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Abstract. In a previous paper, [8], we associated with every hyperoval of a
projective plane of even order a Hadamard 2—design and investigated when
this design has lines with three points. We study further this problem using
the concept of regular triple and prove the existence of lines with three
points in Hadamard designs associated with translation hyperovals. In the
general case, the existence of a secant line of regular triples implies that the
order of the projective plane is a power of two.

1. Introduction

Let Il be a projective plane of order g. A hyperoval of II, is a subset
2 of ¢ + 2 points no three of which are collinear. It is well known that ¢
must be even and that every line of II; meets Q in 0 or 2 points. The lines
meeting 2 in 0 (resp., 2) points are said to be exterior (resp., secant). For
a reference on hyperovals see [2], [11). '

It is possible to associate with 2 a Hadamard 2—design, H, in the fol-
lowing way. We denote the point-set of II, by the same symbol 1,.

For every point P of II, not belonging to 2, let

E(P)={Q ¢ Q| Q # P and the line PQ is exterior}
S(P)={Q ¢ Q| Q # P and the line PQ is secant} U {P}.

The incidence structure, D, whose points are those of I, \ Q and whose
blocks are the sets E(P), for every P ¢ Q, is a symmetric 2 — (¢ -
1,4%/2, ¢%/4)—design, which is the complementary design of a Hadamard
2—design, H, whose blocks are the sets S(P), see [6].

In [6] we give some necessary and sufficient conditions for a line of H to
have three points, which is the maximum number of points on every line of
H.

In this paper we investigate further this problem introducing the concept
of regular triple, that is a non ordered triple {X,Y, Z} of distinct points of
I, \ Q such that E(X)N E(Y)N E(Z) = 0. A regular triple exists if and
only if there is a line of % with three points.

In Section 2 we give necessary and sufficient conditions for the existence
of regular triples (Theorems 1 and 2). Furthermore, we will prove that if
there exists a secant line of regular triples, then it is possible to construct
a Steiner triple system on ¢ — 1 points, which is the 2—design of points
and lines of a projective geometry over GF(2), the Galois field of order 2
(Theorem 3). Thus, in this case, q is a power of two.
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In Section 3, we will give a further necessary and sufficient condition
for the existence of regular triples. This condition is satisfied by every
translation hyperoval, as it is proved in Section 4.

2. Regular triples

Let I, be a projective plane of order ¢ and (2 a hyperoval of II,. We will
denote by H the Hadamard 2-design associated with Q2.

DEFINITION. A non ordered triple {X,Y, Z} of distinct points of 11, \Q is
said to be regular with respect to Q if E(X)NE(Y)N E(Z) = 0.

The existence of a regular triple is equivalent to the existence of a line of
H with three points (see [6, Proposition 4.1]).

It is obvious that given X and Y there exists at most one Z such that
{X,Y,Z} is regular, since every line of H has at most three points.

For every X and Y not in 2, we put:

W = E(X)NE®Y), X = E(X)\W, Y = E(Y)\W, A = 5(X)NS(Y).

2 2
A simple count proves that |W| = |X| =|Y| = % and |JA| = % -1.
The following two theorems are proved in [6].

THEOREM A. For every X, Y ¢ Q there exists Z such that {X,Y,Z} is
regular if and only if ¢ = 4.

THEOREM B. If {X,Y,Z} is regular and ¢ > 4, then X,Y and Z are on a
same secant line.

From now on we suppose ¢ > 4 and fix a secant line, £.
If X and Y are distinct points on £, X, Y & Q, we denote by Z,, Z,, ...,
Z4-3 the other points of £\ (£N ) and define:
M=|E(X)NEXY)NE(Z:) |=IWNE(Z) ]|, k=1,2,...,¢4-3.

Therefore, {X,Y, Z;} is regular if and only if Ay = 0.
We have the following identity:

9-3 2 2
1 /\=g 7 _ =q—( —4)
(1) ;k 2(4 9) 8'1

which is obtained counting in two different ways the pairs (P, Z;), P € W,
such that the line PZ; is exterior, observing that for every P € W there
are exactly (¢/2) — 2 points Z; such that the line PZ; is exterior.
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THEOREM 1. The triple {X,Y, Z;} is regular if and only if ¢ = 0 (mod 4)
2
and |E(P)NW| = % forevery P¢ Q, P # X,Y, Zs.

Proof: If {X,Y,Z;} is regular, then E(Zy) = XU Y and for every P #
X,Y,Zi, |[E(P)NW|=h, 0 < h < ¢%/4. Therefore

|E(P)NX| = |[E(P)N Y| = (¢2/4) - h.

