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Abstract. In this paper we establish a number of new lower bounds on the size of a
critical set in a latin square. In order to do this we first give two resulis which give
critical sets for isotopic latin squares and conjugate latin squares. We then use these
results to increase the known lower bound for specific classes of critical sets. Finally,
we take a detailed look at a number of latin squares of small order. In some cases, we
achieve an exact lower bound for the size of the minimal critical set.

1. Introduction.

This paper deals with critical sets in latin squares. A critical set is a partial latin
square which is uniquely completable to a latin square and omitting an entry of
the partial latin square destroys this property. A formal definition is given later in
the introduction. One may refer to Street [9] for a brief survey on the topic.

The problem of recognising critical sets is inherently difficult. Colbourn, Col-
bourn, and Stinson [2], have shown that deciding whether or not a partial latin
square has a unique completion is NP-complete. However, certain classes of criti-
cal sets have been identified, and these appear in papers by Cooper, Donovan, and
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Seberry (1], Curran and van Rees [3], Smetaniuk [7], and Stinson and van Rees
[8]. Critical sets have a number of applications in both agriculture and cryptogra-
phy, see [6). Of particular interest are critical sets of minimal size. There is only
one general class of minimal critical sets known and this was given by Curran
and van Rees in [3]. Curran and van Rees obtained a lower bound on the size of
the critical set and then showed that a given critical set achieved this bound. In
Section 2 we prove a number of new results and then, in Section 3, use these to
improve the known lower bounds for specific classes of critical sets. With the aid
of the computer, critical sets in latin squares of small orders have been determined.
These results appear in papers by Cooper, Donovan, and Seberry (1], Curran and
van Rees [3] and Stinson and van Rees [8]. In Section 4, the results from Section
2 and Section 3 are used to verify that under certain conditions some of these sets
are in fact minimal critical set.

A latin square L of order n is an n x n array with entries chosen from a set
N, of size n, such that each element of N occurs precisely once in each row and
column. For example, let us index the rows and columns of the array by the set
{0,1,... ,n— 1}. If we place the integer i + j (mod 7) in position (¢, ) of
the array, then the result is a latin square. This particular latin square is termed a
back circulant latin square. For convenience, we will sometimes talk of the latin
square L as a set of ordered triples (i,; k) and read this to mean that element
k occurs in position (3,7) of the latin square L. A back circulant latin square
can be denoted by the set {(4,/;5+ j) | 0 < 4,7 < n—1}. If L contains an
s x s subarray S and if S is a latin square of order s, then we say that S is a latin
subsquare of L. Given any latin square one may permute the entries of certain
cells with the result being a latin square distinct from the original. So in a sense,
one is identifying a path through the latin square, then interchanging the elements
in the cells of this path to obtain another latin square. The partial latin square
determined by the cells is termed a latin path. A formal definition follows. Let c
be the set of all latin squares of order n where the elements are chosen from a set
N of size n. Let L be a latin square in £, and P a partial latin square in L. That
is,P={(i,jsk) |1 <i,j<nand k€ N} C L. We call P a latin path in L if

(1) there exists a latin square L' € L such that LN L' = {(4,7; k) | (4,73 k) €
L\P}, and
(2) forall Q C P, there exists no L; € L\L such that L N L; = {€4,7: k) |
(4,7: k) € L\Q}.
The order of the set P is said to be the length of the latin path P. The set P =
{(1,2;2),(1,3:3),(1,4:4),(2,1;2),(2,2:1),(2,43), (3, 1,3), (3,29,
(3,3 1), (4,1;4), (4,3;2), (4,4; 1)} is a latin path of length 12 in the latin
square given on the left in Table 1 below. Latin paths based on two elements, say
k and k', of N were termed cycles by Elliot and Gibbons in [4].



Table 1

1 2 3 4 1 2 % »
2 1 4-3 * * 4 x
3 4 1 2 * * % 2
4 3 2 1 * 3 x x

Let P be an n x n array with entries chosen from a set N, of size », in such
a way that each element of N occurs at most once in each row and at most once
in each column. Then P may contain a number of empty cells and is said to be
a partial latin square of order n. We are interested in partial latin squares which
satisfy the following properties. A crifical set in a latin square L of order n, is a
setA={(4,/:k) | 4,7,k € {1,...,n}} suchthat,

(1) L is the only latin square of order n which has element k in position (1, j)

for each (1, j; k) € A;

(2) no proper subset of A satisfies (1).
For example, the latin square representing the elementary abelian 2-group of or-
der 22 is given in Table 1 above (on the left). A critical set {(1,1;1),(1,2;2),
(2,3;4),(3,4;2),(4,2;3)}, for this latin square is given on the right. A min-
imal critical set in a latin square L is a critical set of minimum cardinality. In
fact, it will be proven in Lemma 4.9 that the critical set given above is a minimal
critical set.

