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Abstract

An incomplete self-orthogonal latin square of order v with an empty
subarray of order n, an ISOLS(v, n), can existonly if v > 3n+ 1. Itis
well known that an ISOLS(v, n) exists whenever v > 3n+1and (v, n)
(6m+2,2m). In this paper we show that an ISOLS(6 m + 2,2 m) exists
forany m > 24.

1 Introduction

A self-orthogonal latin square of order v, an SOLS(v), is a latin square
of order v which is orthogonal to its transpose. It is well known that an
SOLS(v) exists for all values of v, v ¥ 2,3 or 6.

An incomplete self-orthogonal latin square of order v is a v x v latin
array A = (a;;) with row and column indices and entries taken from the
set [y nUX, Iy_n={1,2,---,v—n}, X = {z1,22,- -, Zs}, and with
an empty subarray of order n so that

(Ly—n X Ty—n) U(Lyn X X) U(X X I,—p)
= {(as'j;aji) 2(4,7) € (Ty—n X Ty—p) U (Ly—n x X) U(X x Iu—-n)}-
We denote such an array by ISOLS(v, n).

Simple counting shows that a necessary condition for the existence of
an ISOLS(v, n) isv > 3n+ 1. There has been considerable work done on
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the existence of such arrays [3], [5-6], [9-11], [13-15]. The known results
can be summarized as follows. There exists an ISOLS(v, n) for all values
of v and n satisfying v > 3n+ 1, except forv = 6 and (v,n) = (8,2)
and perhaps excepting (v,n) = (6m + 2,2m), m > 2. In this paper we
show that an ISOLS(6m + 2,2 m) exists for any integer m > 24.

In section 2 we define SOLS with holes and present the “Filling in
Holes” construction. In section 3 we state Inflation Construction using var-
ious kinds of transversals and in section 4 we present an ISOLS(11; 3,2)
and use it to find the first example of an ISOLS(38,12). To obtain an
ISOLS(6m + 2,2m) from the ISOLS(38,12) we need a new type of
SOLS which is discribed in section 5. Our main result is given in sec-
tion 6, where we also conjecture that an ISOLS(6m + 2,2 m) exists for
2<m<23. )

For concepts used but not defined in this paper the reader is referred to
the book of Beth, Jungnickel and Lenz [1].

2 Holey SOLS

We begin by defining a holey SOLS.

Let S be a set and let H be a set of subsets of S. A holey latin square
having hole setHisa| S | x | S | array, L, indexed by S, which satisfies
the following properties :

1. every cell of L either is empty or contains a symbol of S,
2. every symbol of S occurs at most once in any row or column of L,

3. the subarrays H x H are empty, for every H € H (these subarrays
are referred to as holes),

4. symbol s € S occurs in row or column ¢ if and only if (s,t) €
(S x §)\UyH (H x H).

The orderof Lis| S| .

Two holey latin squares on symbol set S and hole set H, say Lj and L,
are said to be orthogonal if their superposition yields every ordered pair in
(SxSH\Uyp(HxH). We shall use the notation IMOLS(s; s1,- -+, Sn)
to denote a pair of orthogonal holey latin squares on symbol set S and hole
set H= {H,---,Hy}, where s =| § |and s; =| H; [for]1 < i< n
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IfH = {H}, we simply write IMOLS(s,| H |) for the orthogonal pair
of holey latin squares. We write IMOLS(s; | Hy |,| Hz |) for the case
H={H,H2},and Hi N H; = 0.

If Ly and L2 form IMOLS(s; s1, - - -, s,) such that L is the transpose
of Ly, then we call Ly aholey SOLS, denoted by ISOLS( s; 81, - - -, 85). We
shall now identify several particular special cases of holey SOLS that will
be useful in recursive constructions. First, if H = @, then a holey SOLS is
just an SOLS of order | S |. Also, if H = {H}, then a holey SOLS is an
ISOLS(| S |,| H |). IfH= {H)1, H2}, then we write ISOLS(| S |; | H; |
y| Ha |) for the case 4 Hy N Hy = 0.

IfH = {Si,---,8,} is a partition of §, then a holey SOLS is called
a frame SOLS. The type of the frame SOLS is defined to be the multiset
{l Si |: 1 <1 < n}. We shall use an “exponential” notation to describe
types : so type t}'t5? - - - t;* denotes u; occurrences of ¢;,1 < i < k, inthe
multset.

We observe that existence of an SOLS(7) is equivalent to existence of
a frame SOLS of type 1*, and existence of an ISOLS(n, s) is equivalent
to existence of a frame SOLS of type 1™%s!.