As |E(P)N E(Zy)| = ¢*/4, s0 q*/4 = 2 ((¢*/4) — h) follows. Hence ¢ = 0
(mod 4) and h = ¢2/8.

Conversely, let ¢ = 0 (mod 4) and |E(P)NW| = ¢%/8, for every P ¢
Q, P# X,Y,Z;. Equality (1) may be written as

q=-3 2
( 2 ":') +Ak=%(q—4)-

i=1j#k

Since A; = ¢%/8,j = 1,...,q—3,j # k, then A, = 0, that is, the triple
{X,Y,Z;} is regular. O
The next theorem is a refinement of the previous one.

THEOREM 2. The triple {X,Y, Z;} is regular if and only if ¢ = 0 (mod 4)
and every line neither through X, Y nor Z has q/4 points on W.

Proof: If ¢ = 0 (mod 4) and every line neither on X, Y nor Z; has q/4
points on W, then A; = ¢?/8, for every j =1,...,¢q—3,j # k and A, = 0.
Thus {X,Y, Z;} is regular.

To prove the converse, let a; be the number of pairs (P,QeWxW,
such that the line PQZ; is exterior, k = 1,...,9 — 3, and let ay; be the
number of points that the i—th exterior line through Z; has on W. We

have:
q/2 q/2

/\k = Zakg and ar = ZQE,-.
i=1

If ny; is the number of exterior lines on Z), which have J points on W,
j=0,1,...,¢/2, then

q/2 q/2 q/2

> =2, PIFLITED S D i’ = ax.
j=0 j=0

j=0
From the quadratic form

N

g/2 q
Z (:c - j)znkj = 522 -2z +a; >0
j =0
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2A2
we deduce a > —=, forevery k =1,2,...,¢-3.

Assume that {X,Y,Z,_3} is regular. Then ¢ = 0 (mod 4), Az = ¢*/8,

Ag-3 =0and a; > ¢3/32, for every k = 1,2...,¢9—4. We have the following
equality:

9-4 q3
Z ar = ﬁ(q —4).
k=1
In fact, ’
q-4 g—4 g-—4 q/2 q-4 9/2
Zak = Zak "Zzak: +Zzaks
k=1i=1 k=1i=1
and
q-4 g=-4q/2
PICEDIPILE
k=1 k=1i=1

equals the number x of pairs (P,Q) € W x W, such that P # @Q and the
line PQ is an exterior line neither on X nor Y. Now,

x=(L-a-2)%,

since, for every Q € W, E(Q) has ¢2/8 points in common with W (Theorem
1), of which 2(¢/2 — 1) = ¢ — 2 belong to the exterior lines QX and QY.

As
q-449/2

p)
Ezak«=%(q—4)
k=1i=1
so
g—4 2
da= (——(q 2))—+—(q 4)—32(4 4)-
k=1
Therefore,
3 9/2 2
N A _ 9\ _
ak_32, k=1,...,q 4 and Z(ak. 4) =0.

i=1

Hence ay; = q/4, forevery k=1,...,g—4andi=1,...,q/2.
A similar argument applies to secant lines.
In fact, define, for every k=1,...,¢—3,

e = |S(Z) OW.
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Asbr > ¢%/32, k=1,...,q—4,s0 b =4¢3/32, k=1,...,q— 4
It follows

q/2
9y’ _
,E (ﬂ"‘ 4) =0.
i=1
Hence fi; = ¢/4,foreveryi=1,...,¢/2and k=1,...,¢ -4
It remains to calculate 4; and &;, for every i =1,...,q. Firstly
! 2 2 ¢
(iii) ;('r; +67) = 3

Let Q € W. One of the secant lines through Q is on Z,_3, since the triple
{X,Y,Z,_3} is regular. Thus

2

= 1_pnl_ 1_ [ — _1=L
IS@nWl=1+(G-DG -2 +5-1+6-1+7-1=".

Hence 6; +v; = ¢/2, for every i,j =1,...,¢. It follows

q 9 q
216? = Zl(% -7) = 227?-
i= i=

i=

From this equality and equalities (i) and (iii), 6 = 7; = ¢/4, for every i
and j. O

Remark. Theorem 2 implies that the set W is of type (0,¢/4,¢/2). This
has suggested to investigate sets of such a type in a projective plane of order
¢ =0 (mod 4) (see [8]), which seem to be related with regular triples.

