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ABSTRACT. J. Leech has posed the following problem: For each
integer n what is the greatest integer N such that there exists
& labelled tree with n nodes in which the distance between
the pairs of nodes include the consecutive values 1,2,...,N?
With the help of a computer, we get B(n) (the number N for
branched trees) for 2 < n < 10 and lower bounds of B(11)
and B(12). We also get UU(n) (the number N for unbranched
trees) for 2 < n < 11 independently, confirming some results
gotten by J. Leech.

Each edge of a finite tree is labelled with a positive integer, which we call
its length. The distance between two nodes is the sum of the lengths on
the (unique) path between the nodes. J. Leech [3] has posed the following
Problem: For each integer n what is the greatest integer N such that there
exists a labelled tree with n nodes in which the distances between pairs of
nodes include the consecutive values 1,2,..., N?

Let 7, be the set of all trees with n nodes. Let ey,...,e,_; denote the
edges of T, € Ty, and let e; be labelled with integer a;. A labelling of
T, is called M-labelling if the distances between pairs of nodes include the
consecutive values 1,2, ..., M. hence we have

N = Max{M : there exists an M-labelling of T,, € 7.} 1)

As in (3], we let UU(n) denote the number N for unbranched trees and
B(n) denote the number N for branched trees. J. Leech has shown in [3]
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n 2345 6 7 8 9 10 11 12
UU(n) | 1 3 69 13 18 24 >37 >45 >51
Bln) | 1360915 >20 >26 >31 >38 >45 >52

Table 1
Now, by computer, we get the following results.

n 2345 6 7 8 910 11 12
UU(n) | 1 3 6 9 13 18 24 29 37 45 >51

B(n) | 13 69 15 20 26 34 41 >48 >55

Table 2

Let (by,...,ba—1) be a permutation of (a;,...,a,—1) such that b; < by <
<o+ € bp—1. We have

Lemma 1. In an M-labelling of T,,, if M > 1 then b, = 1.

Proof: If b; > 1 then all @; > b; > 1, and the distance between any pair
of nodes is greater than 1, a contradiction.

Lemma 2. B(n) > B(n—-1)+2.

Proof: From formula (1), there exists a B(n —1)-labelling of T,,—; € T,—;.
Let N; be one of the nodes adjacent to the edge labelled 1. Add a new node
N, to T,,_; and join a new edge ey, label it with b(n — 1) + 1, such that
we get a (B(n — 1) + 2)-labelling of T,,, so B(n) > B(n—1) +2.

Let G-e denote a graph obtained from the graph G by contraction of
edge e, i.e. delete edge e from G and merge its two terminal nodes. e.g. in
Figure 1, Gl = G-el, Gg = G~63.
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Figure 1. The contraction of an edge
It is easily seen that if there is an M-labelling of T,, with edges e; labelled
a; and ¢; > M, then there is an M-labelling of T,-¢;. Let B(1) = 0, we
have
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Lemma 3. In an M-labelling of Ta(M > B(n —1) +2), b; < B(i) +1,
1<i<n-1.

Proof: From Lemma 1, by = 1 = B(1} + 1. Suppose b; > B(j) + 1 for
some j with2< j <n-—1,let ¢, (i <k <n—1) denote the edge labelled
bx. Since M > B(n ~ 1) +2 > B(j) + 1 and since an M-labelling of T, is
also a (B(4) + 1)-labelling of T,, and since

bn-1 Z---ij>B(j)+l,

there exists a (B(5) + 1)-labelling of Tj,-¢;,_,. Continue in this fashion,
generating a (B(j) + 1)-labelling of Ty,-¢; - e;;, which means that
B(j) 2 B(j) + 1, a contradiction.

Lemma 4. In an M-labelling of Ty, if T, = T, + e; + T, (see Fig 2 )
and M > (";') +1 thena; < (5) + ("37) + 1.

Proof: Let v;(1 < j < r) denote the nodesin T, and let Ux(1 < k <n-r)
denote the nodes in Th—,. If a; > (3)+(";7)+1 then the distances between
v; and uy are greater than (3) +(";") +1. So there are at most (3) + ("3")
different distances no greater than (3) + (®;7) + 1, in contradiction to
M> (") +12 Q)+ () +1.

n—l""

Figure 2. T, =T, + ¢; + T,

Furthermore, we have

Lemma 5. In an M-labelling of T, if Tp =T+ €;+Tar; M > ("-1) +1
and there are k distances between vj, and vj, or ux, and ux,(1 < 71 <
j2Sr, 1<k <k <n—r) which are greater than (2)+("")+1—k
then a; < () + (*37) +1 -

In order to find B(n) we proceed as follows. First, choose T, in 7, and
arrange the edges and nodes of T,, so that T; = T;_; + ¢; + N;, where
2 < i < nand Ty = Ny, where N; is node i. (see Figure 3)

From Lemma 2 we see that we can begin our search for B(n) by starting
with M = B(n — 1) + 2. Once we find an M-labelling for T,, in T,,, we will
try to find an (M + 1)-labelling. That is, we calculate the value of B(n) by
exhausting the possibilities.
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Figure 8. An arraﬁgement of the edges of Ty € T

