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Graceful and edge-graceful graph labelings are dual notions of each other
in the sense that a graceful labeling of the vertices of a graph G induces
a labeling of its edges, whereas an edge-graceful labeling of the edges of G
induces a labeling of its vertices. In this paper we show a connection be-
tween these two notions, namely, that the graceful labeling of paths enables
particular trees to be labeled edge-gracefully. Of primary concern in this
enterprise are two conjectures: that a path can be labeled gracefully start-
ing at any vertex label, and that all trees of odd order are edge-graceful.
We give partial results for the first conjecture and extend the domain of
trees known to be edge-graceful for the second conjecture.

Graceful Paths

Let G be a graph with |[V(G)| = p and |E(G)| = ¢q. Let (£,£°) be a
function pair mapping the vertices and edges into the set of integers; that
is,

£:V(G)— Z and £ : E(G) — Z.

Let V and E be sets of integers of size p and ¢, respectively. We say that
G is VE-graceful if £ is onto V, £ is onto E and

£ (uv) = [€(u) — £(v)],

for all uv in E(G). (Note: the expression VE-graceful is synonymous with
the expression (V,E)-graceful.) Let V, = {1,...,p},E, = {1,2,...,¢}. A
graph that is (Vp, E,)-graceful is said to be graceful, as coined by Golomb
[2] and as initially posed by Ringel [6].

For the rest of this section let G be a path. We say that G is VEr-
graceful if G is V E-graceful and one of the two end vertices of G is labeled
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7. The following proposition is clear. (As before, the term VEr-graceful is
synonymous with (V,E,r)-graceful.)

Proposition 1. If G is VEr-graceful and a € Z, then G is (V+a,E,r+
a)-graceful and (—V, E, —r)-graceful.

KV =1{01,...,n} and E = {1,...,n},0 < r < n, and if the corre-
sponding path is V Er-graceful, we say that r threads n. As a sewn seam
starts with the threading of a needle, the terminology, r threading n, was
chosen to mean that a path can be woven through the marks along a ruled
line at the labels in V starting with r, leaving edges of lengths in E. For
example, figure 1 demonstrates that 2 threads 9. We make the following

conjecture.
123 ES 6 78Jf°

Figure 1.

Conjecture 2. For all n and r, with 0 < r < n, r threads n.

Some notation helpful in grappling with this conjecture is the following.
If G is V Er-graceful, let S be a sequence of vertex labels beginning with
r, corresponding to a V Er-graceful path labeling of G. We say that S
is a strand for this labeling. For example, a strand for 2 threads 9 is
{2,6,3,5,4,9,0,8,1,7}. For simplicity we consider a strand as both a string
of integers and as a set of integers. Let S and T be strings of integers with
r being the last term of S and the first term of T. Let T’ be the string
obtained from T by deleting its first term. Then S join T, denoted SV T,
is the concatenation of S with T”. If the notation ajbjazbs . ..c appears in
a string then ajazaz... and bybabs... are consecutive integers and there
exists an integer j > 3 with either a; = cor b; = c.

Proposition 3: Thread Symmetry. If r threads n then n—r threads
n.

Proof: If S is a strand for r thread n, then by Proposition 1, n - S is a
strand for n — r thread n, where

n—S=n-{rs1,...,sn}={n—-rn—s5,...,n—5,}.0

To determine whether a certain path is threadable it is sometimes useful
to look at a shorter path, as given by the following theorem.
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Theorem 4: Path Reduction. If r threads n — 2r — 1 then r threads

n.

Proof: Since r threads n — 2r — 1 then n — 3r — 1 threads n — 2r — 1 by
Proposition 3. Let Sp be the strand for this threading. Let S = So+(r+1),
so that the first term in S is n — 2r, and the labels in S range from r + 1

ton—r. Let
T={r,n—-r+1l,r=-1,n—-r+2,...,1,n,0,n - 2r},

whose edge labels are {n —2r +1,n —2r+2,...,n,n - 2r}. Hence TV S
is a strand for r threading n. See fizure 2.0

N—=22r+g

Figure 2.

n=-2r
Theorem 4 allows us to focus attention on a critical range of ordered
pairs of integers (r, n) with respect to conjecture 2, as the following corollary

makes precise.
Corollary 5. If r threads n for all inlegers n with r < n < 3r, then r

threads n for alln > r.
Proof: A strand for 0 threads n is

S={0,n,l,n—l,...,[n;1J}.

