple t-(v,k, ) design which is disjoint from D.
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Theorem 9. For given k and v = q, where q is an odd prime power, let
Ao be the smallest ) satisfying (1) and k(k —1)/2 = eXg. If there exists a
simple 2-(q, k, Xo) design such that

2(g — 2)! 2 Xo-g(g — 1)(k — 2)(g — k)! (3
and

ala— Dtk -1 <2 (173) @

then there exists a simple 2-(q,k, \) design for every admissible A.

Proof: Let (GF(g), A1) be a simple 2-(q, k, o) design. For the first step,
we let B = D = A;, since we always have A\g < k(k — 1)/2 and each
2-(g,k, o) design contains Aog(q — 1)/k(k — 1) blocks, then by (3), the
condition (2) is satisfied. Thus, by Lemma 3, there exists a simple 2-
(g, k, Mo) design (GF(q), A2) such that A; N Az = ¢. Then we let B = A,
and D = A; U A3, and so on. In this way we can obtain e = k(k —1)/(2X0)
disjoint simple 2-(g, k, Ao) designs. The number of blocks contained in these
e 2-(q, k, Ao) designs is g(g — 1)/2. So there are at most g(g — 1)/2 doubly
cyclic 2-designs with A < k(k—1)/2, each containing blocks from the above
g{q — 1)/2 blocks. So, if X < (§22)/2, we can choose those doubly cyclic
2-designs which are disjoint from the e simple 2-(q,k, Ao) designs, such
that they form a simple 2-(q,k, A") design with A = X 4+tX, 0 <t < e.
Combining the block set of this 2-(q, k, A’) design with the block sets of ¢
of the e simple 2-(q, k, \g) designs gives a simple 2-(q, k, A) design. This
completes the proof. a

By Theorem 9, we have the following result:

Theorem 10. If (g, k) = (23,11), (25,9), (27,6), (27,9), (27,12), (27,13),
(29,7), (29, 14), then there exists a simple 2-(q, k, A) design for each admis-
sible A.

Proof: In each case, the existence of a simple 2-(q, k, Ao) design has already
been proved (see [1]). It is an easy calculation to show that the conditions
(3) and (4) are satisfied. So the conclusion follows. (]

There does not exist a simple 2-(25,10,3) design by Fisher’s condition.
The nonexistence of a simple 2-(29, 8,2) design was proved in [4]. But we
have the following result:

Theorem 11. There exists a simple 2-(25,10, \) design for each admissible
X > 6. There exists a simple 2-(29,8, \) design for each admissible A > 4
with two possible exceptions A = 6 and 10.

Proof: If there exists a simple 2-(25,10, ) design,v then A = 0 (mod 3).
Since there exists a simple 2-(25, 10, 3s) design for s = 2 or 3, (see [1]), then
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similar to Theorem 10, we can prove that there exists a simple 2-(25, 10, 3s)
design for each admissible A = 3s > 6.

For (g, k) = (29,8), since (%) = 22 (mod 28) and there does not exist a
simple 2-(29, 8, 2) design, then there must exist a doubly cyclic 2-(29, 8, 14)
design. The existence of a simple 2-(29, 8,4) design can be found in [5].
Thus, we can prove similarly that there exists a simple 2-(29, 8, \) design
for each admissible A # 2,6 or 10. a

Combining Theorems 3 - 8, and Thearems 10 - 11, gives our main theo-
rem:

Theorem 12. For any odd prime power q < 29, there exists a simple
2-(q,k, ) design for each admissible parameter set (g, k, \) with the nonex-
istence of a simple 2-(25,10,3) design and a simple 2-(29, 8,2) design and
two undecided cases where (g, k, A) = (29, 8, 6) and (29, 8, 10). .
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