The definition of a critical set can be strengthened as follows. Let L be a latin
square, of order n, based on the set N. Let L contain a critical set A. The set A is
said to be a strong critical set if there exists aset {Py, ..., Pp} of m = n? — |A|
partial latin squares, of order n, which satisfy the following properties:

(1) A=PACP C...CPy1 CP,CL;
(2) foranyi,2 < i < m, given P; = P;_; U{(s,t;7)}, then the set P;_; U
{(s,t;7')} is not a partial latin square for any ' € N\{r}.

Let L be a latin square based on the set N. We define A — e, to be a critical
setin L such that (1, j; z) ¢ A for all 1, j. That is, the triples of A — e, are based
on the n— 1 elements of N\{z}. Similarly, we can define A — r, to be a critical
set with triples chosen from n— 1 rows, distinct from row z, of L; that is, A — 7,
contains no triples chosen from row z of L. Likewise, we define A — ¢, to be
a critical set in which the triples are chosen from n — 1 columns, distinct from
column z, of L; that is, A — ¢, contains no triples chosen from column z of L.

Colbourn, Colbourn, and Stinson [2] characterise critical sets in graph theoretic
terms. We will use this characterisation to prove some of the general results in Sec-
tion 2. Given a partial latin square, P of order n, the “row-column-element” defect
graph of P is a 3nvertex graph with vertex set {r(1),... ,r(n),c(1),...,c(n),
e(1),...,e(n)}. The edge {r(1),c(;)} is included if the (i,7) entry ofthe par-
tial latin square is empty. The edge {r(4),e(k)} is included if row i does not

35



contain element k. The edge {c(j), e(k)} is included if column ; does not con-
tain element k. This defect graph has an edge partition into triangles if and only
if the partial latin square has a completion. It follows that the partial latin square
has a unique completion if and only if the defect graph has a unique edge-partition
into triangles. We will also need the following definition of isomorphic graphs.
An isomorphism from a graph G onto a graph H is a one-to-one map ¢ from the
vertex set of G onto the vertex set of H with the property that a and b are adjacent
vertices in G if and only if a¢ and b are adjacent vertices in H.

Finally, we wish to draw the reader’s attention to three results which will be used
throughout this paper. The first is Lemma 2.4 of [8] by Stinson and van Rees, the
second a variation of this, and the third is Lemma 1.2 of [1] by Cooper, Donovan,
and Seberry.

Lemma 1.1, Let L bealatin square, A acritical setin L, and S alatin subsquare
oforder2 in L. Then ANS > 1.

Lemma 1.2, Let L be a latin square, A a critical set in L, and P a Iatin path in
L.Then ANP > 1.

Lemma 1.3. Let L be a latin square with a critical set A. Let § = {S; |
i = 1,...,7)} be aset of latin subsquares which partition L and let A; denote
a minimal critical set in S;, 4 = 1,...,v. If |A;| = a;, fori = 1,...,r, then
|4l > Yo ai '

2. Isotopisms, conjugates and complements.

Itis useful to discuss latin squares in terms of quasigroups, and use the correspond-
ing algebraic theory to prove results relating to latin squares. One of the algebraic
definitions we will require is that of an isotopism. Let (L, 0) and (M, %) be two
quasigroups. An ordered triple («, B, ) of one-to-one mappings a, 8, v of the set
L onto the set M is called an isotopism of (L, 0) upon (M, ), if (za) *(y, )
= (zoy)qforall z,y in L. The quasigroups (L, o) and (M, ) are then said to be
isotopic. The corresponding definition for latin squares is: two latin squares L and
M are said to be isotopic or equivalent if there exists an ordered triple (o, 8,7),
of permutations, such that «, 8,y map the rows, columns, and elements, respec-
tively, of L onto M. That is, if (1,7; k) € L, then (ia,jB;ky) € M. (Two
latin squares are isotopic, if one can be transformed onto the other by rearranging
rows, rearranging columns, and renaming elements.) Two latin squares (quasi-
groups) are said to be isomorphic if the permutations c, £, «y are equal. (For more
details see [S, pages 23 and 124].) Two critical sets A and B are said to be isotopic
if there exists an ordered triple of permutations («, 8, ) which maps the entries
of A onto B such that, for all (z,y; 2) € A, (ze,yB; z7y) € B. The sets A and
B are isomorphic if the permutations «, 8, and -y are equal.

