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Abstract. It is shown that a resolvable BIBD with block size five and index two exists
wheneverv = § (mod 10) and v > 50722395. This result is based on an updated
result on the existence of a BIBD with block size six and index unity, which leaves 88
unsolved cases. A construction using difference families 1o obtain resolvable BIBDs is
also presented.

1. Introduction
A group divisible design (or GDD) is a tiple (X, G, A) which satisfies the fol-
lowing properties:

(1) X is a finite set of points;

(2) G isapartition of X into subsets called groups;

(3) A isasetofsubsets of X (called blocks) such that a group and a block
contain at most one common point, and every pair of points from dis-
tinct groups occurs in exactly X blocks.

The group-type (or type) of a GDD(X, G, A) is the multiset {|G| : G € G }.
We usually use an “exponential” notation to describe types: a type }'ty* ...t
denotes u; occurrences of ¢4, 1 < 1 < k.

A GDD with block sizes from a positive integer set K is called a (K, \)-
GDD. If K = {k}, we simply write (k,\)-GDD. A (k, A\)-GDD of type m*
is called a transversal design (or TD) and denoted by TD( &, m). A ( K, \)-GDD
(X,G,A) with type 1V is called a pairwise balanced design (or PBD) and de-
noted by B( K, \;v) and also by (X,A). When K = {k}, a B({k},);v) is
called a balanced incomplete block design (or BIBD), denoted simply by B(k, \; v).
Let B(K, ) denote the set of positive integers v such that a B( K, \; v) exists.

A GDD or a BIBD is said to be resolvable if its blocks can be partitioned into
parallel classes each of which partitions the set of points. We denote them by
(K,))-RGDD and RB(k, A; v) respectively.

It is well known that the following are the necesary conditions for the existence
ofa B(k,)\;v): ‘

1) Mv—-1)=0 (mod £-1),

2) M(v—1)=0 (mod k(k-1)).

! Research supported in part by NSFC grant 1880451.

ARS COMBINATORIA 39(1995), pp. 261-275



For the existence of an B(k, A; v), a further condition (3) is necessary:
(3) v=0 (mod k).

In fact, (1) and (3) are the necessary conditions for the existence of anRB(k, \; v)
since (2) is implied by (1) and (3). In this paper we shall investigate the sufficiency
of (1) and (3) for block size five.

When k£ = 3 and )\ = 1, the existence of an RB(3, 1; v) is famous Kirkman’s
schoolgirl problem, which was solved by Ray-Chaudhuri and Wilson [12]. The
case when k = 4 and X\ = 1 was solved in [7]. For A > 1 and k = 3,4, several
authors discussed the existence problem and a complete solution was provided
in [15), that is, the condition (1) and (3) are also sufficient with the exception of
k=3,v=6and =2 (mod 4).

When k = §, there are three basic cases: A = 1,2 and 4. The necessary
conditions (1) and (3) become the following:

4 v=5 (mod 20) ford=1;
(5) v=15 (mod 10) for\ = 2;
6) v=0 (mod 5) forh=4.

In [13] Ray-Chaudhuri and Wilson conjectured that (4) is also sufficient. This
conjecture has been verified to be true in (5], [21] and [22] with 109 values of
v undecided where 7845 is the largest. In [10] Miao showed the sufficiency of
(6) with one exception and 73 possible exceptions of v where 1535 is the largest.
The asymptotic result in [8] guarantees the existence of an integer vo such that
(5) is sufficient whenever v > vo. However, this result does not provide any
specific value of vg. The purpose of this paper is to provide such a value, namely
vp = 50722395. As a consequence, (1) and (3) are also sufficient for k = 5 and
any ) > 1 wheneverv 2> vg.

Since we shall need the result on B(6, I; v), we first update the result on its
spectrum in Section 2. The number of possible exception of v can be reduced
to 88. In Section 3 difference families are used to generate some RB(5,2; v)’s,
especially for v = 55. In Section 4 and 5 we use recursive constructions to prove
our main result, that is, an RB(5, 2; v) exists wheneverv = 5 (mod 10) and
v > 50722395.

For concepts and results on design theory which are not mentioned in this paper,
we refer the reader to (1].

