CONSECUTIVE-INTEGER PARTITIONS

E.E. Guerin

Department of Mathematics Seton Hall University South Orange, NJ 07079

Abstract. Functions c(n) and h(n) which count certain consecutive-integer partitions of a positive integer n are evaluated, and combinatorial interpretations of partitions with "c(n) copies of n" and "h(n) copies of n" are given.

Consider a generating function in the form

$$1 + \sum_{n=1}^{\infty} A(n)p^n = \prod_{n=1}^{\infty} (1 - q^n)^{-a_n}$$
 (1)

where n is a positive integer. Combinatorial interpretations of partitions with " a_n copies of n" have been given by defining appropriate sets of partitions having order A(n) [3, Chap. 1]. This has has been done for $a_n = n$ by Agarwal and Andrews [1], for $a_n = d(n)$ (the number of positive integral divisors of n) by Agarwal and Mullen [2], for $a_n = \sigma(n)$ (the sum of the positive integral divisors of n) by Mitchell [6, Chap. 2], as well as for other a_n [4], [5]. In this paper, two functions, c(n) and h(n), which count certain consecutive-integer partitions are defined and evaluated; combinatorial interpretations of partitions with "c(n) copies of n" and "h(n) copies of n" are given by defining a set of plane partitions, C_n , and a set of solid partitions, H_n .

Let n be a positive integer. We define c(n) as the number of linear partitions of n having consecutive-integer parts and at least two parts. If n < 3, c(n) = 0; c(3) = 1 (3 = 2 + 1); c(9) = 2 (9 = 5 + 4 = 4 + 3 + 2).

Theorem 1. If n is a positive integer, $n = 2^w p_1^{e_1} \dots p_r^{e_r}$ (with p_1, \dots, p_r distinct primes, e_1, \dots, e_r positive integers, and w a nonnegative integer), then $c(n) = (e_1 + 1) \dots (e_r + 1) - 1 = d(n/2^w) - 1$.

Proof: A consecutive-integer partition of n with smallest part m and k+1 parts $(m \ge 1, k \ge 1)$ can be written as $n = (m+k) + (m+k-1) + \ldots + (m+1) + m$, with $n = (k+1)m + k(k+1)/2 = (k+1)(m+k/2) = \frac{(k+1)}{2}(2m+k)$. If the number of parts, k+1, is odd then k+1 divides n and

$$n = \left(\frac{n}{k+1} + \frac{k}{2}\right) + \dots + \left(\frac{n}{k+1} + 1\right) + \frac{n}{k+1} + \left(\frac{n}{k+1} - 1\right) + \dots + \left(\frac{n}{k+1} - \frac{k}{2}\right). \tag{2}$$

If the number of parts, k+1, is even then the sum of the middle two parts is the odd integer $\frac{n}{(k+1)/2}$, 2m+k and 2n/(k+1) divide n, and

$$n = \left(\frac{n}{k+1} + \frac{1}{2} + \left(\frac{k+1}{2} - 1\right)\right) + \dots + \left(\frac{n}{k+1} + \frac{1}{2} + 1\right) + \left(\frac{n}{k+1} + \frac{1}{2}\right) + \left(\frac{n}{k+1} - \frac{1}{2}\right) + \left(\frac{n}{k+1} - \frac{1}{2} - 1\right) + \dots + \left(\frac{n}{k+1} - \frac{1}{2} - \left(\frac{k+1}{2} - 1\right)\right).$$