It is relatively easy to see that, once we obtain a critical set in a latin square L,
then we can use it to find a critical set in any latin square isotopic to L.
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Theorem 2.1. Let L be a latin square with a critical set A. Let (a, 8,v) be an
isotopism from the critical set A onto A. Then A is a critical set in a latin square
L and T is isotopic to L. -

Proof: Consider the defect graphs of A and 4. If (a, B,) is an isotopism which
maps A onto A, then the defect graphs of A and 4 are isomorphic. Since A has
a unique edge-partition into triangles so does A, Therefore there is precisely one
latin square which contains the partial latin square A. It follows that this latin
square must be the isotopic image of L. It also follows that any subset of A must
be contained in two latin squares. Hence 4 is a critical setin T = L(a,8,7). 1

If A is a minimal critical set in L, then A(«, 8,) is a minimal critical set in
L(a, B,7).

We can obtain a similar result for the conjugates of a latin square. Formally, we
let (£, 6) be a quasigroup [and L its corresponding latin square]. Then we define
five conjugate quasigroups as follows. Let a6b = c, for a,b,c € L, [(a,b;c) €
L). We set

(1) b6*a = c in the quasigroup (L, 6*), [(b,a;¢c) € L*];

(2) c(~16)b = a in the quasigroup (L,™! 9) [(c,b;a) € L];

3 a(0N)c= b in the quasigroup (L, 87'), [(a,c; b) € L~'];

@ b{~'(87")}c = a inthe quasigroup (L, (671)), [(b,c;a) €~ (L-1)];
and

() ¢{(~'8)~'}a = b in the quasigroup (L, (~16)~"), [(c,a;b) € ('IL)'ll

Similarly we can define the conjugates of a critical set.

Theorem 2.2. Let L be a latin square with critical set A. Let A' be a conjugate
of A. Then A' is a critical set in the corresponding conjugate L' of L.

Proof: The proof follows as in Theorem 2.1. [ |

LetL = {(1,7: k) | 1,7,k € {1,... ,u}} be a latin square and A = {(4, j; k)
|4,7,k € {1,... ,m}} beacritical set in L. It is interesting to ask whether L\A
is a critical set. The answer is not necessarily! Take the following critical set in
the latin square representing the elementary abelian 2-group of order 22.

* WA -
* ok =N
* =k W
* * o *

The complement of this critical set is contained in at least two latin squares. Even
in the case where the complement is contained in precisely one latin square the set
need not be a critical set. To see this we need only consider a critical set A which
contains no entries from row ¢g. The complement of this set is not critical.
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3. Lower bounds.

In [3, Lemma 2.3] Curran and van Rees showed that, if you take the ordered
triples ( z, y; 2) of acritical set, then the ith component of these triples must cover
at least n— 1 of the values 1, ... , n, thereby showing that the size of the minimal
critical set is greater than or equal to n— 1. We improve on this bound for certain
classes of latin squares.

Lemma 3.1. Let L be a latin square of order n > 4, with entries chosen from
the set N, and let A be a critical setin L. Then |A| > n.

Proof: Assume |A| = n— 1. We know that for the n— 1 triples (4, j; k) of A the
ith components of these triples must cover n— 1 of the values 1,...,n Hence
A must be isotopic to a set Ao = {(4,3: %) | (z € N) A(s=0,... ,n— 2} If
nis odd, then Ao is contained in at least two latin squares, the one denoted by the
set {(i+j,i—j:i) |4,j=0,... ,n—1},(working modulo n) and its conjugate
-17, If nis even, then Ay is contained in at least two latin squares; a latin square
representing an idempotent quasigroup of order » and its conjugate L*. (For the
existence of an idempotent quasigroup of even order refer to [§, page 195].) Since
A is isotopic to A, Theorem 2.1 can be used to prove that |A| > n. |

Lemma 3.2. Let L be alatin square of order n and let A be a critical set in L,

(1) if L contains a subsquare of order m = 2 or 3, then |A} > 4m —4, and
(2) if L contains a subsquare of order m > 4, then |A| > 4m —3.