Hence, let r > 0. Let m > 3r. Choose the least positive integer & such that
m—k(2r+1) < 3r.

Observe that m— k(2r+1) > r, which follows because m— (k—1)(2r+1) >
3r. By hypothesis, » threads m — k(2r + 1). Apply Theorem 4 a total of k
times to yield the desired result. O

The next proposition further refines this critical range of ordered pairs.

Proposition 6. For allr > 0, r threads 2r,2r + 1,3r.
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Proof: A strand for r threads 2r is
S={rr+1,r-1r+2,...,2r,0}.

A strand for r threads 2r 4+ 1is SV {0,2r + 1}. Strands S, for r thread 3r
can be taken as follows.

So = {0}, 5, = {1,2,0,3},5, = {2,4,3,6,0,5,1},

Ss = {3,6,4,5,9,0,8,1,7,2},
S:={4,8,5,3,9,2,10,1,11,0,12,7,6},
Ss = {5,10,7,6,8,4,11,3,12,..., 15,9},
Se = {6,12,8,9,7,10,5,13,4,14,...,18,11},
Sz = {7,14,9,11,10,13,21,0,20,1,...,6,12,8},
Ss = {8,16,10,11,13,9,14,7,17,6,18,...,24,15,12}.

To find S, for r > 9, observe that 2 threads n for all n > 2. To see this,
note that 2 threads 2 since {2,0, 1} is its strand, 2 threads 3 since 1 threads
3 by S; above, 2 threads 4 since r threads 2r, 2 threads 5 since r threads
2r + 1, 2 threads 6 by S, above, and 2 threads n for all n > 7 by Corollary
5. Therefore, let Ty be a strand for 2 threads r — 7. Let T = T + (r + 3),
so that T starts with » + 5. Let

S = {r,2r,r+2,2r-3,r+1,2r-2,7—1,2r+1,r-2,2r+2,...,0,3r,2r—1,r45}.
Then S, = SV T. See figure 3. O

Figure 3.

The following corollary gives an inductive approach to refining this crit-
ical range of integer pairs.

Corollary 7: Inductive Threading. If r threads n for all integers n
with 2r+1 < n < 3r and if s threads n for alln > s foralls with0 < s < r,
then r threads n for elln > r.
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Proof: By the hypothesis and Proposition 6, r threads n with 2 <
n < 3r. Let m be any integer with r <m < 2r. Then 0 < m —r < r. By
hypothesis m — r threads m. So r threads m by Proposition 3. Hence r
threads n for all n with » < n < 3r. By Corollary 5, r threads n for all
n>r.0

The following lemma enables further refining, as will be made clear in
the next theorem, the main result of this paper.

Lemma 8: Refining the Critical Range.
a. Letn =3r —2k,r, k > 0. If 2k — 1 threads r — 4k then r threads n.
b. Letn = 3r—(2k—1),r,k > 0. If 2k —2 threads r — 4k then r threads
n.
Proof: Since 2k — 1 threads r — 4k then r — 6k + 1 threads r — 4k by
Proposition 3. Let Do be a strand for this latter threading. Let D =
Do + (r + k + 1) making D’s first term 2r — 5k + 2. Let

A={r,0,n,l,n—1,...,2r—k+1,r -k},

B ={r—lc,?r—3lc+2,r+k,2r—3k+3,r+k—l,...,r+l,2r—2k+2},
C= {2r—2k+2,r—1,2r—2k+3,r—2,...,2r—k,r—k+1,2r-—5k+2}.

Let S = AV BV CV D. The component paths of S have been labeled in
figure 4a; for example, A has been labeled both near its beginning and its
ending; initial and final vertices for each component path are enlarged.

n

re2k+3

r=ER+2 Er=k+y

Figure 4a.

It is straight forward to check that S is a strand for r threads n. That
is, from A we get the edge labels from r to n; from B we get the edge labels
from r — 4k + 2 to r - 2k + 2; from C we get the edge labels from r— 2k + 3
tor—1 as well as r — 4k + 1; and from D we get the edge labels from 1 to
r—4k.
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Let Dg be a strand for 2k — 2 threads r — 4k. Let D= Do+ r + k+1,
making D’s first term r + 3k — 1. Let

A={r,0,n,1,n—1,...,r—k2r—k+1},
B= {2r—k+l,r+k,2r—3k+2,r+k—1,2r—3k+3,...,r+1,2r—2k+1},
C= {2r—2k+l,r—1,2r—2k+2,r—2,...,r—k+l,2r—k,r+3k—l}.