2, Spectrum of B(6,1;v)’s

In this section we use the Baer subplane of a projective plane to give some direct

constructions for GDDs and then improve the existence results of B(6,1; v)’s.
A projective plane is considered to be a BIBD B(k, 1; v) such that the BIBD

contains v blocks (lines). The order of the plane is k — 1. A projective plane

S = (U, A) is said to be a subplane of a projective plane D = (V,B) if U CV

and for each A € A, there exists a unique B € B suchthat A C B. If D has
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order nand S has order \/n, the subplane S is called a Baer subplane. Such a
subplane has the following property [2].

Lemma 2.1. A Baer subplane intersects each line in either g + 1 points or one
point.

Theorem 2.2. If g is a prime power, then there exists a ({h,q + h},1) -GDD
of type (¢* — ¢)9*1(g2)h, in which each block intersects any group of size g%,
where1 < h < ¢ —q.

Proof: Let D be a projective plane of order ¢ with a Baer subplane S of or-
der g. Choose a poim cinS. Let Lo,Ll,...,Lq be the lines of S through
c, and Lg+1,..., Lgss the other h(l < h < ¢* — g) lines through c. Let L!
(i=20,1,.. ,q) be the set of ¢> — ¢ points of L; which are not in S, and
L!=Li—{c}fori=q+1,...,q+ h. Put

X= L' u- UL’ L’+l u---u q#ln
G= {L': qr q+l’ q+h}'

It is clear that G forms a partition of X, then we call the members of G groups.
Let B be the set of lines of D . Put

A={BNX:BEe€B,c¢ B}.

The triple (X, G, A) is a GDD of type (g2 — ¢)9*'(¢?)". Now let us show that
any block A € A has either g + h points or h points. Suppose A’ is a line in B
containing A. By Lemma 2.1 A contains at least one point of the Baer subplane
S. If A’ contains one more point of S, then it must contain ¢ + 1 points of S. A}
intersects Ly, ... ., Ly in no point but intersects LY, ..., Ly, , inexactly one point

each. Thus A contams h points. Otherwise, if A contains exactly one point of
S, say a point on Lo, then A intersects L}, in no point but intersects other groups
in eactly one point each. In this case, A contains ¢ + A points, In euher case, A
intersects any group of size g2. The proof is complete. ]

We could construct some resolvable GDDs by deleting groups of this GDD.

Corollary 2.3. If ¢ is a prime power, then there exists a ({h,q + h}, 1) -RGDD
of type (¢* — q)%*'(¢?)", where0 < h < ¢ —g—1.

Proof: Each block intersects the goups of size g of the GDD. Delete one such
group. |

Corollary 2.4. If q is a prime power, then there exists a (¢ + 1, 1) -GDD of type
(¢ — )™ (gH).

Proof: Take h = 1 in Theorem 2.2. |
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Corollary 2.5, If q is a prime power, then there exists a (g, 1) -RGDD of type
(¢ -

Proof: Take A = 0 in Corollary 2.3. B

If we take h = ¢g> — ¢ and add one point ¢ to each group, we obtain a PBD
B({g+1,¢> —g+1,¢* +1},1;¢* + ¢ — g+ 1) obtained originally by Wilson
[18].

Now we use these GDDs to construct some new BIBDs. We first state the
following “Filling in Holes Construction” without proof.

Lemma 2.6. Suppose there exists a (k,)\)-GDD of type {m,,mz,...,m}. Sup-
pose for each i, 1 < i < h, there exists a (k,)\; n; + d) containing a subdesign
B(k,); d). Then there exists a B(k,\; d+ Y0, n).

Using Wilson’s “Fundamental Construction” [18], we get

Lemma 2.7. Let d = 1, or 6. Suppose there exists a B(6,1;v) with v =
20t+d,orv=25m+d, where 0 < m < t. If N(t) > 5, then there exists a
B(6,1;120t+ 25m + d).

Proof: Give weight 25 to m points of the last group of a TD(7, t) , and weight O to
the remaining points of the group. Give weight 20 to other points of this TD. The
input design (6, 1)-GDD of type 20525 comes from Corollary 2.4 when taking
g = 5. Another input design TD(6,20) comes from four mutually orthogonal
latin squares of order 20 [17]. Using Fundamental Construction we geta (6,1)-
GDD of type (20t)6(25m)". The conclusion then follows from Lemma 2.6. §

For the existence of B(6, 1; v) there are 4 unsolved values of v, see for example
[20]. Greig [6] constructed three of them.

