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Abstract. Functions ¢(n) and h(n) which count certain consecutive-integer parti-
tions of a positive integer n are evaluated, and combinatorial interpretations of parti-
tions with “c(n) copies of n” and “h(n) copics of n” are given.

Consider a generating function in the form
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where n is a positive integer. Combinatorial interpretations of partitions with “a,,
copies of n” have been given by defining appropriate sets of partitions having order
A(n) [3, Chap. 1]. This has has been done for a, = nby Agarwal and Andrews
[1], for a, = d(n) (the number of positive integral divisors of n) by Agarwal
and Mullen [2], for a,, = o(n) (the sum ofithe positive integral divisors of n) by
Mitchell [6, Chap. 2], as well as for other a,, [4], [5]. In this paper, two functions,
¢(n) and h(n), which count certain consecutive-integer partitions are defined and
evaluated; combinatorial interpretations of partitions with “c(n) copies of n” and
*“h(n) copies of n” are given by defining a set of plane partitions, C,,, and a set of
solid partitions, Hy,.

Let n be a positive integer. We define c(n) as the number of linear partitions
of n having consecutive-integer parts and at least two parts. If n < 3, ¢(n) = 0;
c(3)=1(3=2+1);¢(9=2(9=5+4=4+3+2).

Theorem 1. If nis a positive integer, n= 2%p{' ...p%r (with py,... ,p, distinct
primes, ey, ... ,e, positive integers, and w a nonnegative integer), then c¢(n) =
(e1+1)...(e,+1) —1=d(n/2%) - 1.

Proof: A consecutive-integer partition of n with smallest part m and k + 1 parts
(m>1,k>1)canbewrittenasn= (m+k)+(m+k—1) +...+(m+1)+m,
withn=(k+ Dm+ k(k+1)/2=(k+ D(m+ k/2) = EL(2m+ k). Ifthe
number of parts, k + 1, is odd then k + 1 divides nand
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If the number of parts, k + 1, is even then the sum of the middle two parts is the
odd integer fﬁﬂf'zm"' k and 2n/(k + 1) divide n, and
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Note thatin (2),m = g8y — 4 > 1 sothatn > (k+1)(k+2)/2 andn > 6 (since
k+1>3);andin (3), m = &—% — (41 —1) > 1 sothatn > (k+1)(k+2)/2
andn > 3 (since k + 1 > 2). Also,¢(2%) =0 forw=0,1,2,... (since 2%
has no odd integral divisors larger than 1). Let ¢ be an odd divisor of » (¢ > 2).
There is a unique consecutive-integer partition of n with ¢ parts and smallest part
8 _tl(asin(2),t = k+ 1) provided that 2 — £51 > 1,n > X5 There is
a unique consecutive-integer partition of n with 33 parts and smallest part {- - %—
—(2—1) @sin(3), % = k+1)providedthat § — 5 — (2 - 1) > 1,n < 45D,