Then as before, S = AV BV CV D is a strand for r threads n. See figure
4b. O

r=2+B

Figure 4b.

Theorem 9. For 0 < r <20, r threads n for alln > r.
Proof: Let
n—r}’ if n —r is even,

{r,0,n,1,n - 1,...,"—2’;35—}, if n— ris odd.

{r,0,n,1,n—1,.

Arn =

Consider the list of strings T}, given at the end of this proof for various
integer pairs (r,n).
Strands, Syn, for r threads n for the indicated integer pairs are given
by
Sr,n = A,-.n \'% Tr,n- .

For r = 0,1,2, there is no n such that 2r+1<n <3r,sor threads n
for all n > r, for r = 0,1,2, by Corollary 7. For r = 3 the only integer n
with 2r +1 < n < 3r is n = 8. A strand for 3 threads 8 is S35. Hence 3
threads n for all n > 3.

Since 0 threads r — 4 for all » > 4 then r threads 3r — 1 for all r > 4,
by Lemma 8b, with k = 1. For r = 4 the only nwith2r+1<n<3r-1
is n = 10. A strand for 4 threads 10 is Ss,10. So 4 threads n for all n > 4.



Since 1 threads r — 4 for all r > 5, then 1 threads 3r — 2 for all r > 5,
by Lemma 8a, with k = 1. For r = 5 theonly n with 2r+1 < n < 3r—2is
n = 12. A strand for 5 threads 12 is Ss,12. Hence 5 threads n for all n >5.

By Lemma 8 and the previous work, we can conclude that

r threads 3r — 1 for all » > 4,
r threads 3r — 2 for all r > 5,
r threads 3r — 3 for all r > 10,
r threads 3r — 4 for all r > 11,
r threads 3r — 5 for all r > 16,
r threads 3r — 6 for all » > 17.

Thus for r = 6 since the only integer n such that 2r +1 < n < 3r — 2
is n = 14 and since Sg,14 demonstrates that 6 threads 14, then 6 threads n
for all n > 6. We can use the same argument to demonstrate that r threads
n for all integers r and n with 7 < r < 20, n > r, and we are done.

(r,n) Trn
(3,8) {6,4,5)
(4,10) {3,6,5,7}
(5,12) {9,6,4,8,7)
(6,14) {4,8,9,7,10,5}

(7,16) {12,9,8,10,86,11, 5}
(7,17) {5,10,9,11,8,12, 6}

(8,18) {5,9,6,13,7,12,10,11}
(8,19) {14,10,11,9,12,7,13,6}
(8,20) {6,11,10,12,9,13,7, 14}

(9,20) {15,8,14,6,11,7,10,12,13}
(9,21) {6,11,7,15,8,14,13,10,12}
(9,22) {16,10,15,7,14,11,13,12,8)
(9,23) {7,14,8,16,12,15,10,11,13}

(10,22) {6,11,7,16,8,15,9,12,14,13)
(10,23) {17,13,16,7,15,8,14,9,11,12}
(10,24) (7,13,8,17,9,16,15,11,14,12}
(10,25) {18,13,12,14,11,15,9,16,8,17)
(10,26) {8,16,14,13,9,18,11,17,12,15}

(11,24) {18,13,14,10,12,9,15,8,16,7,17}
(11,25) {7,12,8,18,9,17,10,16,13, 15, 14}
(11,26) {19,13,18,8,17,9,16,15,12, 14, 10}
(11,27) {8,15,14,16,13,17,12,18,10,19, 9}
(11,28) {20,13,14,19,9,18,10,16,12,15,17)
(11,29) {9,18,10,20,14,19,12,15,13,17, 16}
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(12,26) {7,13,17,10,18,9,19,8,11,16, 14,15}
(12,27) {20,16,15,13,8,19,9,18,10,17,11, 14}
(12,28) {8,14,9,20,10,19,11,18,15,13,17,16)
(12,29) {21,16,20,9,19,10,18,11,17,14,15,13}
(12,30) {9,17,10,21,11,20,18, 14,19, 13,16,15}
(12,31) {22,15,21,10,20,11,19,18,13,17, 14,16}

