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Abstract. We characterize "effectively” all greedy ordered sets, relative to the jump
number problem, which contain no four-cycles. As a consequence, we shall prove that
O(P) = G(P) whenever P is a greedy ordered set with no four-cycles.

Introduction

Throughout this paper, P denotes a finite ordered set. A linear extension L of
P is a total ordering of the elements of P suchthat z < yin P implies z < y
in L. Suppose that L = {z; < z2 < ...} is a linear extension of P. A jump
in L is a pair of consecutive elements in L, (z;,z;.1) which are noncomparable
in P. We denote s(P, L) the number of jumps in L. The jump number of P,
denoted by s( P), is the minimum of s( P, L), over all linear extensions L of P.
The problem of minimizing jumps, called the jump number problem, has been
widely studied, in part due to its applications to scheduling. A linear extension
L of P is called optimal if s(P,L) = s(P). We denote O(P) the set of all
optimal linear extensions of P. One of the ways of constructing a linear extension
of P, which comes to mind is to minimize the number of jumps in each step of
the construction. Choose z; any minimal element in P. Suppose z;,23,...,T;
are already defined, choose z;,; minimal in P — {z,..., 2;} such that z;,; >
z; in P, whenever possible. A linear extension constructed by such method is
called a greedy linear extension. We denote by G( P) the set of all greedy linear
extensions of P. Call an ordered set P greedy if every greedy linear extension of
P is optimal. Kierstead [4] has proved that the problem of deciding whether or not
an ordered set P is greedy is NP-complete. (See also Bouchitté and Habib [1]) On
the other hand there are classes of ordered sets for which the subclasses of greedy
ordered sets are effectively characterized. For instance Rival [5] proved that for
an N-free ordered set P, O(P) = G(P). Rival and Zaguia [6] gave a simple
characterization of greedy ordered sets of length one. Also Ghazal, Sharary and
Zaguia [3] characterized greedy ordered sets which are interval orders.

Our first theorem in this paper contains a characterization of the greedy ordered
sets which contain no subsets isomorphic to a four-cycle as iilustrated in Figure
1(a). These are the greedy ordered sets with no four-element subsets {g, , c, d}
such thate < ¢,a < d, b < cand b < d are the only comparabilities among these
elements. As a consequence of this characterization we shall prove the following.
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Theorem 2. Let P be an ordered set with no four-cycle. Then P is greedy if and
only if O(P) = G(P).

The main tool used to prove our results is the "chain interchange” technique de-
veloped by Rival and Zaguia [6). Also, notice that Theorem 2 is much related to
a result of El-Zahar and Rival [2] which states that if an ordered set P does not
contain cycles as illustrated in Figure 1(b), then G(P) 2 O(P).
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Figure 1.

For a and b in P, we say that a covers b, denoted by a>- b, if a > b in P and
ifa > c > bthen b = c; we call a an upper cover of b. (Also b-<a and b is
a lower cover of a.) Let P and S be ordered sets and let E be a subset of the
edges of the diagram of S; say that Sg = (S, E) is a subdiagram of P if there
is a subset of P isomorphic to S in which each of the edges corresponding to E
is a covering edge in P. Usually we write S instead of Sg. Whenever we write
N = {a,b,¢,d}, W = {a,b,c,d,e}, M = {a,b,c,d, e,f}, X = {a,b,c,d,e}
we shall mean the diagrams as illustrated in Figure 2. Let P and T be ordered
sets and let S be a subdiagram of P. We say that S has a T-completion in P if
there is a subdiagram T’ of P isomorphic to T' and containing S. We say that
a subdiagram N = {a, b, c,d} of an ordered set P has a good W-completion,
if it has a W-completion {a,b, z, c,d} (with z > a) which, in tumn, has no M-
completion {y, e, b, z,c,d}, withy < z in P.

Theorem 1. Let P be an ordered set with no four-cycles. Then P is greedy if
and only if every subdiagram N of P has a good W -completion.

Notice that the same characterization holds for bipartite greedy ordered sets. (See
Rival and Zaguia [6].) Let L be a linear extension of P. The jumps of L induce a
decomposition of L into chains. Thus L = Ci®C, ®. .. , where (supG;, infCi1),
i=1,2,...,are the jumps of L. Call an element a of P accessible if{freP:
z < a} is a chain in P. Say that an element a is maximal accessible if it is
accessible and every upper cover of a is not. Notice thatif L = C, ® C, & ...
is a greedy linear extension of P then supC; is maximal accessible in U»iCi.
An easy fact which we shall use frequently, is that whenever P is greedy and
L=C®C &... is a greedy linear extension, then Uy;Cy is greedy for every



i=1,2,.... For chains C, C' in P we say thatan N = {a,b,c,d} inCUC' is
minimal ifb,d € C, a,c € C' and, forevery N = {a1,b1,¢1,d1} in CUC' then
c < c; and b < b; in P. Finally, we shall use the term Cj -free to call ordered sets

with no fourcycles.
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Now before we get to the proofs of our main results, here are some preliminary
lemmas. But first, we state the following technical theorem which is important in
our proofs.