Proof: Let L, be a latin subsquare of order m in L, and L3, Ly, L4, subarrays of
sizem x (n—m),(n—m) x mand (n—m) x (n— m), respectively. Then
L can be partitioned as follows.

L, L,

L3 La

Assume A contains at most m — 2 triples from the subarray L, . Then there must
be two rows r1 and 2 of L2 such that A does not contain any triples from either of
these rows. It now follows that A must be contained in at least two latin squares L
and I'. The latin square L' will agree with L everywhere except in the partial rows
r1 and 2, and here these partial rows will be interchanged. This is a contradiction
as A is a critical set. Hence A must contain at least m — 1 triples from both of
the subarrays L, and L3. If m = 2 or 3, then A must contain m — 1 triples from
Li. If m > 4, then by Lemma 3.1, A must also contain at least m triples from
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of L. Case 2: The triples of A are based on five rows, and five columns of L, but
only four elements of N. Case 3: The triples of A are based on five rows of L but
only four columns, and four elements. Case 4: The triples of A are based on four
rows, four columns, and four elements of L.

n

0]

Here it is easy to see that A is contained in two latin squares, one isotopic to
the latin square denoted by the set {(i+ ,i—7;4) |4,7=0,1,... ,n—1}
(working modulo n) and the other isotopic to its conjugate ~! L.

Once again it is easy to see that A will be contained in a latin square isotopic
© 0 3 1 2 4

1 2 3 40

314 0 2

2 401 3

4 0 2 3 1

and its conjugate L*.

(3) Up to isotopism we have two subcases to consider. - They are critical sets

@

isotopic to the set {(0,0;0),(1,1;2), (2,2;4),(3,3; 1), (4,1;0)} and
the set {(0,0;0), (1,4;0), (2,2;4),(3,3; 1), (4,3;2)}. Both of these
sets are contained in the back circulant latin square of order 5, as well as the
latin square given above.

Up to isotopism we have three subcases to consider. They are critical sets
isotopic to the sets {(0,2:2),(1,1;2),(1,%4),(2,3;0),(3,0;3)},
{(0,0;0),(0,1;1),(2,2:4),(3,3;1),(4, 1,0}, {(0,0;0),(1,1;2),
(1,4;0),(2,2;4),(4,4,3)}. These three sets are contained in the back
circulant latin square of order 5 and the following three latin squares, re-
spectively.

0 3 21 4 01 3 2 4 0 31 2 4

1 2 0 4 3 32140 1 2 3 40

4 1 3 02 1 3 4 0 2 3140 2

30 4 21 2 4 01 3 2 4 0 31

2 4130 4 0 2 3 1 4 0 21 3
In each case we have shown that A is contained in at least two latin squares and,
thus, obtained a contradiction. So |4| > 6. (]
4, Lower bounds for groups.

If A is a critical set in a latin square L representing a group, then Cauchy’s The-
orem (given below) gives a sharper lower bound.

Cauchy’s Theorem. Let G be a finite group. If a prime p divides the order of
the group G, then G has a subgroup of order p.
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Theorem 4.1. Let L be a Iatin square representing a finite group of order m, and
A acritical set in L. Let p be the smallest prime number which divides n. Let
M = {M; |i = 0,...,k for some positive integer k}, be the set of all Iatin
squares of order p, and B; be a minimal critical set in M;, for i = 0,... ,k.
Further, let By be a critical set such that |Bo| < |B;|, for all i. Then |A] >
(n/p)?* |Bo|.

Proof: It foltows from Cauchy’s Theorem that the group @, corresponding to the
latin square L, has a subgroup of order p. This subgroup, together with it’s cosets,
may be used to partition L into subsquares of order p. This together with Lemma
1.3 can then be used to complete the proof of the result. |

Corollary 4.2, Let L be a latin square representing a group of even order n.
Then the size of a minimal critical set in L is greater than or equal to 2 4.

Corollary 4.3. Let L be a latin square representing a group of order n where
n = 3m, for some m. Then the size of the minimal critical set for L is greater
than or equal to (2r) /9.

Corollary 4.4. Let L be a latin square representing a group of order n where
n = 5Sm, for some m. Then the size of the minimal critical set for L is greater
than or equal to 62 /25.