(13,28) {21,15,16,20,8,19,9,18,10,17,12, 14,11}
(13,29) {8,14,9,21,10,20,11,19,12,16,17,15, 18}
(13,30) {22,17,21,9,20,10,19,11,18,12, 15, 14, 16}
(13,31)  {9,16,10,22,11,21,12,20,19, 14,18, 15,17}
(13,32) {23,17,14,19,12,20,11,21,10,22,18,16,15}
(13,33) {10,19,11,23,12,22,15,21,16,14, 18,17, 20}
(13,34) {24,16,23,11,22,12,21,18,17,15,19, 14, 20}

(14,30) {8,15,9,22,10,21,11,20,12,16,13,18,19,17)
(14,31) {23,17,15,16,13,18,22,9,21,10,20,11,19, 12}
(14,32) {9,15,10,23,11,22,12,21,13,20,16,19,17,18}
(14,33) {24,18,13,20,12,21,11,22,10,23,19, 16,15,17}
(14,34) {10,18,11,24,12,23,13,22,21, 15,20, 16,19, 17}
(14,35) {25,18,15,21,13,22,12,23,11,24,19, 17, 16, 20}
(14,36) {11,21,17,12,25,13,24,15,23, 16,22, 19, 18, 20}
(14,37) {26,17,21,18,16,22,15,23,13, 24,12, 25,20, 19}

(15,32)
(15,33)
(15,34)
(15, 35)
(15,36)
(15,37)
(15,38)
(15, 39)
(15,40)

(16,34)
(16,35)
(16, 36)
(16,37)
(16,38)
(16, 39)
(16, 40)
(16,41)
(16,42)

{24,18,23,9,22,10,21,11,20,12,19, 16, 14, 13,17}

{9,16,10,24,11,23,12,22,13,21,17, 14,19, 18, 20}

{25,19, 24, 10, 23,11, 22, 12, 21, 13, 20, 16, 14,17, 18}
{10,17,11,25, 12, 24, 13,23, 14, 22, 18, 20, 19, 16, 21}
{26,20, 25,11, 24,12,23,13,22, 14,21,17,18, 16,19}
{11,20,19,21,18,22, 17,23, 16, 24, 14, 25,13, 26, 12}
{27,19,20,18, 21,17,22, 16,23, 14, 24, 13, 25, 12, 26}
{12,23,18,22, 20,21, 24, 17,25, 16, 26, 14, 27, 13,19}
{28,18,22,27, 13,26, 14, 25, 16, 24, 17, 23, 20, 19, 21}

{9,15,10,25,11, 24, 12, 23,13, 22, 14, 21,17, 20, 18, 19}

{26,20,25,10,24,11,23,12, 22,13, 21, 14, 17,15,19, 18}
{10,17,11, 26,12, 25, 13, 24, 14, 23, 15, 20, 19, 21, 18, 22}
{27,21,26,11,25,12, 24, 13,23, 14, 22, 15, 19, 18, 20, 17}
{11,19,12, 27,13, 26, 14, 25, 15, 24, 21, 20, 18, 22, 17, 23}
(28,21, 18, 22,27, 12, 26, 13, 25, 14, 24, 15, 23,17, 19, 20}
{12, 22,13, 28, 14, 27,15, 26, 18, 25, 19, 24, 23, 21, 17, 20}
{29,20, 18, 24,17, 25, 15, 26, 14,27, 13, 28, 23, 19, 22, 21}
{13,25, 14,29, 15, 28, 22,21, 23, 20, 24, 19, 26, 18, 27, 17}
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(17,36)  {27,20,26,10,25,11,24,12,23, 13,22, 14,19, 15, 16, 18, 21}
(17,37)  {10,18,11,27,12,26,13,25, 14,24, 15,21, 16, 19, 23, 22, 20}
(17,38)  {28,21,27,11,26,12, 25,13, 24, 14,23, 15, 20, 16, 18, 19, 22}
(17,39)  {11,18,12,28,13,27, 14, 26, 15, 25, 16, 24, 19, 23, 20, 22, 21}
(17,40)  {29,22,28,12,27,13,26, 14, 25,15, 24, 16, 19, 23, 18, 20, 21}
(17,41) {12,21,13,29, 14, 28, 15,27, 16, 26, 25, 18, 24, 19, 23, 20, 22}
(17,42)  {30,22,29,13,28,14,27,15, 26, 16, 25,21, 19, 20, 23, 18, 24}
(17,43) {13,24,14,30,15,29,16,28, 23,27, 18, 26, 19, 25, 22, 20, 21}
(17,44)  {31,21,30,14,29,15, 28,16, 27, 20, 26, 18, 22, 19, 24, 23, 25}