It is interesting to see what happens when there is a secant line £ of
regular triples, that is, for every two distinct points X and Y of £\ (£NQ)
there exists a point Z which makes regular the triple {X,Y,Z}. Such a
secant line will said to be strongly regular. In this case, as it is easily
proved, the incidence structure S, whose points are those of £\ (£N Q) and
whose blocks are the regular triples, is a Steiner triple system on ¢ — 1
points.

THEOREM 3. Let Q be a hyperoval of Il,, admitting a strongly regular
secant line. Then the Steiner triple system S is the 2—design of points and
lines of a projective geometry over GF(2). In particular, the order q of II,
is a power of two.

Proof: It sufficies to verify the Veblen-Young axiom: if X, Y and Z are
three non collinear points of S, then if D is on the block XY and E is on
the block Y Z, the block DE meets the block XY in its third point.
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For this purpose, for every X and Y in S, we denote by (XY') the third
point of S, which makes regular the triple {X,Y,(XY)} and, for every
point P of Iy, by WP, XP YP AP the sets WN E(P), XN E(P), YN
E(P), AN E(P), respectively.

Let X,Y,Z be any three distinct points of S such that Z # (XY), i.e.
the triple {X,Y, Z} is not regular. To verify the Veblen—Young axiom, we
must prove that the triple {(XY),(XZ),(Y Z)} is regular.

Now E((XY)) = XUY, since {X,Y,(XY)} is regular. Hence E(X) =
WuUXand E(Y)=WUY. Then

_ E((X2)) = WX2) yX(X2) y Y(X2) y p(X2)

® { E((Y2)) = WY D) uX(¥ D) y (¥ 2) y ¥ D),

Therefore

(*) E(XY))NE((X2Z))NE((Y2)) = (XX XY 2)yy(YXD YD),
(Observe that W, X, Y, A are disjoint).

By way of contradiction, assume that (*) is not empty. Then, by Theorem
1

(ii) | XX2) A X¥2) | 4| YX2) qy(Y2) |= %2
Equalities (i) and E(X)N E(Z) = WZ UXZ imply
E((XZ))N E(X)N E(Z) = (WXD nw?)u (X(X2) 1 X?)

which is the emptyset, since {X, Z,(X Z)} is regular. Thus

(iif) WEDAwW?Z =9, XXOnxZ =9
and
(iv) WX yw? =w, XX2yx?=x,

since
2
| WED) |2y W? |=| XXD) |=| XZ |= % by Theorem 1.
As {Y,Z,(YZ)} is regular, so E((YZ))NE(Y)N E(Z) = . Hence

WD Aaw?yu (YYD nv2) = 9.
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Therefore, YY2) N YZ = § and W(¥2) "WZ = ¢, which implies, together
with (iii) and (iv)

(v) wX2) — wlr2),
Then E((XZ)) N E((Y Z)) equals
wxz) y (x(XZ) n x(YZ)) u (y(XZ) n y(YZ)) U (A(XZ) n A(YZ)) ,

because of (v).
Thus AX2) ALY 2) = @, since

| BXZ)NE(Y D) = &

and

|WED) |=| XKD A X¥D) | 4 | YD) YY) | %
Finally
E(X2))NE((Y 2))NE(Z) = (YXDnY¥ D nYZ)y(AX2nAY2INAZ)

because of (iii).
As
Y¥2) Y2 = AX2NAT2) = ¢

8O

E((XZ))NE(YZ))NE(Z)=90

that is, the triple {(XZ),(Y Z2), Z} is regular. But also {X,Z,(X2)} is
regular. Therefore X = (Y Z), which implies that {X,Y,Z} is regular, a
contradiction. OJ

3. A necessary and sufficient condition for the existence of regular
triples

In this Section we will give a further condition which guarantees the ex-
istence of regular triples and which is fulfilled by any translation hyperoval.

THEOREM 4. Let Q be a hyperoval of a projective plane I1, of order ¢ = 0
(mod 4) and s a secant line of Q. Let {M, N} =QnNs and, if X andY are
two distinct points on s\{M, N}, let W = E(X)NE(Y),A= S(X)NS(Y)
and {Zy,...,2Z,-3} be the set of remaining points on s. Assume that:
(1) every exterior (resp., secant other than s) lineon Zy, k= 1,...,¢-3,
has oy (resp., Bi) points on W;
(2) every line other than s on M or N has q/4 points on W.
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Then there exists a point Z € {Z,,...,Z,_3}, such that the triple {X,Y, Z}
is regular.

Proof: By hypothesis
A= WNE(Z)| = %ak, k=1,...,¢-3.