Lemma 2.8. {246,486,5901} C B(6,1).
We can further delete three more.
Lemma 2.9, {1186,1516,1546} C B(6,1).

Proof: Apply Lemma 2.7 with (¢,m,d) = (9,4,6), (12,3,1) and (12,4,6).
Note that {76,106, 186,241,246 } C B(6,1).

Combining all these we can update the result as follows.

Theorem 2.10. Let v > 6 be a positive integer. The condition v = 1, 6
(mod 15) is necessary and sufficient for the existence of a BIB B(6,1;v), ex-
cept three nonexiting designs B(6,1; 16), B(6,1;21) and B(6, 1; 36), and 88
possible exceptions B(6,1; v) where the values of v are shown in Table 2.1,



46 51 61 81 141 166 171 196 201 226
231 256 261 276 286 291 316 321 336 346
351 376 406 411 436 441 466 471 496 501
526 561 591 616 621 646 651 676 706 711
73 741 766 771 796 801 831 886 891 916
946 1071 1096 1101 1131 1141 1156 1161 1176 1191
1221 1246 1251 1276 1396 1401 1456 1461 1486 1491
1521 1611 1641 1671 1816 1821 1851 1881 1971 2031
2241 2601 3201 3471 3501 4191 4221 5391

Table 2.1

3. Construction using difference families
There are many constructions using difference families from rings. The following
one is basic in this respect. By aring R we shall mean a commutative ring with an
identity in which the identity does not equal to zero. Recall that U( R), the units
of R, form a group under ring multiplication.

Let F = {B,...,B,} be a family of subsets of B. If B; = {ba,...,bi},
define the development of B; and F as follows

deVBi={B,'+g!g€R},

L]
dev F = Udev B;.

i=1

where B; + g = {by + g,..., by + g} for 1 < i < s. If (R,dev F) is a BIBD
B(k,\;v), Fiscalled a (v, k, \) -difference family, and denoted by DF(k, \; v).
The subset By, ..., B, are called base blocks of the BIBD.

Theorem 3.1. Let A < k — 1. Suppose there is a DF(k, ); g), {41, ... ;A,},
over aring R such that the base blocks are mutually disjoint. If there are k distinct
units u;,0 < i < k — 1, such that the differences u; — u; (0 < i< j<k—1)
are all units of R. Then there exists an RB(k, \; kq) conlaining a subdesign
RB(k,); k).

Proof: (a) The number s of base blocks 4; is \(g—1) /k(k—1); hence } ;. |Ai| =
= Mg - 1)/(k—-1) < gsince A < k — 1, and we may, without loss

of generality, assume that o ¢ A; fori = 1,2,...,s. PutV = R x I; with

Ir={0,1,...,k — 1}. As some base blocks for an RB(%, ; kg) we choose

Bi=A; x {i} = {(a],9),....(a},D} (i€Lij=1,2,...,9),

Where Aj= {a,, ,ak} Up to now we have ks = A(g—1) /(k—1) base blocks,
but we need A(kg — 1) /(k — 1) ones.
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(b) In order to get further base blocks we put
) C.‘: = {("’O)O)t(uit 1),...,(“#-1,1‘:— l)}'zrz € R

Here, of course, (u,1)- z means (uz,1). We have g new base blocks and in total
there are \(g— 1) /(k— 1) + Ag = A(kg—1)/(k— 1) base blocks B} and A\C;, as
desired, where AC; means that each base block C; is taken ) times. Now replace
the base blocks B} by u,-B}, we have the set S of new base blocks

S={wBj:i€lj=12,..,5tU{MC;: T €R}.

The pure differences arise all from the blocks u;B}. and the mixed differences
all from AC;. By hypothesis,

Y Ai(wiB)) = Y uibiBj = w Y AAj= \(R—{0}).
j J j

Furthermore, fori < j,
Aj{AC: iz € R} = (ui — u;)-(AR) = AR.

Hence A;S = A(R — {0}), A;;S = AR fori # j, and (V,dev S) is a BIBD
B(k,\; kg). It remains to show that the BIBD is resolvable.

(c) We have to partition the blocks into r = A( kg — 1) /(k — 1) parallel classes.
As first parallel class Py take all blocks u,-Bj- and the blocks C, where z is distinct
from all a{(i =0,...,k—-1;75 = 1,...,s). The number of blocks in Py is
ks+ (g —ks) =q.