$$(3)$$

Note that in (2), $m = \frac{n}{k+1} - \frac{k}{2} \ge 1$ so that $n \ge (k+1)(k+2)/2$ and $n \ge 6$ (since $k+1 \ge 3$); and in (3), $m = \frac{n}{k+1} - \frac{1}{2} - (\frac{k+1}{2} - 1) \ge 1$ so that $n \ge (k+1)(k+2)/2$ and $n \ge 3$ (since $k+1 \ge 2$). Also, $c(2^w) = 0$ for w = 0, 1, 2, ... (since 2^w has no odd integral divisors larger than 1). Let t be an odd divisor of n (t > 2). There is a unique consecutive-integer partition of n with t parts and smallest part $\frac{n}{t} - \frac{t-1}{2}$ (as in (2), t = k+1) provided that $\frac{n}{t} - \frac{t-1}{2} \ge 1$, $n > \frac{t(t-1)}{2}$. There is a unique consecutive-integer partition of n with $\frac{2n}{t}$ parts and smallest part $\frac{t}{2} - \frac{1}{2}$ $-(\frac{n}{t}-1)$ (as in (3), $\frac{2n}{t}=k+1$) provided that $\frac{t}{2}-\frac{1}{2}-(\frac{n}{t}-1)\geq 1$, $n\leq \frac{t(t-1)}{2}$. Let n be a positive integer. Let $P_n = \{v: v \text{ is a consecutive-integer linear}\}$ partition of n of at least two parts and let $T_n = \{t: t \text{ is an odd integral divisor}\}$ of n, t > 2. Define $F: P_n \to T_n$ by F(v) is the number of parts of v if v has an odd number of parts and F(v) is the sum of the largest and smallest parts of v if v has an even number of parts. Note that F is well-defined since if v has an odd number of parts, t, then t is an odd divisor of n(t > 2), and if v has an even number of parts, s, then the sum of the largest and smallest parts (which equals the sum of the two middle parts) is the odd integer n/(s/2) = 2n/s = t' with t' an odd divisor of n(t' > 2). Let t lie in T_n . If n > t(t-1)/2, there is an element v_1 of P_n having t parts and $F(v_1) = t$; if $n \le t(t-1)/2$, there is an element v_2 of P_n having an even number 2n/t parts with t the sum of the two middle parts, and $F(v_2) = t$. And F is a surjection. Let v_1, v_2 lie in P_n with $F(v_1) = F(v_2) = t$. If n > t(t-1)/2 then both v_1 and v_2 have an odd number t of parts, and $v_1 = v_2$; if n < t(t-1)/2 then both v_1 and v_2 have an even number of parts with t as the sum of the smallest and largest parts, and $v_1 = v_2$. And F is an injection. F is a bijection with domain a finite set (or the null set if n has no odd integral divisors greater than 2). The number of consecutive-integer partitions of n of at least two parts equals the number of odd divisors of n greater than 2, and $c(n) = d(p_1^{e_1} \dots p_r^{e_r}) - 1 = (e_1 + 1) \dots (e_r + 1) - 1 = d(n/(2^w)) - 1$. Example 1: If $n = 300 = 2^2 \cdot 3 \cdot 5^2$, $c(n) = 2 \cdot 3 - 1 = 5$, and the elements of T_n corresponding to $t_1 = 3$, $t_2 = 5$, $t_3 = 15$, $t_4 = 25$, $t_5 = 75$, respectively, are $v_1 = 101 + 100 + 99 (300 > 3(2)/2, 3 \text{ parts}), v_2 = 62 + 61 + 60 + 59 + 58$ $(300 > 5(4)/2, 5 \text{ parts}), v_3 = 27 + ... + 20 + ... + 13 (300 > 15(14)/2,$

15 parts), $v_4 = 24 + ... + 13 + 12 + ... + 1$ (300 $\leq 25(24)/2$, 24 parts), $v_5 = 41 + ... + 38 + 37 + ... + 34$ (300 $\leq 75(74)/2$, 8 parts). If $n = 16 = 2^4$, the sets P_{16} and T_{16} are empty and c(16) = 0.

For the positive integer n, h(n) is defined as the number of identical-row plane partitions of n in which each of the u identical rows (u a positive integer) is a consecutive-integer linear partition of n/u of at least two parts. If n is an odd prime number then h(n) = c(n) = 1; $h(6) = 2 \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$.

Theorem 2. If n is a positive integer, $n = 2^w p_1^{e_1} \dots p_r^{e_r}$ (with p_1, \dots, p_r distinct odd primes, e_1, \dots, e_r positive integers, and w a nonnegative integer), then $h(n) = (w+1)(e_1+1)\dots(e_r+1)\left(\left(1+\frac{e_1}{2}\right)\dots\left(1+\frac{e_r}{2}\right)-1\right)$ and $h(n) = (w+1)h\left(\frac{n}{2}\right)$.