Theorem 3. (Rival and Zaguia [6]). An ordered set P is greedy if and only
if every subdiggram N minimal in C; U C;,, for some greedy linear extension
L=C®C &... of P, has either a W -completion or an X -completion in
CiUCiv U{z}, for some minimal element x in Uiy Cy such that either = >
supC; or z does not cover y in P forevery y in C;.

Lemma 1. Let P be a C4-free greedy ordered set. Then every subdiagram N
of P has a W -completion.

Proof of Lemma 1: We proceed by induction on, | P|, the cardinality of P. Let
{a,b,c,d} be an N subdiagram of P. Suppose that there exists a greedy chain C
of P which contains neither a nor b. By induction hypothesis, {a, b, c,d} has a
W -completion in P — C, and therefore in P. (P -~ C| < |[Pland P-Cisa
C,-free greedy ordered set.) Thus, we may assume that every greedy chain of P
contains either a or b. We consider three different cases.

case 1. c has alower cover ¢ in P, withc’ # aand ¢ # b.

Obviously ¢’ is noncomparable to a, b and d. (If ¢ < d then {c, b, c, d} is a four-
cyclein P.) Let G, be any greedy chain of P containing a. Since {¢/, b,c,d} is an
N in P - G,, then by induction hypothesis it has a W-completion {¢, b, y, c,d} in
P — C,. Now consider any greedy chain C; in P, containing b. It is easy to show
that{a,c, c,y} isan N in P—Cj, and thus it has a W-completion {a, ¢/, z,c, y} in
P —C;. Since z is noncomparabletoc,band d. (If z > borz > dthen{a b,c, z}
isaCs;ifz < bthena < bandif z < dthena < d.) then {a,b,z,c d}xsa
W-completion in P.
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case 2. d has a lower cover d' with &  b.

Notice first that d' is noncomparable to a and b. (b and d’ are both lower covers of
d,and if & > a thend > a, also d’' < a implies that {d', b, c,d} is a Cs.) Since
we are assuming that every greedy chain in P contains either a or b, then d' is not
accessible. Thus D(d') = {z € P : z < d'} is not a chain in P. So, let y1 and
¢ be two noncomparable elements in D(d"). We may assume that y; and g, are
accessible in P. Since very greedy chain in P contains either a or b, then each of
y and g, is comparable to either a or b. In both cases it will imply that y; < ¢
and y» < c. Butthen {y, 2, ¢, d} is a four-cycle in P. Which is a contradiction.
case 3. a and b are the only lower covers of c, and b is the only lower cover of d.
In this case d is accessible in P, and thus let C; be a greedy chain in P, containing
{b,d}. Also cis accessible in P — Cy, and thus let C; be a greedy chainin P—C,
containing {a, c}. Consider any greedy linear extension L = C @ C2 ® ... of P
starting with C; ©C; . Obviously {a, b, ¢, d} is aminimal N in CUC; . Therefore,
according to Theorem 3, there exists z such that {a, b, z, ¢, d} is a W-completion
of {a,b, c,d} in P. This completes the proof of Lemma 1.

Lemma 2. Let P be a Cs -free greedy ordered set. Then for every subdiagram
N = {a,b,c,d} of P, all the lower covers of c and d are accessible.

Proof of Lemma 2: According to Lemma 1, {a,), c,d} has a W-completion
{a,b,z,c,d} in P. If b is not accessible, then there exist two noncomparable
elements by, b, such that b, < b and b, < b. Therefore {b;, bz, c,d} is a four-
cycle in P. Similarly, if a is not accessible then there exist two noncomparable
elements a; and a; such that a; < a and 6z < a. But then {a1,a2,z,c} will be
a four-cycle. Now if ¢’ is any lower cover of ¢ then the same argument applied to
the N = {¢, b, c, d} shows that ¢ is accessible. Similarly, if ' is a lower cover of
d then by considering the N = {d', b, d, ¢} we conclude that &' is accessible.