The points in these blocks are

(uial,9),...,(uial,i) (i=0,....,k—1;j=1,...,5) and
(40z,0),...,(us17,k— 1) wherez # of foralli, j.

Obviously every point of R x I occurs exactly once; i.e., Py is a parallel class.
Hence some parallel classes are given by

By = 13yPy with 7y : (z,9) — (z+9,7),9 € R.

Thatis P, = {n(B) : B € Py}.

We construct still more parallel classes Q, = {7,C; : g € R} withz € U;,l Aj
and R, = {,C; : g € R} withz € R—J}., A;. Obviously either Q; or R is
a parallel class. The total number of parallel classes P;, Q; and R, is ¢ + Aks +
(A=1)(g—ks) = Ag+ ks = X\(kg—1)/(k — 1) = r,as desired. Furthermore,
(Co,\Co) is a subdesign RB(k, A; k). This completes the proof. 1

In the special case of a field F', U(F) = F — {0}, and we have
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Theorem 3.2. Le! g be a prime power and A < k — 1. Suppose there is a
DF(k,);q) {Ai,...,A,} in GF(q) such that the base blocks are mutually dis-
joint. Then there exists an RB(k, \; kq) containing a subdesign RB(k, \; k).
Proof: In this case, we choose k distinct elements u, ..., ux-; of GF(g) — {0}
to define C; and the proof of Theorem 3.1 remains valid.

It should be noted that Schellenberg [14] proved Theorem 3.1 inthe case A = 1
and Ray-Chaudhuri and Wilson [13] proved Theorem 3.2 also in the case A = 1.

Now we tum to find such block-disjoint difference families. The following ex-
amples were first given by Wilson [19] without mentioning the block-disjointness.

Lemma3.3. Let q = ke+ 1 be aprime power. Let w be a primitive element and
H the multiplicative subgroup of order k of GF(q). Then {Ao,...,A.~1} form
a block-disjoint DF(k,k — 1; q) where Aj=w/H,j=0,...,e—1.

Lemma 3.4. Let k be odd and ¢ = 2ks + 1 a prime power. Let w be a prim-
itive element and H the multiplicative subgroup of order k of GF(q). Then
{A:1,...,A;} form a block-disjoint DF(k,(k — 1)/2;q) where A; = w'H,
J=1,...,8

Corollary 3.5. There isan RB(6,5;42).

Proof: Apply Theorem 3.2 with ¢ = 7. The requu'ed DF(6,5;7) comes from
Lemma 3.3. [ |

Corollary3.6. Letq =1 (mod 10) beaprime power. ThenthereisanRB(S5,2;
5q) containing a subdesign RB(S5,2;5).

Proof: Apply Theorem 3.2 with £ = 5. The required DF (5, 2; ¢) comes from

Lemma 3.4, i
Corollary 3.7. There isan RB(5,2; 55) with a subdesign RB(5,2;5).
Proof: Apply Corollary 3.6 with ¢ = 11. ]

Note that the existence of RB (6 5;,42) and RB (5, 2;55) were listed as un-
known cases in [9].

4. Existence of RB(5,2; v) for v= 5,25 (mod 30)

In this section we shall prove the existence of an RB(5,2;v) forv = 5,25
(mod 30) and v > 50722395. We shall work modulo 300. Whenv = §
(mod 20), the conclusioncomes from the resultonRB (5, 1; v). For other residue
classes we first consider the case v = 55,155 (mod 300), then the remaining
classes.

Let (X,G,A) bea(k,\)-GDDof type T. For G € G, let Pg be a subset
of A such that the blocks in Pg form a partition of X — G. Pg is called a holey
parallel class with hole G. The GDD is called a (k, \)-frame with type T if A
can be partitioned into holey parallel classes.

The following constructions can be found in [10], [16].
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Lemma 4.1 (Fundamental Frame Construction). Suppose (X,G,A) is a
GDD with A = 1,and let w : X — Z* U {0} be a weight function. For each
A € A, suppose that we have a (k, ) -frame of type {w(z) : = € A}. Then
there exists a (k, \) -frame of type {}_,.c w(z) : G € G}.

Lemma 4.2 (Inflation by TDs). Suppose there exists a (k,\) -frame of type T
and an RTD(k,m). Then there is a (k,\)-frame of type {mt : t € T}.