Proof: The proof of this result follows directly from Lemma 4.1 and Lemma 3.5.
|
Once again we turn our attention to the back circulant latin square of odd order.
We shall show the existence of a family of latin paths in these latin squares and
then go on to give a lower bound on the size of a critical set A — e,. Recall that
the triples of a critical set A — e, are based on the n — 1 elements of N\{z}.

Lemma 4.5. Let L be a back circulant latin square of odd order n > 5 and take
atransversal T = {(s+ r,t + r;3+t+27) |r=0,... ,n— 1}, in L, for any
fixed s,t. Let (4, J; o) and (k,£; B) be any two elements of T. Then L contains
alatin path S of length n+ 3 such that the elements (3, j; ) and (k,¢; 8) belong
o S.

Proof: Fix s and ¢ and let (4,/; ) € T and (k,%; 8) € T. Since L is a back
circulant latin square, there exists a « such that (1,2;) and (k,j;v) arein L,
and thati+ £= k + j. Hence

(41,7;B) € L,where i, = ﬂ—j=k+2—j=(k+ﬁ)—(i+j)+ij='%'+2(k—i).
If we add 2( k — 1) t0 i a further %1 times, then

n—

2(/:-;')( 21 +1)+i=k(n+ 1) —ni=k.

Similarly,
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2(L - j) (“;l +1)+j=e.

So it follows that I, contains the set

S= {('s]; a),(k,j; 7))(il:j;ﬂ)»(ilvjl;a):(iZ:jl;ﬂ))(iZsjz;a):
o )(iﬂilvjlil—l;ﬁ))(ilil;jﬂi'-;a)s(kx‘e:ﬂ))(’)E;q)}'

Further, if we let that (L\S) U §’, where

S = {(i.j;ﬁ),(k,]; B),(41,7; Of):(il,jl;ﬁ).(iz,jl;a),(iZ;jZ;ﬁ)s
it g 1300, (it ot ), (K 5, (1,85 00,

then (L\S) U &', is a latin square distinct from L. The result now follows. | ]

This lemma enables us to constructa set of %31 latin paths with certain desirable
properties and shall be used to achieve a lower bound on the size of certain critical
sets for back circulant latin squares of odd order.

Corollary 4.6. Let L be a back circulant latin square of odd order n > 5. Then
L contains latin paths Sy, for m = 1,... , %L, based on the elements a, B,y of
N, such that

Q1) forsomei,j € {0,...,n—1}(4,/; &) & Sm, forany m and

(2) if (s,t;7) € Sp, forsome p, then (s,t;7) ¢ S, forany q # p.

Lemma 4.7. Let L be a back circulant Iatin square of odd order n» > 7 and
A — e acritical setin L. Then |A — ez| > 2(n—1).

Proof: Assume |A — e;| = 2(n~ 1) — 1 and that for a given £ € N the triple
(i,7: 7) € (A—e;),foralls, ;. Thereexistsay € N suchthat|{(i,/;y) € A—e
| 0 <i,7 < n—1}| = 1. By Corollary 4.6 L contains (n—1) /2 latin paths based
on the elements z, y and z, for some z in N. In addition these latin paths can be
chosen so that they do not contain the triple ( k, £; y) and are distinct in the triples
(1, 7; z). Therefore, by Lemma 1.2, A — e, must contain at least (n— 1) /2 triples
based on some element z € N. If we consider the remaining n — 3 elements of
N\{z,y,z}, thenthereare2(n— 1) —1 — 1 —(n—1)/2 = (3n—7) /2 triples
of A — e, based on these elements. A repetition of the above argument yields a
further 1 + (n— 1)/2 triples in A — e, based on the elements v and w, say, of
N\{z,y, z}. Now there ar¢ at most n—4 triples in A—e, based on n—5 elements
of N. But this is impossible as we have just stated that if an element distinct from
z occurs once in A — e, then there exists an element on which (n— 1) /2 triples
of A — e are based. Thus, we have a contradiction and |A — e;| > 2(n—1). 1

We have now shown that the partial latin square given by Curran and van Rees,
in [3), is a minimal critical set for n = 5 and a minimal critical set, of the form
A—egforn=7.
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Next, let us consider a latin square I representing an elementary abelian 2-
group. But before we begin, we wish to remind the reader of the following prop-
erty. It will be used extensively throughout this subsection. If we take any two
triples in the same row or column or on the same element of L, then there exists a
latin subsquare of order 2 containing these two triples. It follows from Lemma 1.1
that any critical set for L must contain at least one triple from each such subsquare.