Proof of Theorem 1: We proceed by induction on |P|, the cardinality of P. We
assume that if | P’| < | P] and P' is a Cs-free greedy ordered set then every N in
P’ has a good W-completion.

Claim 1. If N = {a, b, c,d} has no good W-completion in P then the only lower
covers of cin P, are a and b.

To prove the claim, we assume for a contradiction that y-< c withy # aand y # b.
According to Lemma 2, y is accessible. Let C, be a greedy chain containing y.
By the induction hypothesis {a, b, ¢, d} has a good W-completion {a, b, z, c, d}in
P — C,. Since this W-completion is not good in P, then there exists z’ such that
{z',8,b,%,c,d} is an M subdiagram of P. Thus z' is in C,. Now if =’ < y then
{z',a,z,c} is a four-cycle and if z' > y then {y, o, z, c} is a four-cycle, which is
a contradiction. '

Claim 2. If N = {a, b, ¢, d} has no good W-completion in P, then there is z-<d
with z ¥ b. We assume for a contradiction that b is the only lower cover of d.
Notice that a and b are the only lower covers of ¢. Since d covers only b and since



b is accessible (by Lemma 2), then d is accessible. Thus we consider a greedy
chain C, containing {b,d}. Now in P — C}, c is accessible and thus we consider
agreedy chain C, in P—C;, containing {a,c}. LetL = C, ®C, ®... beagreedy
linear extension of P starting with C; @ C;. According to Theorem 3, there must
exist an element z minimal in U;5, C; such that {a, b, z, ¢, d} is a W-completion
of N = {a, b, c,d}. Since it is not a good W-completion, then there is y-< z in P
such that {y, e, b, z, ¢, d} is an M subdiagram of P. But z is minimal in U;5C;,
thus y € Ci U C,. Therefore either y € C; and y is comparable to b,ory € C»
and y is comparable to a. Both are contradictions.
Now we return to the proof of Theorem 1. Suppose that N = {a, b, ¢, d} has no
good W-completion in P. According to Claim 1 and Claim 2, the only lower
covers of c are a and b, and there is d'-< d such that d' # b. Let Cz be a greedy
chain in P containing d'. By induction hypothesis, there is a good W -completion
{a,b,7,c,d} of N = {a,b,¢,d} in P — Cy. This W-completion is not good
in. P, thus there is y-< z; such that {y,a,b,z,,c,d} is an M subdiagram of
P. Thus y; € Cg and so it is comparable to &', in fact y; > d'. (If <d
then y; < d and this contradicts that {y1,a,b,;,c,d} is an M.) Let G, be
any greedy chain in P containing b. Neither a nor d' are in C;. (a and &' are
noncomparable to b.) In P — Gy, the N = {y1, 6, 31, c} has a good W-completion
- {®,a,t,z1,c}, (see Figure 3). Now suppose that ¢, has a lower cover  with
v # y1. Ifu > bthent) > band thus {d, b,,,d} is a four-cycle. Therefore u is
noncomparable to b and thus u € P— Cy. However {y1, a, t1, 71, ¢} is a good W-
completion of {y1,a,21,c} in P — Cj,and thus u < z; oru < c. If u < z; then
{#1,4,t1, 71} produces a four-cycle, and u '< ¢ would imply that s < a oru < b.
[Since we are assuming that the only lower covers of c are @ and b.] And in both
cases we produce a four-cycle. Therefore, we conclude that the only lower cover
of t, is y1, and according to Claim 2, {a, y1,z1,¢1} has a good W-completion
{a,y1,z,t1,71} in P. Moreover z # c, for otherwise b < z; or b < ¢, and in
both cases we produce a four-cycle. Finally, we claim that {a,b, z,c,d} mustbea
good W-completion of N = {a, b, c,d} in P. Assume that there is u-< z such that
u ¥ a. Then either u < ¢; or u < ;. Butu < z implies that {u,q,z,z,} isa
four-cycle, and ¢ < ¢; implies u < y; (since the only lower cover of £; is v1),and
thus u < 3. Therefore {a, b, z, ¢, d} is a good W-completion of N = {a,b,c,d}
in P, which is a contradiction.

Finally, notice that if every N in P has a good W-completion then according
to Theorem 3, P is greedy. This ends the proof of Theorem 1.

Before we get to the proof of Theorem 2, here is a Lemma which we shall use.

‘Lemma 3. Let P be an ordered set. Then G(P) 2 O(P) if and only if there is
an optimal greedy linear extension L = Cy ®---@Cr, of Pand 1 < i < Jj<m
such that:

() z = supC;—<y = infC; in P, and

(i) =z is noncomparable with t in P, forevery t such that = < t < yinL.
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Figure 3.