(18,38) {10,17,11,28,12,27,13,26, 14, 25, 15, 24, 16, 21, 22, 20, 23, 19}
(18,39)  {29,22,28,11,27,12, 26,13, 25, 14, 24, 15,23, 19,17, 20, 21, 16}
(18,40) {11,19,12,29,13,28,14,27,15,26, 16, 25, 21, 24, 23, 17, 22, 20}
(18,41)  {30,23,29,12,28,13,27, 14,26, 15, 25, 16, 24, 21, 17, 22, 20, 19}
(18,42) {12,20,13,30,14,29,15,28,16,27,17,26,21, 25,19, 22, 24, 23}
(18,43)  {31,24,30,13,29, 14,28, 15,27, 16, 26, 17, 25, 20, 21, 23, 19, 22}
(18,44) {13,23,14,31,15,30,16, 29,17, 28,27, 19, 26, 20, 25, 21, 24, 22}
(18,45)  {32,23,31,14,30,15,29, 16, 28, 17, 27, 21, 26, 19, 22, 20, 24, 25}
(18,46) {14,26,15,32,16,31,17, 30, 25, 29, 19, 28, 20, 27, 21, 24, 22, 23}
(18,47)  {33,22,32,15,31,16,30,17, 29, 25, 28, 19, 27, 20, 26, 21, 23, 24}

(19, 40)
(19, 41)
(19,42)
(19, 43)
(19, 44)
(19, 45)
(19, 46)
(19,47)
(19, 48)
(19,49)
(19, 50)

(20,42)
(20, 43)
(20,44)
(20,45)
(20, 46)
(20, 47)
(20,48)
(20,49)
(20, 50)
(20,51)
(20,52)
(20,53)

{30,23,29,11,28,]2,27,]3,26,14,25,15,24,16,18,22,17,20,21}
{11,18,12,30,13,29,14,28,15,27,16,26,17,25,20,24,21,23,22}
{31,24,30,]2,29,13,28,14,27.15,26,16,25,17,21,18,23,22,20}
{12,20,13,31,14,30,15,29,16,28,l7,27,]8,24,23,25,22,26,21}
{32,25,31,13,30,14,29,15,28,16,27,17,26,18,23,20,24,22,21}
{13,22,14,32,15,31,16,30,17,29,18,28,21,27,25,20,24,23,26}
{33,25,32,14,31,15,30,16,29,17,28,18,27,22,23,21,24,20,26}
{14,25,15,33,16,32,17,31,18,30,26,29,20,28,21,27,22,24,23}
{34,24,33,15,32,16,31,17,30,18,29,28,20,27,21,26,22,25,23}
{15,28,16,34,17,33,18,32,26,31,20,30,21,29,22,25,27,23,24}
{35,23,34,16,33,17,32,]8,31,26,25,27,24,28,22,29,21,30,20}

{11,19,12,31,13,30, 14,29, 15, 28, 16,27, 17, 26, 22, 21, 24, 18, 23, 25}
{32,24,31,12,30,13,29, 14, 28,15, 27,16, 26, 17, 23, 18, 19, 21, 25, 22}
{12,21,13,32,14,31, 15,30, 16,29, 17,28, 18, 25, 19, 23, 26, 27, 22, 24}
{33, 25,32, 13,31, 14,30, 15, 29, 16, 28,17, 27, 18, 24, 19, 21, 22, 26, 23}
{13,21,14,33,15,32,16,31,17, 30, 18,29, 19, 28, 22, 27, 23, 26, 24, 25}
{34, 26,33, 14, 32,15, 31,16, 30, 17, 29,18, 28,19, 23, 21, 27, 22, 25, 24}
{14,24,15,34,16,33,17,32, 18, 31,19, 30, 27, 23, 25, 26, 21, 29, 22, 28}
{35, 26,34,15, 33,16, 32,17, 31,18, 30, 19, 29, 25, 28, 21, 27, 22, 24, 23}
{15,27,16,35,17, 34,18, 33,19, 32, 28, 25, 24, 26, 21,31, 22, 30, 23, 29)
{36,25,35,16,34,17, 33,18, 32,19, 31,30, 21, 29, 22, 28, 23, 27, 24, 26}
{16,30,17,36,18, 35, 19, 34,27, 33, 21,32, 22, 31, 23, 24, 29, 25, 28, 26}
{37,24,36,17, 35,18, 34,19, 33,28, 32, 21,31, 22, 30,23, 29, 26, 27, 25}
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For this last set of T}, see figure 5 to get a visual flavor of the nature
of these paths. The upward arrow indicates the vertex labeled 20. O