IfH={8),---,8,, T}, where {S1,---,S,} is a partition of S, then a
holey SOLS is called an incomplete frame SOLS or an I-frame SOLS. The
type of the I-frame SOLS is defined to be the multiset {(| S; |,| SiNT ) :
1 < ¢ < n}. We may also use an “exponential” notation to describe types
of I-frame SOLS.

We now discuss the idea of Filling in Holes.

Construction 2.1 (Filling in Holes) [13, Lemma 1.11] Suppose there
is a frame SOLS of type {s; : 1 < i < n}, and leta > O be an integer.
For1 <1 < n— 1, suppose there is an ISOLS(s; + a,a). Then there is
an ISOLS(s + a, s, + 0), where s = 37 ;e i

We now give a generalization of Filling in Holes which starts with an
I-frame SOLS. :

Construction 2.2 (Generalized Filling in Holes) Suppose there is an
I-frame SOLS of type {(s;,%;) : 1 < i < n},andleta > 0 be an integer.
For1 < i < n—1, suppose there is an ISOLS( s; + a; t;, ). Also, suppose
there is an ISOLS(s, + a,t,). Then there is an ISOLS(s + a,t), where
s=Y s;andt =Y t;.
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3 Transversals and inflation constructions

If T is the type t]'t5? - - - t;* and m is an integer, then mT is defined to be
the type (mt;) ¥ (mi2)¥2 - - - (mt)“*. The following recursive construc-
tion is referred to as the Inflation Construction. It essentially “blows up”
every occupied cell of a frame SOLS into a latin square such that if one cell
is filled with a certain latin square, then its symmetric cell is filled with the
transpose of an orthogonal mate of the latin square. We mention the work
[4), [16] which can be thought of as sources of the Inflation Construction.

Construction 3.1 (Inflation Construction) Suppose there is a frame
SOLS of type T', and suppose m is a positive integer, m ¥ 2 or 6. Then
there is a frame SOLS of type mT'.

To obtain an I-frame SOLS from a frame SOLS we may “blow up”
every occupied cell into a latin square with one hole.

Construction 3.2 Suppose there is a frame SOLS of type t}"t5? - - - t;*,
and suppose there is an IMOLS(m + @, ). Then there is an I-frame SOLS
of type [[) cick(ti{m + @), tia) ™

Suppose F is a frame SOLS with holes Sy, ---,Sys, and § = US;. A
transversal is a set T of |S| occupied cells in F such that every symbol
is contained in exactly one cell of T" and the cells in T' intersect each row
and each column in exactly one cell. We call two transversals disjoint if
they have no cell in common. A transversal T is symmetric if (1,7) € T
implies (j,4) € T. A pair of transversals T and T> are symmerric if
(i,j) € T implies (j,3) € T2. Here is another generalization of the
Inflation Construction.

Construction 3.3 Suppose there is a frame SOLS of type ¢ which has
2 k+ | disjoint transvcersals, | of them being symmetric and the rest being k
symmetric pairs. For1 <i<land1 <j < k,letu; >0 andv; >0 be
integers. Let m be a positive integer, m # 2 or 6, and suppose there exist
IMOLS(m + u;,u;) for1 <4 < land IMOLS(m+ vj,v;) forl < j < k.
Then there is a frame SOLS of type (mt)9(u + 2v)! , where u = ¥ u;
andv = E V5.

Suppose F is a frame SOLS with holes Sy, - - -, Sy, where § = US;. A
holey transversal with hole S is a set T of |S| — |S1| occupied cells in F°
such that every symbol of S\ S is contained in exactly one cell of T" and the
|S| = |G| cells in T intersect each row and each column indexed by S\S)
in exactly one cell. A holey transversal T'is symmetricif (i, j) € T implies
(7,3) € T. A holey symmetric transversal will be referred to as an HS
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transversal. The following construction is a modification of Construction
3.3, in which holey transversals are used.

Construction 3.4 Suppose there is a frame SOLS of type h!t9, where
H is the size h hole, having k HS transversals with hole H such that all
these transversals are disjoint. For 1 < j < k, let v; be non-negative
integers. Let m be a positive integer, m % 2 or 6, and suppose there exist
IMOLS(m + vj,vj) for1 < j < k. Then there is a holey SOLS with g
holes of size mt and one hole of size mh + v, where v = " v;.

4 Anexample ISOLS(38,12)

In this section we shall state some known results useful in obtaining our
main result. We shall also give the first example in the class ISOLS(6 m +
2,2m), namely an ISOLS(38, 12).

The following theorems provide the “ingredients™ when applying the
recursive constructions given in the previous two sections.