(k, \) -frames can be used to obtain RBIBD:s as follows [20, Construction 3.9].

Lemma 4.3. Suppose there exists a (k,\)-frame of type {t,,...,t,}, and let
w > 0. Foreach i,1 < i < n— 1, suppose there is an RB(k,\;t; + w)
containing a subdesign RB(k, \; w). Ifan RB(k, \; t,+w) alsoexists, then there
is an RB(k, ); v) containing a subdesign RB(k,\;u) wherev = w+ Y 0, t;,
and u = t, + w. Furthermore, if the RB(k, \; t, + w) also contains a subdesign
RB(k,); w), then the resulting RBIBD contains more subdesigns as u may take
worw+t;forl1 <i<n

Lemma 4.4. The following GDDs exist:
(1) a(6,1)-GDD of type 5%;
(2) a(6,1)-GDD of type 5% ;
(3) a({6,25},1)-GDD of type 5%24}; and
4) a({6,25},1)-GDDoftype 5524 ",

Proof: Deleting one point from a B(6,1; 121) and a B(6,1; 126) respectively
to get the GDDs in (1) and (2). Adding one point to groups of a TD(6,24) and
then deleting another point of TD(6,24), we get the GDD in (3). The last GDD
" is obtained by deleting one point from a TD(6,25). [ |

Lemma 4.5, There exist (5,2) -frames of type 2%, 10% and 105,

Proof: (5,2)-frame of type 25 exists from [11]. Giving weight 5 to each point of
this frame and applying Lemma 4.2, we obtain a (5, 2) -frame of type 106 since
‘an RTD(5,5) exists. Also giving weight 2 to each point of a (6, 1)-GDD of
type 5% and applying Lemma 4.1, we obtain a (5, 2)-frame of type 102 since a
(5,2)-frame of type 26 exists. ]
Then we have

Theorem 4.6. Let u = 55,155 (mod 300) and u ¢ A. Then there is an
RB(5,2; u) withasubdesign RB(5,2;5), where A = {455,1955,2255,2555,
2755,3355,4355,4655,6755,7055,7955, 8855, 9455, 10955, 12455, 14555 }.

Proof: Deleting one point from a B(6, 1; v) to obtain a (6,1)-GDD of type
5(=D/5_ Give weight 10 to each point of this GDD. Then a (5,2)-frame of
type 50¢v—1/5 exists from Lemma 4.1 since a (5, 2)-frame of type 108 exists.
By Corollary 3.7 we have an RB(S5, 2; 55) with a subdesign RB(5,2; 5). Apply
Lemma4.3, we obtain an RB(5, 2; 10v — 5) containing a subdesign RB(5,2; 5).
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Whenv = 6,16 (mod 30),and v > 36, Theorem 2.10 guarantees the existence
ofanRB(5, 2; 10v-5) except v =36, 46, 166, 196, 226, 256, 276, 286, 316, 336,
346, 376, 406, 436, 466, 496, 526, 616, 646, 616, 706, 736, 766, 796, 886, 916,
946, 1096, 1156, 1176, 1246, 1276, 1396, 1456, 1486, 1816. By Corollary 3.6, an
RB(5,2; 10v — 5) also exists for the italic v. Since an RB(5, 2; 55) exists from
Corollary 3.7 and an RB( 5, 2; 155) exists from Corollary 3.6, the conclusion then
follows. [ ]

Now we use this result to consider the remaining residue classes modulo 300,
but we need some preliminaries. Let N(t) be the maximum number of mutually
orthogonal Latin squares of order ¢.

- Lemma 4.7. Let N(t) > 24. Then there is a ({6,25},1)-GDD of type
(5t)%(5u)'(24v)', where 0 < u,v < t.

Proof: Give weight 24 to v points of the last group of a TD(26, ¢) and weight 0
to other points of the group. Give weight 5 to u points of the second last group
and weight 0 to the other points of the group. The remaining points of the TD all
receive weight 5. Apply Wilson’s Fundamental Construction with the ingredient
GDD:s from Lemma 4.4. We obtain the required GDD. ]

Lemma 4.8. Let N(t) > 24. Then there is a (5,2)-frame of type (50t)%#
(50u)!(240v)!, where 0 <u,v<t.