t 20,42 @ f an.44 @
1 20.46 @ a0.48 @

The following‘class of graceful paths will also be useful in dealing with
the dual problem of labeling trees. The path P, is said to be ve(r)y-
graceful if it has an r strand such that for all uv in E(P,,) with £(u) < £(v)
we have

f(u) < n < {(v).
Intuitively, every edge of a ve(r)y-graceful path spans the midpoint, n + %,
of the vertex set {0,1,...,2n+1}. The path of figure 1 is ve(2)y-graceful.

Conjecture 10. Py, is ve(r)y-graceful for all r and n where 0 < r <
2n + 1.

The following results for Conjecture 10 parallel the preceding results for
Conjecture 2, albeit on a less grand scale.

Theorem 11. If 2r < n and Py, _,) is ve(r)y-graceful, then Py(nyy) is

ve(T)y-graceful.
Proof: Note that the vertices of Pzn42 need to be labeled 0 through
2n + 1. Let Ty be a very-graceful strand for r threads 2(n —r) — 1. Let
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T=T0+(T+1). Let
S={rn2n-r+1,r—1,2n-7r+2,...,2n,0,2n + 1,2r + 1}.

With the condition 2r < n, it is easy to see that SV T is a strand for r
threads 2n + 1. See figure 6.0

ke

Figure B.

Corollary 12. If the path Pyp42 is ve(r)y-graceful for all n with r <
n < 2r, then Poy g is ve(r)y-graceful for all n with n > r.
Proof: Let m > 2r. Let k be the least positive integer with

m—k(r+1)<2r.

Then m — k(r + 1) > r since m — (k — 1)(r + 1) > 2r. S0 Pym—k(r+1))+2 15
very-graceful by hypothesis. Apply Theorem 11 a total of k times, showing
that Pypyo is very-graceful.O

Proposition 13. Py.43 is ve(r)y-graceful for all r > 0.
Proof: A very-graceful strand is

{r,r+1,r-1,r+2,...,0,2r + 1}.0

Theorem 14. Py, 4, is ve(r)y-graceful for r = 0,1,2,3, for all n with
n>r.

Proof: Proposition 13 and Corollary 12 along with the integer pairs
(r,n) below are enough to prove the theorem.

(1,2) {1,5,0,3,2,4}

(2,3) {2,5,3,4,0,7,1,6}

(2,4) {2,6,3,5,4,9,0,8,1,7}

(3,4) {3,5,4,7,1,6,2,9,0,8}

(3,5) {3,7,4,6,5,10,0,11,2,8,1,9}

(3,6) {3,9,4,8,5,7,6,13,0,12,1,11,2,10}0

Proposition 15. Let V = {0,1,...,n}U{n+k,n+k+1,...,2n+k}
where k > 1; let E = {k,k+1,...,2n+ k}.If Py, 1, is ve(r)y-graceful with
n > r, then the path is also V Er—graceful and (V, E,2n + k — r)-graceful.
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Proof: Immediat.e..

Edge-Graceful Trees

Let G be a graph with |V(G)| = p, |[E(G)| = ¢, and (£,£*) be a function
pair mapping the vertices and edges into the set of integers, as before.
Following Lo [4), define G as edge-graceful if there is a function pair (¢,£%)
such that £ is onto {0,1,...,p— 1}, £* is onto {1,2,...,q}, and

f(u) = ( 2 £*(uv)) mod p.

uv€ E(G)

Of particular edge-graceful interest is the following conjecture.

Conjecture 16: Lee’s Conjecture. Every tree of odd order is edge-
graceful.

The current domain of odd ordered trees shown to be edge-graceful
include all trees in which each vertex is of odd degree [5], all regular spiders
[1,5,7], various trees obtained by performing certain transformations on
regular spiders [5], and various trees which avoid having adjacent vertices
of degree 2 [1].