Let n be a positive integer. Let P, = {v: v is a consecutive-integer linear
partition of = of at least two parts} and let T, = {¢: ¢ is an odd integral divisor
of n,t > 2}. Define F: P, — T, by F(v) is the number of parts of v if v has
an odd number of parts and F(v) is the sum of the largest and smallest parts of
v if v has an even number of parts. Note that F' is well-defined since if v has an
odd number of parts, ¢, then ¢ is an odd divisor of n (¢t > 2), and if v has an even
number of parts, s, then the sum of the largest and smallest parts (which equals
the sum of the two middle parts) is the odd integer n/(s/2) = 2n/s = t' with
t' an odd divisor of n (¢’ > 2). Lettliein T,. If n > (¢ — 1) /2, there is an
element v; of P, having ¢ parts and F(v;) = ¢; if n < t(t — 1)/2, there is an
element v, of P, having an even number 2 n/t parts with ¢ the sum of the two
middle parts, and F(v;) = t. And F is a surjection. Let vy, v lie in P, with
F(v;) = F(v;) =t.Ifn> t(t — 1) /2 then both v; and v, have an odd number
t of parts, and v; = v;; if n < t(t — 1)/2 then both v; and v, have an even
number of parts with ¢ as the sum of the smallest and largest parts, and v; = v3.
And F is an injection. F is a bijection with domain a finite set (or the null set if
nhas no odd integral divisors greater than 2). The number of consecutive-integer
partitions of n of at least two parts equals the number of odd divisors of n greater
than 2,and c(n) =d(pf' ...pr) —1=(e1+1) ...(e,+ 1) =1=d(n/(2%))-1. 1
Example 1: If n= 300 = 22.3.52,¢(n) = 2.3 — 1 = 5, and the elements of
T, corresponding to ¢y = 3,¢t, = 5,13 = 15,4 = 25,t5 = 75, respectively, are
v; = 101+ 100+ 99 (300 > 3(2)/2, 3 parts), v2 = 62+ 61+ 60+ 59 + 58
(300 > 5(4)/2,5 parts), v3 = 27+ ...+ 20+ ...+ 13 (300 > 15(14)/2,
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15 parts), v4 = 24+ ...+ 13+ 12+ ...+ 1 (300 < 25(24)/2, 24 parts),
vs=41+...+38+37+...+34 (300 < 75(74)/2, 8 parts). If n= 16 = 24,
the sets Py¢ and T are empty and ¢( 16) = 0.

For the positive integer n, h(n) is defined as the number of identical-row plane
partitions of n in which each of the u identical rows (u a positive integer) is a
consecutive-integer linear partition of n/u of at least two parts. If » is an odd

prime number then h(n) = c(n) = 1; h(6) = 2 (3 1, 32 1).

Theorem 2. If n is a positive integer, n= 2¥p{ .. .p%r (with py, ... ,p, distinct
odd primes, ey, ... , e, positive integers, and w a nonnegative integer), then h(n)
=(w+D(er+1)...(e+1) (1+%)...(1+ %) — 1) and h(n) = (w+1)h

(%) |

Proof: If nis odd, w = 0, then h(n) = 3,  c(n/u) = Yun(d(nfu) — 1)
= Euln d(n/u) —d(n) by Theorem 1. Since d(=) is multiplicative then Euln
d(n/u) = ¥, d(u) ismultiplicative [7, Chap.4], and 3, d(u) = (z;u,p;. d(u))

: (Euwd(u)) = (d(1) + d(p1) + ...+ d(p)) ... (d(1) + d(py) + ...+
dpF))=(1+2+...+(e1+ 1)) ... (1+2+... e, + 1)) = (ﬂ;—‘) (e1+2)
o () (er+2) = (e1+ 1) ... (er+ 1) (e1/2+ 1) ... (e/2+ 1), with
h(n) =d(n) ((1+e1/2) ... (1+¢./2) - 1).

If nis even, w > 1, then h(n) = Euhc(”/“) = Eulﬁr (c(uw) + c(2u)
oot o(29)) = (wH 1) Ty o(w) = (w+ DA (). |
Example2: Ifn=300=22.3.52,h(n) = 3(2) (3)((1+1/2)(1+2/2)—1) =
36. Let S, denote the set of identical-row plane partitions of n in which each row
has consecutive-integer parts (with at least two parts). In Sig, the number of
elements with u rows is ¢(300 /u): '

u 124361251020 15 30 60 25 50 100 75 150 300
c«(300/u.)55522 23 3311111 10 0 0.

And 7 300 €(300 /1) = 3(5+ 2+ 3+ 1+ 1) = 36 = h(300). Some elements of
S300 are given:

222120 19 18 41312 11

2221201918 (3rows), B 5oug
222120 19 18 RIS
13 12 76543 21
1312 (12rows), 76543 (12rows), 21 (100rows).
13 12 76543 21