Proof: If n is odd, w = 0, then $h(n) = \sum_{u|n} c(n/u) = \sum_{u|n} (d(n/u) - 1)$ $= \sum_{u|n} d(n/u) - d(n)$ by Theorem 1. Since d(n) is multiplicative then $\sum_{u|n} d(n/u) = \sum_{u|n} d(u)$ is multiplicative [7, Chap. 4], and $\sum_{u|n} d(u) = \left(\sum_{u|p_1^{e_1}} d(u)\right)$ $\dots \left(\sum_{u|p_1^{e_r}} d(u)\right) = (d(1) + d(p_1) + \dots + d(p_1^{e_1})) \dots (d(1) + d(p_r) + \dots + d(p_r^{e_r})) = (1 + 2 + \dots + (e_1 + 1)) \dots (1 + 2 + \dots + (e_r + 1)) = \left(\frac{e_1 + 1}{2}\right) (e_1 + 2)$ $\dots \left(\frac{e_r + 1}{2}\right) (e_r + 2) = (e_1 + 1) \dots (e_r + 1) (e_1/2 + 1) \dots (e_r/2 + 1)$, with $h(n) = d(n) ((1 + e_1/2) \dots (1 + e_r/2) - 1)$. If n is even, $w \ge 1$, then $h(n) = \sum_{u|n} c(n/u) = \sum_{u|\frac{n}{2}} (c(u) + c(2u))$

+...+ $c(2^w u)$) = $(w+1)\sum_{u|\frac{n}{2^w}}c(u)=(w+1)h\left(\frac{n}{2^w}\right)$.

Example 2: If $n=300=2^2\cdot 3\cdot 5^2$, h(n)=3(2)(3)((1+1/2)(1+2/2)-1)=36. Let S_n denote the set of identical-row plane partitions of n in which each row has consecutive-integer parts (with at least two parts). In S_{300} , the number of

elements with u rows is c(300/u):

And $\sum_{u|300} c(300/u) = 3(5+2+3+1+1) = 36 = h(300)$. Some elements of S_{300} are given:

A column replacement method is used to determine a set C_n of order A(n) for $a_n = c(n)$ in (1); the elements of C_n are plane partitions. Replace a summand

m of n by any of the c(m) consecutive-integer columns of the type $int (k \ge 1)$

e-k e_i e_j e_i-1 e_j-1

having sum m; in the identical consecutive summand case, m + m,

er-ki ej-kj

(each with sum m and $e_i > k_i \ge 1$, $e_j > k_j \ge 1$) is an acceptable pair of consecutive integer column replacements if $e_i \ge e_j$. Define C_n to be the set of plane partitions of n in which the number of parts equal to $j \ge 2$ in the first row equals the number of parts equal to j = 1 in row and the number of parts equal to $j \ge 1$ in row i ($i \ge 2$) is not less than the number of parts equal to j = 1 in row i + 1. Each plane array obtained by replacement of the q summands in a linear partition $n = m_1 + m_2 + \ldots + m_q$ of n by suitable consecutive-integer columns corresponds to a unique q-column element in C_n ; and each q-column element in C_n corresponds to exactly one plane array consisting of q consecutive-integer columns (in a proper summand replacement form). If $a_n = c(n)$ in (1), C_n has order A(n).

Example 3: If n = 101, with 101 = 45 + 25 + 25 + 6, $5 \cdot 3 \cdot 1 = 15$ plane arrays can be obtained by suitable column replacements (since c(45) = 5, c(25) = 2, c(6) = 1); one of these arrays is:

11 13 7 3 10 12 6 2 9 5 1; 8 4 7 3

it corresponds to

13 11 7 3 12 10 6 2 9 5 1 8 4 7 3

in C_{101} (which also corresponds uniquely to the given array). No element in C_{101} corresponds to the partition 99 + 2 of 101 (since c(2) = 0).