Proof: Give weight 10 to each point of the GDD in Lemma4.7. Apply Lemma4.1
with the input frames frum Lemma 4.5. |

For ease of notation we write v € RB,(k, )\) for the fact that there is an
RB(k, A; v) containing a subdesign RB( &, \; w). We also write v € RB(k, )
for the fact that an RB(k, \; v) exists.

Lemma 4.9. Suppose N(t) > 24 and 0 < u,w < t. If 50t+5 € RBs(5,2),
oneof 50u+5 and 240w+ 5 is inRBs(5,2) and the other is in RB(5, 2), then
v = 1200t + 50u + 240w + 5 € RB(5,2). Furthermore, if both 50u + 5 and
240w + 5 arein RBs(5,2), then v € RBs(5,2).

Proof: Apply Lemma 4.3 with the (5, 2)-frame from Lemma 4.8. 1

Lemma 4.10. 50u + 5 € RBs(5,2) whenever u =1 (mod 6) and u > 173,
oru=3 (mod 6) and u > 225,

Proof: See Theorem 4.6. |
Let O, = max{v : v odd and N(v) < r}.

Lemma 4.11. O3 < 60000.

Proof: See [4]. |
We are now in a position to handle the remaining classes.
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Lemma 4.12. Suppose there is an infinite series of positive integers {ti}i=0,1 2,...
such that foreach 1,1=0,1,2,...

(1) N(t) 224,t;,=1 (mod 6),¢; > 73;
(2) 50t;+5 € RBs(5,2);
() t; <t < (25, —73)/24.

If 240w + S5 € RB(5,2), then v € RB(5,2) whenever v = 240w + 55
(mod 300) and v > 12002 + 3655 + 240 w.

Proof: For any givent € {t;},takeu = 1 (mod 6) and 73 < u < t. Apply
Lemma 4.9, we obtain v = 1200t + 50u + 240w + 5 € RB(S5,2) since all
the required RBIBDs exist from the assumption and Lemma 4.10. For fixed ¢
and w, if we let u take all values for 73 < u < t, we get an interval [ 1200% +
50-73 + 240w + 5, 1250t + 240w + 5120%*55 contained in RB(S,2), where
[mnl={z€Z:m<z<nz=>b (mod a)}. Condition (3) gurantees that
any two consecutive integers overlap. Hence v € RB(S5,2) forv = 240w + 55
(mod 300) whenever v > 1200¢p + 50-73 + 240 w + 5. The proof is complete.

|

We define a series {t;}i=0,1,2,.. as in Appendix 1 for t; < 60001 and for t; >

60001 we recursively define t;,, = t;+6. With the help of [3] it is readily checked
that the series satisfies the conditions of Lemma 4.12, where to = 601.

Theorem 4.13. There exists an RB(5,2;v) for v = 25 (mod 30) whenever
v > 726295.

Proof: By Lemma 4.6 and the result on RB(5,1; v), we need only to consider
the cases v = 115, 175, 235 and 295 (mod 300). Apply Lemma 4.12 with
w = 4,3,2 and 6, respectively. Notice that {965, 725, 485, 1445} C RB(5,1)
(see [22]). [ |

We have the following lemma similar to Lemma 4.12.
Lemma 4.14. Suppose there is an infinite series of positive integers {t}i=0,12....
such that foreach i,i=0,1,2,...

(1) N()>24,1;,=3 (mod 6),t; > 225;

(2) S0t;+5 € RBs(5,2);

B) t; < ti1 < (25¢; — 225)/24.
If 240w + 5 € RB(5,2), then v € RB(5,2) whenever v = 240w + 155
(mod 300) and v > 1200%p + 240w + 11255.

Proof: Similar to that of Lemma 4.12, noticing in this case u =3 (mod 6) and
225 < u < t;. The existence of an RBs(5,2; 50u) comes from Lemma 4.10,
and v = 1200¢; + S0u + 240w + 5 gives v = 240w + 155 (mod 300). [ ]

We also define a series {t;}i=0,1.2,.. as follows: fort; < 60003 we take ¢; in
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turn to be

41175=27 x 25 x 61, 42309 =27 x 1567, 43983 = 181 x 243,
45225 =27 x 25 x 67, 46899 =193 x 243, 47331=27 x 1753,
51219= 27 x 1897,  53325=27 x 1975, 55431 = 27 x 2053,
57699 = 27 x 2137, 60003 <

and for t; > 60003 we recursively define t;,; = t; + 6. It is readily checked that
the series satisfies the conditions of Lemma 4.14, where to = 41175.