In our algorithm for determining whether a particular T,, has an M-
labelling, we shall try labelling edge e; in our arrangement, where 1 <
i < n—1, with all possible positive integers a;. Fortunately, Lemma 3 and
Lemma 5 limit these possibilities. In particular, we let am, (i) and ay,, (Z) be
best upper bounds for the label a; that we can assign to edge e;, as dictated
by Lemma 3 and Lemma 5, respectively. From Lemma 3 we know that there
are at most k labels a; greater than B(n—1—k)+1, where 1 <j <i—-1;
if this is all the information we have then 1 < a; < @my(i) = B(n—1) +1;
however if there are k labels a; greater than B(n — 1 — k) + 1, where
1<j<i-1, then amy() = Bn—-1-k)+1. If M < (*;1) +1,
then define ap, (i) = oco. Otherwise, from Lemma 5, we have: if T, =
Tr + €+ Ta—r, M > (*;') +1 and there are k distances between N;, and
Nj, (0 £ 71 < J2 <i—1) which are greater than (3) + (*;7) +1 -k, then
ams(i) = (3) + (*37) + 1 —k. Let

amax (1) = Min(am; (%), am, (7)) 2

We have 1 < a; < amax(t).
Let fa(1 < d < M) denote the number of the node pairs with distance d

in an M-labelling of T},, and fas+1 denote the number of node pairs with
distance greater than M, then

n tg>1
(5) =M+t 3 =)
- 1Kd<M
Suppose after e; is labelled a;(1 < j < i—1) and there are f4(i) node pairs
with distance d and fas41(2) node pairs with distance greater than M, then

tq(i)>1

sum(i) = fu+1(i)+ Y (fa(®) - 1) (3)

1<d<M

0 <sum(l) <sum(2) <.-- <sum(n-—-1)= (;) - M.

That is, for a labelling of the edges of T, as above, if after the (n — 1)t
iteration we have sum(n — 1) < (3) — M, then that labelling is an M-
labelling.
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Now we construct Program CHECK(M) for determining whether there
exists an M-labelling of T, € 7,,.

Program CHECK(M, T,.);
begin

i=0;

TEST(i)
end.

Procedure TEST(i);
begin
i=i4+1;
if i = n then writeln (a;,...,8n,_1)
else begin
determine amax(i); { see formula (2) }
for a; := 1 to amax(i) do
if sum(i) < (3) — M then TEST(i); { see formula (3) }
end
end.

We use Program CHECK (M) for all T, € 7, for n from 2 to 10 and
some T1; € Tq3, get B(n) for 2 < n < 10 and new lower bounds of B(11)
and B(12). Table 3 shows all possible B(n)-labellings of T, for 2 < n < 10,
and some 48-labelling of T}, and some 55-labelling of T}2 (the notation is
that used in (3]).

Recently J. Leech has gotten 19 48-labelling of T}; and 124 55-labelling of
T12 independently. Here are three of them: .

(1,2,4,6)9(14)7(12,19,26,33) (1,2,3,4,5)9(16)8(15, 23, 31)
(1,2,3,5,7)10(16)8(14, 22, 30)

We are confident that B(11) = (48) and B(12) = (55) can be improved.
But our program is not efficient for n > 11, for example, 7;; contains
235 nonisomorphic trees (see [6, p.190]), all of which must be arranged by
hand as in figure 3, and the determination of the cardinality of is an open
question ([1, p.95] or [6, p.190]), so we stop here.

By using a similar program, we get UU(n) for 2 < n < 11, confirming the
results gotten by J. Leech, and showing that UU(9) = 29, UU(10) = 37,
U(11) = 45. Thus the solutions found by Leech for UU(n), n = 8,10,11
are found to be best possible by exhaustive search.

There is a related problem, the notion of edge-gracefulness found in ref-
erences [2], (4], and [5]. In particular, a tree T is edge-graceful if its edges
can be labelled consecutively from 1 to n — 1 so that the nodes are labelled
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from 1 to n, where the label of a vertex is the sum modulo n of the labels
of the incident edges. A lively conjecture is that all trees of the form Ty, _;
are edge-graceful.

n | B(n)| B(n)-labelling n | B(n) B(n)-labelling

1 2] 1 1 19 1.10(3)5(2,4)
2 3| 3 1.2 20 3.1(13)5(2,10)
3 4| 6 132 || 21 (1,2)5(4,8,12)
4 (1,24) || 22 8| 26 3.1(2)7(15)5.5
5 5[ 9 1143 || 23 5.5(15)7(1,2,4)
6 1332 || 24 3.1(2)7(5,10,15)
7 2513 || 25 2.13(1,11)4(3,6)
8 41.26 || 26 : (1,2,4)7(5,10,15)
9 1.1(3,6) 27 9 | M4 (1,3)2(6)10(7,14,18)
10 1.2(4,5) || 2810 | 41 (1,2,3)7(12)6(11,17,23)
11 1.3(2,5) || 29 1.1(3)7(12)6(11,17,23)
12 2.1(4,5) (| 30 11 | (48) (1,2,3,4)8(14)7(13,20,27)
13 3.4(1,2) 31 (1,2,4,6)9(14)7(12,19,26)
14 (1,236) || 32 (1,2,7)4(10,12)20(3,13,16)
15 (1,24,7) || 33 (1,2,3,5)9(7,19)13(15,21)
16 6| 15 (1,2)5(4,8) || 34 12 | (55) | (1,2,3,4)8(14)7(13,20,27,34)
177| 20 | 24305101 || 35 (1,2,3,4)8(14)7(20,27)13.21
18 4.4(12)5(1,2)

Table 8. All B(n)-labellings of T}, for 2 < n < 10 and some 48-labellings
of T}; and some 55-labellings of Ty,
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