‘Then equality (1) of Section 2 becomes

q-3
D) Y= %(q —4).
k=1
Furthermore
=9_

since W = (E(Z;) NW) U (S(Z:) NW).
‘We split the proof in several steps.
Step 1. We prove that

) Py W)=

for every P ¢ QUs.

Consider the set of exterior lines on P. There are several cases to treat,
according as the lines PX or PY are exterior or secant.

Assume that the lines PX, PZ,,... yPZg_, are exterior. Then P ¢ W
and the lines PY and PZ;, j = ¢/2,...,q — 3, are secant. Therefore PX
has ¢/2 points on W and, by hypothesis, the line PZ;,i=1,...,(¢/2) -1,
has o; points on W, the line PZ;, j = ¢/2,...,9 — 3, has B; = (¢/2) — a;
points on W and each of the lines PM and PN has ¢/4 points on W.

Since (E(P) N W)U (S(P) NW) = W, we obtain

9 (a/2)-1 q-3 q ¢ ¢
(5) §+ z 0’:‘+Z(§—0j)+§=7-
i=1 i=q/2
Hence &)
¢9/2)-1 2
|E(P)NW| = §+ Y a= %

i=1

The other cases are similarly treated.
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Step 2.

_7
©) =La@-9.

i
LY

k.

The number of pairs (P,Q) € W x (R\ s) is

2 /.2

q q

4 (4 q)'
This number may be obtained in another way, adding the number & of
pairs (P, Q) € W x (A\ 5), such that the line PQ is exterior, to the number

¥ of pairs (R, S) € W x (A s), such that the line RS is secant.
Since

¢ 22
Q:EZai
k=1
and
1 X2 q (g 32,
0= 45 (8- 0) G-m-1) +§ (§-1) - $50

equality (6) follows.

Step 3. Let P be a point of A\ s. We denote by Zp the set of ¢/2 indices
for the points Z;, € {Zi,...,2Z,4-3}, such that PZ;, is an exterior line and
by Zp the complementary set of (g/2) — 3 indices for the points Z;,, such
that the line PZ;, is secant. Then equalities (4) and (6) may be written,
respectively,

2
> =t

ip€lp

(7 2
S+ 3 ab = Lo
ip€Zlp ip€Zp

Now we count the ordered pairs (U,V) € W x W, such that the line UV
is on P. Consider the ¢ + 1 lines on P: two are on X and Y, respectively,
and have no point on W; ¢/2 are exterior lines and each of them has o;,
points on W; thus they give

2 o

ip€lp



pairs of W x W. The other lines on P are secant lines: two of them are
on M and N, respectively, and give 2¢%/16 = ¢2/8 pairs; the other secant

lines give ,
> (5-ow)
ir€Zp

pairs. Thus the total number of pairs is
2
[ ¢ _da+2)
®) > ooht T (f-e) + 50D,
ir€lp ir€Zp

If P varies in A\ s, we obtain the number of collinear triples (P,Q,R) €
(A\ 3) x W x W. This number is

+ 2

©) > D Loy,

T 64
Pe(A\s)

Using the first of equalities (7), an easy calculation shows that
2

(10) > Y ()= T

Pe(A\s)irp€lp Pe(A\s)ip€Ip

Equality (10) means that the number of ordered triples (P,Q, R) € (A\s) x
WxW, such that PQR is a secant line, minus the number of triples collinear
with M or N, equals the number of triples (P,U, V) € (A\s) x W x W, such
that PUV is an exterior line. Since the number of ordered triples (P, S, T)

collinear with M or N is
[ )
G
by equality (10) we obtain

(1) > Y=L (ﬁ— ).

Pe(A\s)ip€Ip
Step 4. We prove that for every P € (A s)
(12) Y. ol > e
ip€Ip M -

Let n; be the number of a;, which are equal to i, i = 2,...,(g/2) — 2.
Then

(¢/2)-2 q (g/2)~2 e (¢/2)-2 ,
- TS 2
Yom=g 3 oim=L, Y im= Yol
=2 =2 =2 tpEXp

85



From the quadratic form

(¢/2)-2 q qg
Z (z—i)%n; = 5::2—2§:|:+ E o}, >0

=2 ip€EIp

inequality (12) follows.
Now, we can finish the proof of the theorem. Equality (11) and inequality
(12) imply

for every P € (R\ 5). Hence

E (% —ar.-,,)2 =0.

ip€Elp

Whence,
ai, = %, for every ip € Ip.

Since P is arbitrary, ap = g/4 for ¢ — 4 indices of {1,...,¢ — 3}. Then,
by Theorem 2, there is a point Z € {Z,...,Z;-3} such that the triple
{X,Y,Z} is regular. O

Remark. Obviously, when {X,Y, Z} is regular, hypothesis (1) and (2)
of Theorem 4 are satisfied, as follows from Theorem 2.