Theorem 4.15. There exists an RB(5,2;v) for v = 5 (mod 30) whenever
v > 50722395, '

Proof: By Lemma4.6 and the result on RB(S5, 1; v), we need only to consider the
casesv = 35,95,215and 275 (mod 300). Apply Lemma4.14 withw = 2,6,4
and 3, respectively.

5. Existence of RB(5,2;v) for v = 15 (mod 30)

We first consider the case v = 255 (mod 300), and then the remaining cases.
The following construction is a slight generalization of a theorem due to Harrison
see, for example, {20]).

Theorem 5.1. If there exist an RB(k,1;kq), an RB(k,\;kqy) and an
RTD(k, q2), then there exists an RBgg, (k,X; kg1¢2).

Corollary 5.2. RBs(5,2) D {4455, 37455,47355)}.

Proof: Apply Theorem 5.1 withk=5,A=2,q; = 81,681,861 and gz = 11. |

A subset of blocks in a BIBD is called a partial parallel class if the subset
consists of pairwise disjoint blocks. The following construction can be found in
[20].

Theorem 5.3. Suppose (X,A) and (Y,B) arean RB(k, \;v) andaB(k, \; v)
respectively. Suppose B can be partitioned into s disjoint partial parallel classes
where 3 < AM(u + v — 2) /k — 1). If there is an RTD(k, v), then there exists an
RB(k, A; uv) containing a subdesign RB(k, \; u).

Corollary 54. 1155 € RBs(5,2).

Proof: Let X = Z, and the disjoint base blocks be
{8,11,12,17,19},{15,9,14,18,7}.

Then we have a B(5,2; 21) with 21 partial parallel classes. Apply Theorem 5.3

with 1155 = 55 x 21. Note that N(21) > 4 from [3]and 21 < 2 x (21+ 55 —

2)/(5-1)=37. |
We also need a preliminary result.

271



Lemma5.5. Thereisan RB(S,2; 240w+ 5) containing asubdesign RB( S, 2; 5) ‘
whenever w = 0 (mod 5).

Proof: Theorem 4.3. |
The following lemma is similar to Lemma 4.12.

Lemma 5.6. Suppose there is an infinite series of positive integers {t;}i=0,12,..
such that foreachi,i=0,1,2,...

(1) N(t) 224,4,=1 (mod 6),1 > 73;

(2) 50t;+5 € RBs(5,2);

(3) ti<tiv1 < (6t —4)/5.
Then v € RB(5,2) wheneverv = 50u + 5 (mod 1200) andv > 12000 +
S0u+S5.

Proof: For fixed v and ¢ € {¢;} we change w suchthat0 < w < ¢t —4 and
w =0 (mod 5). Apply Theorem 4.6, we obtain [ 1200¢ + 50u + 5, 1200t +
50u + 240(t — 4) + 51985 C RB(5,2). Since t; < ti1 < (6t —4)/5, we
have 1200%;,1 + S0u+ 5 < 1200¢;+ 50u+ 5+ 240(t; — 4) . Hence the assertion,

|

Theorem 5.7. v € RB(5, 2) wheneverv = 255 (mod 300) andv > 1200555,

Proof: Apply Lemma 5.6 with 50u + 5 = 37455, 47355, 4455, 1155, and the
series before Theorem 4,13, where to = 961. [ |

For the remaining cases, we first prove.

Lemma 5.8. Suppose there is an infinite series of positive integers {t;}iz012,.
such that foreach i,i=0,1,2,...

(1) N(t) >24,t;=5 (mod 6),¢ > 24011;
(2) 50t;+5 € RBs(5,2);
(3) t; < ti1 < (25t; — 24011)/24.

If 240t + 5 € RB(S5,2), then v € RB(5,2) whenever v = 255 + 240w
{mod 300) and v > 1200t¢ + 240w + 1200555.

Proof: Apply Lemma 4.9 witht =t;,i=0,1,2,...,24011 < u < t;,u =5
(mod 6) to obtain [ 1200¢; + 240w + 1200555, 1250¢; + 240v + 513404+ C
RB(5,2). Sincet; < ti1 < (25t; — 24011) /24, we have 1200;,; + 240w +
1200555 < 1250t; + 240 v + 5. Hence the assertion. B

We again define a series {t;}i=0,1 2,... as follows: whent; < 60005, see Appen-
dix 2; when ¢; > 60005, we recursively define t;,; = ¢; + 6. Then it is readily
checked that this series satisfies the conditions of Lemma 5.8 where ¢y = 41627.