Proof of Lemma 3: Assume that L € O(P) — G(P). We shall construct in-
ductively a sequence L = Lo, L1,...,L, = L' of optimal linear extensions of
P, such that L' € G(P) while L; ¢ G(P) for every i < n. Suppose that
L; = {z1 < z3 < ...},if L; is greedy then set n = 1. Otherwise let k be the least
index such that z;, is not chosen in a greedy way, that is, z; is noncomparable to
241 and there is 2 minimal in {zkﬂ 2 Zk42y o .} such that q> k+ 1and Zy>- 2
in P. We transform L; into a new linear extension L. by putting z, between z;
and Zk+1 in L.'.

Lin={a1< - <2k <2zg<zke1 <--- < 21 < Zge1 < ... }.

Assume that L,; = C} @ --- @ C},. According to the construction described
above, L, is obtained from L,_; by removing an element z of C;} as an upper
cover of some element u in C, that is

Ln=Cl®---&Ciu{zh & ---0(C;-{z & .

Clearly z = sup(C/U{z}). Now denote L, = C & - -©@Cr, Where C; = C{U{z},
Cj = Cj—{z} and C; = C; forevery k ¢ {i, j}. Itis easy tosec that C; # ¢, for
otherwise L, will have less jumps than L, and this contradicts the optimality
of L, . Moreover infC;>- z = supC; in P, and j > i + 1 for otherwise C; and
C;.1 will form the same chain. Thus L, satisfies the properties of the Lemma.
To prove the converse, suppose that P has an optimal greedy linear extension
L = C, &---®C,, satisfying the conditions (i) and (ii) of the Lemma. By moving
=z from C; to just before C;, we obtain a nongreedy optimal linear extension of P.
Proof of Theorem 2: Suppose that P is greedy and O(P) — G(P) # ¢. Let
L =01 ®---®Cy, be alinear extension of P satisfying the properties of Lemma
3. We may choose L with the smallest possible value of j — 1.

If y = infC; is noncomparable to every element in C;_,, then y is minimal
in Ug»;-1Cs. So consider a greedy linear extension C;_, & C; @ --- ® C,, of
Uk>j-1C, such that y = infC}_l. But then the greedy linear extension C; &
++-@Cj_2 ®C}_; ® - - - @ C}, satisfies the properties of Lemma 3, for z = supC;
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andy = infC,’-_l and moreover z and y are now closer than in L [since (j—1) —1 <
J — 11, which contradicts the choice of L.

Therefore, there is z € C;—; such that y>- z in P. Necessarily z # supC;_,,
for otherwise L cannot be a greedy linear extension. Thus, z-< u in P for some u
in Gj_;. The subdiagram {z, z,y,u} is an N in P. According to Theorem 1, this
N has a good W-completion {z, z,v,y, u}. Since v>- z in P then v € Ue>;Ci.
[That is because z is noncomparable to ¢t , whenever z < ¢t < yin L.] Also v
must be minimal in U, ;C;. Indeed if there exists t € Usk>;Ck such that t-< v in
P theneithert < yort < u. [Since {z, z,v,y, u} is a good W-completion of
{z, 2,y,u}.] Which is a contradiction, since y < t and u < tin L.

Moreover, v is noncomparable with every element in C;. Indeed if v > ¢
for some ¢ in Gy, then v > y. Thus v is minimal in Ug>;_;Ck. Also v is non-
comparable to every element in Cj_y, for otherwise {z, infC;_;,y,v} will be
a four-cycle. Consider a greedy linear extension C";_; ® C"; @ -+ ® C"p,
of Uy>;-1C}, such that v = infC";_;. But then the greedy linear extension
L"=Ci®---0Cj2®C"j_1 @ --- ® C"y, has the properties of Lemma 3
for the elements z = supC; and v = infC";_,. Moreover z and v are now closer
than z and y in L. Which contradicts the choice of L. This completes the proof
of Theorem 2.

@) (b)

Figure 4.

Notice that the ordered set illustrated in Figure 4(a) contains a four-cycle and still
O(P) = G(P). Moreover it is not enough to forbid only four-cycles {z,y, z,t}
in which z-< ¢t and y-< z. For instance, the ordered set P illustrated in Figure 4(b)
is greedy and does not contain any of these four-cycles. Nevertheless, the optimal
linear extension {b, a,d, h,c, g, e, f} is not greedy and so O( P) # G(P).
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