4. Translation hyperovals

DEFINITION. A hyperoval 2 of a projective plane 11, is said to be a trans-
lation hyperoval, with respect to a line s, if for any two points A, B € Q2 \s
there exists an elation, that is a translation of the affine plane Iy \ s, which
maps A to B and stabilizes Q.

It is easily seen that all these elations form a group G, that s is a secant
line, which is the common axis of all the elations of G and that G is sharply
transitive on  \ (s N2). Then G is an elementary Abelian 2-group.

If X and Y are two distinct points of s\ {M, N}, where {M,N} =sNQ,
let W= E(X)NE(Y) and Z, k= 1,2,...,¢ — 3, the remaining points of
8.

THEOREM 5. Let Q be a translation hyperoval of I, with respect to the
line s and with translation group G. Then

(1) G stabilizes W;
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(2) every exterior (resp., secant other than s) line on Z; meets W in a
constant number of points, oy (resp., (¢/2) — ag);

(3) every line other than s on M or N meets W in ¢/4 points;

(4) G has g/4 orbits on W, each consisting of q points and each orbit,
together with {M, N}, is a translation hyperoval with respect to the
line s.

Proof:t W = E(X)N E(Y), X and Y are fixed by G and G transforms
exterior lines in exterior lines. Thus G stabilizes W. Furthermore, G
is transitive on the exterior (resp., secant but s) lines through Z;, &k =
1,...,¢— 3, and on the lines other than s on M or N. Since |W| = ¢%/4
and W = (WN E(Z;)) U(WNS(Z¢)), forevery k=1,...,¢4—3, (2) and
(3) follow.

It is easy to show that G has ¢/4 orbits on W and that each orbit has ¢
points. Let £ be any line other than s on Z;. If £ is exterior (resp., secant),
then £ is an exterior (resp., secant) line through Z;. Thus if P € £NW,
then P9 € &2 NW, for every g € G. Since the number of exterior (resp.,
secant but s) lines on Zj is ¢/2, every line through Z; has 0 or 2 points on
each orbit of G on W. To end the proof of (4), it remains to observe that
every line but s on M or N meets each G—orbit on W in only one point,
since G is sharply transitive on the lines other than s through M or N. O

By Theorems 4 and 5 we have the following

COROLLARY. Let Q be a translation hyperoval with respect to the line s.
Then for every pair of distinct points X andY in s\ {M, N}, there exists a
point Z such that the triple {X,Y,Z} is regular. In particular, the secant
line s is strongly regular.

Some known examples of translation hyperoval are the following.

A first class of tanslation hyperovals is that of complete conics in the
Desarguesian projective plane PG(2,q), where ¢ = 2*. Every complete
conic, i.e. a conic plus its nucleus, is a translation hyperoval with respect
to every tangent line of the conic. Therefore a complete conic is an example
of hyperoval for which there are ¢ + 1 secant lines of regular triples (they
are the tangent lines to the conic). This class of translation hyperovals has
been studied in [8], using direct constructive methods.

In PG(2,q9), ¢ = 2", all the translation hyperovals has been determined
([3], [10], [12]). They are, with respect to a suitable reference frame, the
sets of points {(1,t,1*"),t € GF(q)} U{(0,1,0),(0,0,1)}, where (g,h) =1,
l1<g<h-1and h>3.

In non-Desarguesian projective planes of even order, there are many new
translation hyperovals (see [1], [4], [5], [6]). Therefore it seems to be in-
teresting to investigate how one can distinguish between the associated

87



projective geometry over GF(2), when there are two different translation
hyperovals with respect to the same line s. Some partial results are in [7],
where it is proved the following

THEOREM. Let Q and Q be two hyperovals of 1, with the same strongly

regular secant line s. Then Q and | Q have the same regular triples if and
only if S} = 88, for every P,Q € Q.

In the statement, SB is the set {X € s | the line PX is Q—secant}.

In the case of translation hyperovals of PG(2,¢), this theorem implies
that if Q and Q are two translation hyperovals with respect to the same
line s, then there exists an elation g of axis s and center on 2 N s such
that Q’ Q. In particular then Q and § are equivalent under the action
of the automorphism group of PG(2, ¢). As a consequence, for example, a
. complete conic and a translation hyperoval, which is not a complete conic,
cannot have the same regular triples.

Finally, equivalent translation hyperovals with respect to the same line
may have different regular triples, as example 4.1 in [9] shows.
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