A notion we find useful in studying this conjecture is the following. Let

{:tl,...,:i:g}, if p is even,

P= -
{o,¢1,...,¢¥}, if p is odd.

{#£1,... ,:!:-;-}, if ¢ is even,

{O,il,..'.,:t%}, if ¢ is odd,

Q=
We say that G is super-edge-graceful if there is a function pair (¢, £*) such
that £ is onto P, £* is onto @ and

Luy= Y, €(uv).

uv€ E(G)

It is an easy exercise (see Theorem 1 of [5]) to see that if G is a tree of odd
order and is super-edge-graceful, then G is edge-graceful. Hence to prove a
tree is edge-graceful it is sufficient to show it is super-edge-graceful; which
is the technique we use throughout this section.

A tree G is a spider graph if it has at most 1 vertex of degree greater
than 2; such a vertex of a spider is called its core. If all the legs of a spider



are of equal length, the spider is said to be regular. We say that a graph is a
paired-k-spider, if the spider has k legs, {L;}%.,, where L; and Li_;4; have
the same lengths for 1 <i < -’;— Hence if a spider has an odd number of legs
there is at most one leg of a unique length. If Lee’s conjecture is true, it
seems reasonable that it should be relatively easy to show that all spiders
of odd degree having a few legs are super-edge-graceful. In particular we
should be able to resolve the conjecture for spiders having only 4 legs.

Proposition 17. If Conjecture 1 is true then every paired-4-spider is
super-edge-graceful.

Proof: Let G be a paired-4-spider with legs of length m and n where
I<m<n Lets=|%]. Let

s, if m is odd,
t = . .
s—1, if mis even.

Hence m=s+¢t+ 1. Let
V,={1,2,...,s}U{m+n—t,m+n—t+l,.‘..,m+n},

and E; = {n+1,...,m+n—1}. Let S; = {e1,e2,...,em} = {m+n,1,m+
n—1,2,...,u} bea {Vy, E1,m+n}-graceful strand for P,, where u is either
sorm+n-—t. Let

Ly ={e1,—ez,e3,—¢4,...,(-1)" e, ;;

\
My ={e,e; — ez, —ea+e3,...,(=1)"em_y + (—=1)" e, }.

Then My ={n+1,n4+2,...,m+n}. Let
k Vo={s+1,5+2,....m+n—t—1}and B, ={1,...,n—1}.

Since s threads n — 1 by hypothesis then n — s — 1 threads n — 1. Let Sp
be a strand for n — s — 1 threads n — 1. Let S; = Sp + (s + 1), so that
Sy starts with n. Furthermore S, is a {V, E,, n}-graceful strand. Obtain
Ly and M, from S; in the same way that L, and M; were obtained from
S1. Let Ly = —Ly and Ly = —L,. Interpret L;,1 < i < 4, as the edge
labels of the four legs of the spider from the outer edges to the core. Then
the vertices of the spider are precisely £M; UM, U {0}, where the outer
vertices are labeled +n,+(m + n) and the core is labeled 0. O

Theorem 18. If G is a paired-4-spider whose shorlest pair of legs is
no more than 41, then G is super-edge-graceful.

Proof: In the above proof, take s < 20, then m < 41. By Theorem 9 we
are done. O

To illustrate the above theorem consider a paired-4-spider with leg pair
lengths of 5 and 7. Since s = 2 = t, label the short leg {12,-1,11, -2, 10}
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from exterior to the core. Since 2 threads 6, then 4 threads 6 with strand
{4,2,3,6,0,5, 1}, making S; = {7,5,6,9,3,8,4}. Label the other leg

{1,-5,6,-9,3,-8,4}

from exterior to core. On the other two legs use the inverse labels, resulting
in a super-edge-graceful labeling.

Proposition 19. Let {d;}*_, be a sequence of posilive even inlegers
with d; > 2‘1;1' d;. Let G be a paired-2k-spider whose leg lengths form this
sequence. If Conjectures 2 and 10 are true then G is super-edge-graceful.