Theorem 4.1 (2] There exists an MOLS(v) for all values of v, v # 2
or6.
Theorem 4.2 [12] There exists an IMOLS( v, n) for all values of v and
nsatisfying v > 3n except that an IMOLS(6, 1) does not exist.

Theorem 4.3 [3] There exists an SOLS(v) forall values of v,v # 2,3
or6.
Theorem 4.4 [13, 14] There exists an ISOLS(v, n) for all values of v
and n satisfying v > 3n+ 1, except forv = 6 and (v,n) = (8,2) and
perhaps excepting (v,n) = (6m+2,2m), m > 2.

We are now in a position to give our first example.

Lemma 4.5 There exists an ISOLS(38, 12).

Proof Start with a frame SOLS of type 14 which comes from an
SOLS(4) in Theorem 4.3. Apply Construction 3.2 with an IMOLS(9, 3)
which comes from Theorem 4.2. We obtain an I-frame SOLS of type
(9,3)*. Further apply Construction 2.2 using an ISOLS(11; 3,2) shown
in Table 4.1. Since an ISOLS( 11, 3) exists from Theorem 4.4, we obtain
the required ISOLS(38,12).
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1| 71 5] 2(10] 9] 4|[11]|] 3[6]8
6| 2| 8| 7] 3|10] 1] 5|11]41}9
91 4| 3|10 8} 1|11} 2} 6]|5]|7
5|11 91 4| 7| 2| 6[10| 1|8]3
71 6|11 3| S| 8] 2| 4]1109]1
11 8} 4| 9| 1] 610 3| 5}17]|2
31101 6| 1|11 5 2|4
41 11101 6| 2|11 315
10| S| 2|11| 4] 3 116
81 9| 7] 5| 6| 4] 3| 1| 2

21 3] 1] 81 9] 7] 5] 6| 4

Table 4.1 ISOLS(11;3,2)

A frame SOLS of type k! 1"* which has a holey symmetric transversal
with size k hole (so n—k is even) will be referred to as an HSTFSOLS(n, k).
If k = 0, we simply write an HSTFSOLS(%,0) as an STFSOLS(n).

Lemma 4.6 If there exists an HSTFSOLS( n, k), then there exists an
ISOLS(3n+ 2,n), provided an ISOLS(3k + 2, k) exists.

Proof First, apply Construction 3.4 to the given HSTFSOLS(n, k) and
take m = 3 and v = 1. We obtain an I-frame SOLS of type (3k +
1,k)'(3, 1) %. Next, apply Construction 2.2 with the requisite ISOLS(4;
1,1) from Theorem 4.3 and the known ISOLS(3k + 2, k). We obtain the
required ISOLS(3n+ 2,n).

In view of Lemma 4.6, the existence of an ISOLS(6 m+2,2m) canbe
obtained from the existence of an HSTFSOLS(2 m, 12) since an ISOLS(38,
12) is already known from Lemma 4.5.

5 Existence of HSTFSOLS(2m, 12)

In this section we shall show the existence of an HSTFSOLS(2 m, 12) for
any m > 50. The following known result is useful.

Theorem 5.1 [7], [17] Forallevenn, n &€ E = {2, 6, 10, 14, 46,
54,58, 62, 66, 70 }, there exists an SOLS(n) with a symmetric orthogonal
mate which has a constant element on the main diagonal.

Since each element of the orthogonal mate in Theorem 5.1 determines
a symmetric transversal in the SOLS(n) when nis even and n ¢ E, there
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exists a frame SOLS of type 1" having n— 1 disjoint symmetric transver-
sals. With this in mind we restate Theorem 2.5 of [14] as follows.

Lemma 5.2 (o) If ¢ is an odd prime power, ¢ > 5, then there exists
a frame SOLS of type 19, having ¢ — 1 disjoint transversals which occur
as (¢ — 1)/2 symmetric pairs. (b) If g is an even integer and ¢ ¢ E,
then there exists a frame SOLS of type 17 having ¢ — 1 disjoint symmetric
transversals. In particular, there exists an STFSOLS(q).

Lemma 5.3 Suppose g is an even integer, ¢ ¢ E,org > 5 is an
odd prime power. For1 < § < ¢ — 1 let m and u; be integers, 0 <
2u; < m, m ¥ 6. If there exists an STFSOLS(m), then there exists an
HSTFSOLS(gm + u,u), u iseven and u = Y u;. Further, if there exists
an STFSOLS(u), then there exists an HSTFSOLS(gm + u, m).

Proof First, applying Lemma 5.2 we obtain a frame SOLS of type 19
having g — 1 disjoint symmetric transversals when g is even, or (g — 1) /2
symmetric pairs of transversals. Next, apply Construction 3.3 with the re-
quired IMOLS(m + u;, u;) from Theorem 4.2, we obtain a frame SOLS of
type miu!, where we can take u; = uz,u3 = uq4 etc if ¢ is odd since u is
even. Then the conclusion follows from the Filling in Holes construction.