A column replacement method is used to determine a set C,, of order A(n) for
a, = ¢(n) in (1); the elements of C, are plane partitions. Replace a summand

el
m of nby any of the c¢(m) consecutive-integer columns of the type . (k > 1)
—*
U] €
° q—l e,—l
having sum m; in the identical consecutive summand case, m + m,
ek ek
(each with sum m and e; > k; > 1,e; > k; > 1) is an acceptable pair of
consecutive integer column replacements if e; > e;. Define C, to be the set of
plane partitions of n in which the number of parts equal to j > 2 in the first row
equals the number of parts equal to j — 1 in the second row and the number of
parts equal to 7 > 1 in row 1 (i > 2) is not less than the number of parts equal to
j — linrow i+ 1. Each plane array obtained by replacement of the ¢ summands
in a linear partition n = m; + my + ...+ m, of n by suitable consecutive-integer
columns corresponds to a unique g-column element in C,; and each g-column
element in C,, corresponds to exactly one plane array consisting of g consecutive-
integer columns (in a proper summand replacement form). If a, = c(n) in (1),
C, has order A(n).
Example 3: If n= 101, with 101 = 45+ 25+ 25+ 6,5-3-1 = 15 plane arrays
can be obtained by suitable column replacements (since c(45) = 5, c(25) = 2,
c(6) = 1); one of these arrays is:

1 13 7 3
10 12 6 2
9 5 1;
8 4

7 3

it corresponds to

13 11 7 3
12 10 6 2
9 5 1
8 4

7 3

in Cyo0; (which also corresponds uniquely to the given array). No element in C 1
corresponds to the partition 99 + 2 of 101 (since c(2) = 0).

Leta, = h(n) in (1); a set H, of order A(n), and consisting of solid partitions,
can be determined by using a layer-replacement method. A “rectangular” layer
replacement of the type R(r, s, L; k) with entry k — v + 2 at the point (z,y, L)
forz=v-1,v=2,3,...,s+1,y=1,...,s,andentryO at other points on layer
L (with r, s, L, k, positive integers, k > r), and sum of entries m, can be used to
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replace a summand m of x; in the identical consecutive summand case, m + m,
R(r1,81,L; ki), R(r2, 82, L + 1; k;) (each with sum m and k; > 71, kj > )
is an acceptable pair of layer replacements if k; > k;, or if k; = k; and s; > s3,
orif k; = k;j and sy = s, and r; > r2. These are analogs of the “rectangular”
identical-element layer replacements in [5); analogs of form-D, form-C, form-B,
and form-A arrays, and square and corner points, can be defined. And H,, can be
defined as the set of solid partitions W of n having the following four properties.
(i)I1f(1,s,L) hasentry k (k > 2) onlayer L of W,then (2, s, L) hasentry k—1.
(ii) The number of entries k on any line (r,s, L), r >2,s>1,L=1,2,...,isat
least as great as the number of entries k— 1 ontheline (r+1,s,L),L =1,2,....
(iii) For givenr > 1, s > 1, there areas many entries k (k > 1) onaline(r, s, L),
L = 1,2,..., as there are entries & on the line (r,s + 1,L), L = 1,2,....
(iv) The number of layers in W at which & — » + 1 occurs at points (, s, L) is
equal to the number of corner points (7, s', L') on layers with entry k (k > 2)
at(1,1,L') and+’ > r, s' > s, in the unique form-B array corresponding to W',
Each form-D array obtained by replacement of the ¢ summands in a linear partition
n = m + my + ...+ m, of n by suitable “rectangular” consecutive-integer
layers corresponds to a unique g-layer element in H,; and each element in H,
with ¢ layers corresponds to a unique form-D array consisting of ¢ “rectangular”
consecutive-integer layers (in a proper summand replacement form). If a, = h(n)
in (1), H, has order A(n).

Example 4: Let n = 101; there are 55-5.3 = 825 form-D arrays which corre-
spond to 101 = 30+ 30+ 21 + 20 (since h(30) = 10, h(21) = 5, h(20) = 3).
One of these form-D arrays is:

88 8 4444 8
77 7 3333 7
6 6;
5
4

it corresponds to the form-C array

88

77 3333

H Oy 0
S 3 oo

the form-B array
3333

o EF-
A 3 o0
~J o
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and the form-A array
844

733

[V = L I )
(=, |

o3&

~ oo

w b

4

which is an element of Hjo,. Given this form-A array, we can find a unique cor-
responding form-D array (the one given above).
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