For the remainder of this paper all rows and columns of L shall be indexed by
the numbers 1,... ,nandlet N = {1,... ,n}.

Theorem 4.8. Let L be a latin square representing the elementary abelian 2-
group C§, of order n=2". Let A— r, be acritical setin L. Then

|A— 7] > n(n=1)/2=2"1(2" - 1).

Proof: Without loss of generality, we can assume that A — r, is a critical set
which contains no triples chosen from row 1 of L. For £ = 2,... ,n, the rows
1 and £ can be partitioned into n/2 disjoint latin subsquares of order 2. Since
A — 7 is a critical set in [,, A — r; must contain a triple from each of these
subsquares. By assumption none of the triples belong to row 1. Hence A — 7,
must contain n/2 triples from row £. If we let £ range over the values 2,... ,n,
then |[A — 7| > n(n—1)/2. 1

Ifweletv =2, then |A — r,| =2 x 3 = 6. We list below one such critical set
in the latin square representing the elementary abelian 2-group of order 22.

* * * K
* 1 4 =%
3 4 x %
* * 2 1

If we take the latin square representing the elementary abelian 2-group of order
23, as given below, then |A — .| = 22 x (23 — 1) = 28. Anexample of a critical
set of size 28 is given also.

1 2 3 4 5 6 7 8 * % * % k * * *
21 4 3 6 5 8 17 2 x * 3 6 x x 17
3412 7 8 5 6 3 4 %« x * x«x 5 6
4 3 2 1 8 7 6 5 4 x 2 x 8 x 6 «
5 6 7 81 2 3 4 * 6 » 8 1 % 3 «
6 5 8 7 2 1 4 3 * 5§ 8 7 1 % %
7 8 5 6 3 4 1 2 * * 5 % x4 1 2
8 7 6 5 4 3 2 1 8 * * 5 %« 3 2 =«

Lemma 4.9. Let L be the latin square representing the elementary abelian 2-
group of order 2%, Let A be a minimal critical set in L. Then |A|=S.

Proof: Assume A has order less than 5. Theorem 2.1 and Theorem 4.8 imply
that A must contain triples chosen from every row and column of L, and A must
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contain at least one triple based on every element of N. Hence A must contain pre-
cisely four triples. Without loss of generality, assume that (1, 1; 1) and (2, 3;4)
are in A. It now follows that (3,4; 2) and (4,2; 3) are in A. But there are two
latin squares containing A, namely,

1 2 3 4 1 4 2 3
21 4 3 32 4 1
34 1 2 4 1 3 2
4 3 2 1 2 3 1 4.

This is a contradiction. Thus A > 5. A critical set of size 5 has been given in
Table 1. |

The latin square representing the elementary abelian 2-group of order 8 can be
partitioned into four latin subsquares, of order 4, isomorphic to the elementary
abelian 2-group of order 22. Lemma 1.3 implies that any critical set for the latin
square representing this group must be of size at least 20. However, this lower
bound can be improved on. It is possible to show that the size of the minimal
critical set is greater than or equal to 24. To see this we assume the order of the
critical set is less than 24 and proceed as follows.

Given Theorem 4.8, we may assume that the critical set contains at least one
triple chosen from each row, each column, and based on each element of L. Let
L be a latin square representing the elementary abelian 2-group of order 23. Let
A beacritical setin L.

We will begin by assuming that A contains precisely one triple chosen from row
pof L, further thatp = 1 and (1, 1; 1) € A. Using a similar argument to that used
in the proof of Theorem 4.8, it follows that A must contain at least three triples
chosen from each of the remaining rows of L. Consider the rows 1, 2, 3, and 4.
They can be partitioned as follows:

1 2 3 4 5 6 7 8
21 4 3 6 5 8 7
341 2 7 8 5 6
4 3 2 1 8 7 6 5

It follows that A must contain at least two triples chosen from each of the rows 2, 3,
and 4 and based on the set of elements {5,6,7,8}. Recall, A mustcontain at least
five triples from every latin subsquare of order 4. Thus A must also contain four
triples selected from rows 2, 3, and 4 and based on the set of elements {1,2,3,4}.
Hence A must contain at least four triples selected from one of the rows 2, 3, or
4, Without loss of generality, assume it is row 2. Now, if we consider rows 1, 3,
5,7,rows 1,3, 6,8, rows 1,4, 5, 8 and rows 1, 4, 6, 7, we see that A must contain
four triples selected from each of the rows 3, 4, or each of the rows 5, 6, or each
of therows 7, 8. Thus, |[A] > 1+ 4+ 2.4 +4.3=25.