We now prove the existence of an HSTFSOLS(2n, 12).

Lemma 5.4 There exists an HSTFSOLS(2 n, 12) for any integer n >
50.

Proof Forn > 180 we may write 2n= 12 ¢+ u such that g = 0 (mod
4)and ¢ > 24 and such thatuisevenand 72 < 4 < 120 : theng,u ¢ E.
We can apply Lemma 5.3 with m = 12 and suitably chosen u; such that
0 < 4; £ 6 and u = Y u;. Since both STFSOLS(12) and STFSOLS(u)
exist, we obtain an HSTFSOLS(2 n, 12) for2n > 360.

For 100 < 2n < 358 we again apply Lemma 5.3 to obtain an
HSTFSOLS(2 n, 12) shown in Table 5.1. The required ingredients are all
known from Theorem 5.1, Theorem 4.1 and Theorem 4.2.

6 Concluding remarks

Combining Lemmas 5.4, 4.6 and 4.5 we have the main result of this paper.
Theorem 6.1 An ISOLS(6m + 2,2 m) exists for any m > 50.
We conjecture that an ISOLS(6m + 2,2 m) also exists for2 < m <
49. Some of them can be constructed using methods similar to the above so
that only numbers 2 m for which the existence of an ISOLS(6 m+2,2m)
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Table 5.1

m u 2n=qm+u
12 16-26 100-110
12 16-26 112-122
12 16-38 124-146
11 12 16-38 148-170
13 12 16-44 172-200
5 38 12 202
13 12 48-50 204-206
16 12 16-38 208-230
18 12 16-38 232-254
20 12 16-38 256-278
22 12 16-38 280-302
24 12 16-38 304-326
26 12 16-38 328-350
28 12 16-22 352-358

O 00

is still unknown are 2m € {4, 6, 8, 10, 14, 16, 18, 20, 22, 26, 28, 32, 34,
46}. Itis easy to see that Lemma 4.5 with SOLS(4) replaced by SOLS(k)
for k even and 8< k <32 gives designs for 2m € {24, 30, 36, 42, 48,
54, 60, 66, 72, 78, 84, 90, 96}. To resolve the case 2m = 38, one ob-
serves that the ISOLS(38, 12) is in fact an HSTFSOLS(38, 12). Apply-
ing Lemma 5.3 withq =7, m =4 and u = 12 gives an HSTFSOLS(40, 12).
An HSTFSOLS(44,12) can be constructed similarly by taking q = 4, m
=8 and u = 12. If one takes m = 12 and q € {4,5,7 } in Lemma 5.3, one
may obtain an HSTFSOLS(2 m, 12) for 2m € {52,56,64,68,76,80,82,88,
92}. The remaining eight numbers 2m can be done by a more complicated
argument. In [8], an ISOLS(12,2) with 12 disjoint symmetric transver-
sals is given, of caurse two of them are H S transversals. Apply Inflation
Construction with ISOLS(m + u;, ug) for 1< 1 < 12, whereu=}_ u; and
up =uy = lifm=4,oru; =2 ifm=5,7. If one fills in the size u
hole with an HSTFSOLS(u,2) and another hole of size 2m + 2 with an
HSTFSOLS(2m + 2, 2), then one obtains an HSTFSOLS(12 m + u, 12).
Taking m =4 and u = 2,10 gives an HSTFSOLS(2 n, 12) for 2n = 50,58.
Taking m = 5 and u = 2, 10, 14 solves the casees 2n = 62,70,74 and taking



m=7 and u=2, 10, 14 solves the cases 2n = 86, 94, 98. The ISOLS(10, 2)
and ISOLS( 14, 2) given by the starter-adder type construction in [14,Table
2.1] are indeed an HSTFSOLS(10,2) and an HSTFSOLS( 14,2) respec-
tively. The requisite HSTFSOLS(12,2) and HSTFSOLS(16,2) come
from the same source. This takes care of all cases for 2m < 98 leaving
14 unknown cases. Further, combining this with Theorems 4.4 and 6.1 we
have the best knowm result on the existence of an ISOLS(v, n).

Theorem 6.2 There exists an ISOLS(v, n) for all values of v and n
satisfying v > 3n+ 1, except forv =6 and (v,n) = (8,2) and perhaps
excepting (v,n) = (6m+2,2m),2m € {4,6,8, 10, 14, 16, 18, 20, 22,
26,28, 32, 34,46}.
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