Proof: For 1 < j <k, let 55 = %’- and

ji-1

j-1 j k j k _
V;- = {Zsi+l,...,28;}U{2d,‘—Zsi+ 1,...,2(1.’ —Zs,'}.
i=1 i=1 i=1 i=1 i=1

i=1

It follows that .

zd,-evjforallj,lgjglc.

i=j
Observe also that {V;}5_, is a pairwise disjoint partition of the integers
from 1 to b, d;. Let

k k
Ej={Y di+l,...,p di—1}

i=j+1 i=j

Observe that {Ej}5_, is a pairwise disjoint partition of the integers from
1to Zf___l d;, excluding those integers of the form Zf___j d;. (We interpret
Zfﬂ“ d; as 0.) By hypothesis let S; be a (V;, Ej,z:‘___j d;)-graceful strand
for Ps;. Obtain L; and M; from Sj in the manner as described in the proof
of Theorem 17. As sets, observe that M; = Ej. For each j,1 < j < 2k, let
Lok—j+1 = —Lj. Interpret Lj,1 < j < 2k, as the edge labels of the edges
of the spider of length d;, from the outer edge towards the core. Then the
vertices of the spider are precisely U;-‘=, 4 M; U{0}, where the outer vertices

are labeled + 2?:;‘ d; and the core is labeled 0. O

Theorem 20. The following paired-k-spiders are super-edge-graceful.
1. The paired-6-spider with dy = 2,4 < dy < 38,d3 > d> +4.

2. The paired-6-spider with dy = 4,6 < d2 < 36,d3 > d +6.

3. The paired-6-spider with dy = 6,8 < dz < 34,d3 > d3 + 8.

4. The paired-8-spider with dy = 2,d> = 4,8 < d3 < 34,d4 > d3 + 8.
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Proof: Let us only prove case 3, since the arguments for the other cases
are quite similar. Let d = d; + d3 + d3.Let

Ly={d,~1,d—1,-2,d—2,-3),

so that M) = {d,d—1,d~2,d-3,d—4,d—5}. On L, we want to use the
labels

V= {-4,-5,...,-5"2;—‘1‘}u{d—i’;—‘“+1,...,d-s,d—s, d—4,d—3},

starting with d — 6. Since P,, is ve(r)y-graceful for r = 3 for all n > 3, let
Ly be such a strand, so that M; as a set is {d—6,...,d—d; —dz+1}. On
L3 we shall use the labels

d
R O N PRI & L

2°2 2}’

starting with the label d — d; — d2 = d3 so that M3 as a set is {1,...,d3};
note that by Proposition 19, d3 € V3. We can label L3 accordingly when
(d- 41521‘1) — d3 < 20 by Theorem 9, which means that d, + d; < 40. O
Theorem 21. Let G be a paired-2k-spider with legs of length {2'}5_,.
Then G is super-edge-graceful.
Proof: Following Proposition 19, let d; = 2. Then

Vi = {271, 0 1Ju bt u g, g giml ),

Furthermore,
k ) . .
D di =28 _9f and By = {2t 2t ok _9i ),
i=j

By Propositions 13 and 15, Py; is (V;, Ej, 28+ — 29)-graceful for all j. Now
use this graceful labeling to super-edge-graceful label G as described in the
proof of Proposition 19.0

For example consider the paired-8-spider with leg pair lengths of 2,4,8,16.
Using the labeling scheme as given by the theorem results in labeling the
four sets of legs as follows, where the labeling sequence proceeds from ex-
terior to core:

{30,-1}, {-30,1},
{28,-3,29, -2}, {—28,3,-29,2},
{24,-7,25,-6,26,—5,27, -4}, {—24,7,—25,6,-26,5, —27,4},
{16,-15,17,-14,18, 13,19, 12,20, 11,21, ~ 10,22, -9, 23, -8},
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{-16,15,—17,14,—18,13,-19,12,-20, 11, -21,10,-22,9, —23, 8}.

Furthermore, theorems 18, 20, 21 can be used to construct other trees
not previously known to be edge-graceful. That is, suppose G is a super-
edge-graceful paired-k-spider with core c. With the Cut & Paste Algorithm
of [5], dissect the spider into |k/2] leg pairs each with a copy of the core
vertex ¢, which now has label 0. Starting with the tree consisting of any
leg pair (or of the single odd leg if the spider has an odd number of legs),
append to this tree any leg pair by affixing its copy of the core to any vertex
of the tree. Continue appending leg pairs in this fashion until there are no
unattached leg pairs. The resulting tree is super-edge-graceful.
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