Theorem 5.9. There exists an RB(5,2;v) for v = 15 (mod 30) whenever
v > 50722395.
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Proof: By Theorem 5.7 and the result on RB(S5, 1; v), we need only to consider
the cases v = 15, 75, 135 and 195 (mod 300). Apply Lemma 5.8 with w =
4,3,2 and 6, repectively. [ |

6. Conclusion
Combining Theorems 4.13, 4.15 and 5.9 we obtain the main result of this paper.

Theorem 6.1. The necessary condition for the existence of an RB(S , 2; v), namely
v=15 (mod 10), is also sufficient whenever > 50722395,

With the result on RB(S, 1; v) [22] and RB(S5,4; v) [10] we further obtain the
following

Theorem 6.2. The necessary conditions for the existenxce of an RB(5,); v),
namelyv=0 (mod 5) and A\(v—1) =0 (mod 4), are also sufficient for any
positive integer \ whenever v > 50722395,

References

1. T. Beth, D. Jungnickel and H. Lenz, “Design Theory”, Bibliographiches In-
' stitut, Zurich, 1985.

2. A.E. Brouwer, Aseries of separable designs with application to pairwise or-
thogonal latin squares, Europ. J. Combinatorics 1 (1980), 39-41.

3. AE. Brouwer, The number of mutually orthogonal latin squares—a table
up to order 10000, Research Report ZW 123/79, Math. Centrum, Amster-
dam,1979.

4. A.E. Brouwer and G.H.J. van Rees, More mutually orthogonal latin squares,
Discrete Math. 39 (1982), 263-281.

5. D. Chen and L. Zhu, Existence of resolvable balanced incomplete block de-
signs with k = 5 and ) = 1, Ars Combinatoria 24 (1987), 185-192.

6. M. Greig, Some group divisible design constructions. preprint.

7. H. Hanani, D.K. Ray-Chaudhuri and R.M. Wilson, On resolvable designs,
Discrete Math. 3 (1972), 345-357.

8.J.Lu, An existence theory for resolvable balanced incomplete block designs,
Acta Math. Sinica 27 (1984), 458-468. (in chinese).

9. R. Mathon and A. Rosa, Tables of parameters of BIBDs with r < 41 includ-
ing existence, enumeration and resolvability results: an update, Ars Combi-
natoria 30 (1990), 65-96.

10. Y. Miao, Existence of resolvable BIBDs with k = 5 and )\ = 4, Discrete
Math., (to appear).

11. Y. Miao and L. Zhu, Pairwise balanced designs with block sizes 5t + 1, Ars
Combinatoria 32 (1991), 239-251.

12. D.K. Ray-Chaudhuri and R.M. Wilson, Solution of Kirkman's schoolgirl prob-
lem, Proc. Sym. Pure Math. 19 (1971), 187-203.

273



13. D.K. Ray-Chaudhuri and R.M. Wilson, The existence of resolvable block de-
signs, in “A Survey of Combinatorial Theory”, J.N. Srivastava et al., eds,
North-Holland, Amsterdam, pp. 361-375.

14. P. Schellenberg, personal communication,

15. H. Shen and W.D. Wallis, A note on the existence of resolvable block designs
with block sizes 3 and 4, preprint.

16. D.R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987),
289-300.

17. D. Todorov, Four mutually orthogonal latin squares of order 20, Ars Com-
binatoria 27 (1989), 63-65.

18. R.M. Wilson, Constructions and uses of pairwise balanced designs, Mathe-
matical Centre Tracts 55 (1974), 18-41.

19. R.M. Wilson, Cyclotomy and difference families in elementary abelian groups,
J. Number Theory 4 (1972), 17-47.

20. L. Zhu, Some recent developments on BIBDs and related designs, Discrete
Math., (to appear).

21. L. Zhu, D. Chen and B. Du, On the existence of (v, 5, 1)-resolvable BIBD,
J. Suzhou Univ. 3 (1987), 115-129.

22. L. Zhu, B. Du and X. Zhang, A few more RBIBDs with block size k = 5 and
X = 1, Discrete Math. 97 (1991), 409-417.

274