Next, we consider the case where A contains at least two triples from each row
of L. Assume A contains precisely two triples chosen from row p of L. Without
loss of generality, we can assumep = 1and (1,1; 1) and (1,2; 2) belongto A. It
follows that A must contain at least three triples chosen from row 2. Also A must
contain at least six triples from each of the pairs of rows 3,4 and rows 5,6 and rows
7,8. Let us assume, without loss of generality, that row 3 contributes two triples to
A. This implies that rows 2 and 4 must each contribute four triples to A. Hence,
Al >22+24 42.6=24.

However, if each of the rows distinct from row 1 contribute three triples to A,
then |A] > 2+ 7.3 = 23. Let us investigate this case further. Assume |A| = 23
and that there is precisely one row of L which contributes less than three triples
to A, precisely one column of L which contributes less than three triples to A and
precisely one element of N for which A contains less than three triples based on
this element. Let us assume, without loss of generality, that A contains precisely
two triples from row 1 and these are (1, 1; 1) and (1, 2; 2). Without loss of gen-
erality, we may also assume that A contains the triples (2,4;3), (2, 5;6) and
(2,7;8). And now we have two cases to consider: Case 1: (3,2;4) € A. Case
2: (3,31 €A

Case 1: Since(3,2;4) € A, then (4,3;2) € A. If welookatrow S together with
rows 1 and 2, then it follows that (5, j,: k;) € A,fors=1,2,3,4 where k; €
{3,7}. k2 € {4,8}, ks € {2,5}and k4 € {4,7}. Note that the k.s need not be
distinct. Assume (5,8;4) ¢ A. Inthiscase it follows thatk; = 8 and k4 = 7,and
(5,2;6) ¢ Aand (5,7;3) ¢ A. Next we infer that {(4,7;6), (4,8; 5)} c A.
Assume that (5,6;2) € A and it follows that {(3,7;5), (3,6;8)} C A. The
set A now contains three triples on the elements 2 and 8 and two triples on the
element 6. But now, if we investigate the subsquares on the elements 2 and 6,
and 6 and 8 we obtain a contradiction. Therefore (5,1;5) € A. Next, assume
(3,6;8) € A and note that A contains three triples on the element 8. This infers
that one of (6, 1; 6) or (8,3;6) is in A as well as one of (6,2;5) or (7,3;5).
One may now deduce that (7, 8; 2) € A and (8,7; 2) € A, acontradiction. Thus
A must contain the triples (3, 8; 6) and (3, 5; 7). However, we have now selected
three triples from column 1 and three triples based on the element 6. This leads
to {(6,3;8),(6,4;7)} C A, but this is impossible. Hence (5,8;4) € A and
(5,4;8) ¢ A. We know that (5, 5; 1) cannot be a triple of A and so {(4,5;8),
(4,6;7),(5,7;3)} C A. Now if we take row 6 together with row 1 and row 2 we
see that (6,j,,k,) € Aforj=1,...,7 where k; € {3,8},k, € {4,7}, ks €
{1,5}, ks €{3,6}.ks € {4,5}, ks € {2,7},and k7 € {3,5}. This in tum
implies that {(6,2;5), (6,4;7), (6,8;3), (5,6;2),(7,3;5), (7,17} C A.
However, this is impossible as A does not intersect the subsquare on the elements
6 and 8 in rows 5 and 6. Thus, Case 1 leads to a contradiction.

Case 2: A similar argument to that given in Case 1 also leads to a contradiction.
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The above argument provides a proof of the following lemma.

Lemma4.10. Let L bea latin square representing the elementary abelian 2-group
of order 23. Let A be a critical setin L. Then |A| > 24.

This result can be used to obtain a sharper lower bound for latin squares repre-
senting the elementary abelian 2-group of order 2*.