Let $a_n = h(n)$ in (1); a set H_n of order A(n), and consisting of solid partitions, can be determined by using a layer-replacement method. A "rectangular" layer replacement of the type R(r, s, L; k) with entry k - v + 2 at the point (x, y, L) for $x = v - 1, v = 2, 3, \ldots, s + 1, y = 1, \ldots, s$, and entry 0 at other points on layer L (with r, s, L, k, positive integers, $k \ge r$), and sum of entries m, can be used to

replace a summand m of n; in the identical consecutive summand case, m + m, $R(r_1, s_1, L; k_i), R(r_2, s_2, L + 1; k_i)$ (each with sum m and $k_i \ge r_1, k_i \ge r_2$) is an acceptable pair of layer replacements if $k_i > k_j$, or if $k_i = \overline{k_j}$ and $s_1 > s_2$, or if $k_i = k_j$ and $s_1 = s_2$ and $r_1 \ge r_2$. These are analogs of the "rectangular" identical-element layer replacements in [5]; analogs of form-D, form-C, form-B, and form-A arrays, and square and corner points, can be defined. And H_n can be defined as the set of solid partitions W of n having the following four properties. (i) If (1, s, L) has entry k (k > 2) on layer L of W, then (2, s, L) has entry k-1. (ii) The number of entries k on any line (r, s, L), r > 2, s > 1, L = 1, 2, ..., is at least as great as the number of entries k-1 on the line $(r+1, s, L), L = 1, 2, \ldots$ (iii) For given $r \ge 1$, $s \ge 1$, there are as many entries $k (k \ge 1)$ on a line (r, s, L), $L = 1, 2, \ldots$, as there are entries k on the line $(r, s + 1, L), L = 1, 2, \ldots$ (iv) The number of layers in W at which k - r + 1 occurs at points (r, s, L) is equal to the number of corner points (r', s', L') on layers with entry k $(k \ge 2)$ at (1,1,L') and $r' \ge r, s' > s$, in the unique form-B array corresponding to W. Each form-D array obtained by replacement of the q summands in a linear partition $n = m_1 + m_2 + ... + m_q$ of n by suitable "rectangular" consecutive-integer layers corresponds to a unique q-layer element in H_n ; and each element in H_n with q layers corresponds to a unique form-D array consisting of q "rectangular" consecutive-integer layers (in a proper summand replacement form). If $a_n = h(n)$ in (1), H_n has order A(n).

Example 4: Let n = 101; there are $55 \cdot 5 \cdot 3 = 825$ form-D arrays which correspond to 101 = 30 + 30 + 21 + 20 (since h(30) = 10, h(21) = 5, h(20) = 3). One of these form-D arrays is:

88	8	4444	8
<i>7</i> 7	7	3333	7
	6		6;
	5		
	4		

it corresponds to the form-C array

88	8	8	4444
77	7	7	3333
	6	6	
	5		
	4		

the form-B array

```
88 8 8 4444
77 7 7 3333
66 6
5
```

and the form-A array

which is an element of H_{101} . Given this form-A array, we can find a unique corresponding form-D array (the one given above).

References

- 1. A.K. Agarwal and G.E. Andrews, Rogers-Ramanujan identities for partitions with "N copies of N", J. Combin. Theory Ser. A 45 (1987), 40-49.
- 2. A.K. Agarwal and G.L. Mullen, Partitions with "d(a) copies of a", J. Combin. Theory Ser. A 48 (1988), 120-135.
- 3. G.E. Andrews, *The theory of partitions*, Reprinted, Cambridge University Press, London, New York, 1984, in "Encyclopedia of Mathematics and its Applications, Vol. 2", Reading, MA, 1976.
- 4. E.E Guerin, Partitions with "M(a) copies of a", Fibonacci Quart. 28 (1990), 298-301.
- 5. E.E. Guerin, A note on layer replacements and solid partitions. (submitted).
- 6. D.J.B. Mitchell, Generating functions for various sets of solid partitions, Ph.D. thesis (1972), Penn. State Univ.
- 7. I. Niven and H.S. Zuckerman, "An Introduction to the Theory of Numbers", 3rd ed., John Wiley & Sons, New York, 1972.