Theorem 4.11. Let L be a latin square representing the elementary abelian 2-
group of order 2 wherev > 4. Let A be a critical set in L. Then |A| >
24 22v-6,

Proof: The proof of this result follows directly from Lemma 1.3 and Lemma 4.10.
i

Finally we consider the latin square representing the elementary abelian group
Cy of order 3*. This latin square can be partitioned into 32¢~2 latin subsquares of
order 3. It follows from Lemma 1.3 that any critical set for this latin square must
have size greater than or equal to 2 .32v-2_ But once again, we can improve this
lower bound. We begin by considering the elementary abelian group of order 32,
The latin square representing this group is given below.

2

VOO~ P WN -
N0 AENNN =W

OIJVONEAN=W
Wm0 ~IOhWN S
- WO
N WO~ WnbhO
AW B WN = OO0
B AWV = WLWNIOX
VP OAN = WO IO

We observe that if we take any two rows in this latin square there exists a third
row such that these three rows can be partitioned into latin subsquares of order 3.

Lemma 4.12. Let L be a latin square representing the elementary abelian group
C2, of order 32, and A — r; acritical setin L. Then |A — 1| > 24.

Proof: Assume that, without loss of generality, A — r, contains no triples selected

from row 1 of L. The sets of rows {1,2,3},{1,4,7},{1,5,9},and {1,6,8}

each contain three subsquares of order 3. Thus A — r, must contain at least two

triples selected from each of these subsquares. And so A — r; must contain six

triples selected from each of the pairs of rows 2,3, 4,7, 5,9,and6,8. There-

fore,|[A— 1| >6 x4=24. |
This argument can be generalised.
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Lemma 4.13. Let L be a latin square representing the elementary abelian group
C3, of order 3°, and A — r, acritical setin L. Then |A — re| > 3v1 (3v-1).

Let us return to C3.

Lemma 4.14. Let L be a latin square representing the elementary abelian group
C3 and let A be a critical set in L. Then |A] > 21.

Proof: Assume that | 4| = 20. It follows from Lemma 4.12 that A must contain
triples selected from each row, each column, and based on each element of L. We
begin by assuming that A contains at most one triple from row p of L. Assume,
without loss of generality, that p = 1 and (1, 1; 1) € A. Then once again A must
contain five triples selected from each of the pairs of rows 2,3, 4,7, 5,9, and
6,8. Itis immediate that [A] >4 x S+ 1=21. .

Since [A| = 20, it follows that A contains at most two triples from each of
seven rows of L. Therefore, without loss of generality, assume that A contains
precisely two triples from each of the rows 1, 2, and 3. We may assume that
{(1,1;1),(1,4;4)} C A and, without loss of generality, deduce that {(2,5:6),
(3,3;:2)} c A.

Now consider rows 1,4,7. They are as follows;

1 2 3 45 6 7 8 9
4 56 7 8 91 2 3
7 8 912 3 4 5 6.

These rows contain three latin subsquares of order 3 on the sets of elements
{1,4,7}, {2,5,8}, and {3,6,9}. The subsquare on the set {1,4,7} inter-
sects A in the triples (1, 1; 1) and (1, 4; 4), but these two triples do not form a
critical set for this subsquare. Further, A contains no triples selected from row 1
and which intersect the subsquares on the sets {2,5,8} and {3,6,9}. Hence A
must contain three triples from one of the rows 4 and 7.

If (2,8;9) belongs to A, then so does (3,9; 8). But now one of rows 2, 5, 8,
and one of rows 3, 6, 9 must contribute three triples to A. But this implies that
[A] > 20, a contradiction. We have two remaining cases to consider: A contains
the triple (2,9; 7), and A contains the triple (2,7; 8).

In the first of these one may compare rows 1, 2, 3, and 7, and deduce that row
7 must contribute at least three triples to A. It now follows that two of rows 4, 5,
or 6 must contribute at most two triples to A. But when we look at each of these
rows in conjunction with rows 1, 2, and 3, we obtain a contradiction.

In the second case, a comparison of rows 1, 2, 3, and 4, shows that row 4 must
contribute at least three triples to A. However, this also leads to a contradiction.

We may now deduce that [A| > 21. |

Theorem 4.15. Let L be a latin square representing the elementary abelian group
C3 oforder 3" where r > 3. Let A be acritical setin L. Then |[A] > 21.32r-4,
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Proof: The proof follows directly from Lemma 1.3 and Lemma 4.14. [ |
Acknowledgement. The authors wish to thank the referee for his suggestlons.
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