A Counter Example to a Conjecture of Gallai

Bing Zhou
Department of Mathematics
Trent University
Peterborough, Ontario
Canada K9J 7B8

ABSTRACT. Let G be a graph and t(G) be the number of triangles in G. Define \mathcal{G}_n to be the set of all graphs on n vertices that do not contain a wheel and $t_n = \max\{t(G) : G \in \mathcal{G}_n\}$. T. Gallai conjectured that $t_n \leq \lfloor \frac{n^2}{8} \rfloor$ In this note we describe a graph on n vertices that contains no wheel and has at least $\frac{n^2+n}{8}-3$ triangles.

In this note, we use V(G) and E(G) to denote the vertex set and edge set of a graph G. A graph W is a wheel if $V(W) = V(C) \cup \{v\}$ where C is a cycle and v is adjacent to every vertex of C. Let \mathcal{G}_n be the set of all graphs on n vertices that do not contain a wheel. We define t(G) to be the number of triangles, i.e. K_3 's, in G and

$$t_n = \max\{t(G) \colon G \in \mathcal{G}_n\}.$$

In [1], P. Erdös posed a conjecture of T. Gallai: Conjecture: $t_n \leq \frac{n^2}{8}$.

The main aim of this note is to describe a class of graphs that shows

$$t_n \geq \frac{n^2+n}{8}-3.$$

The smallest counter example to Gallai's conjecture is the graph G_7 in Figure 1, where $V(G_7) = \{0, 1, ..., 6\}$ and $E(G_7) = \{(i, i + k): 0 \le i \le 6, k = 1, 2\}$, and the addition is taken modulo 7. It can be shown that G_7 is the only graph in G_7 that contains 7 triangles.

Figure 1

For larger counter examples, we construct graph G_n that contains many copies of G_7 . First we assume that n is odd, then for some integer r and $-2 \le k \le 1$, n = 8r + 2k + 1, let

$$V(G) = \{a, b_i, c_i, d_i, e_i, f_j, g_j : 1 \le i \le r, 1 \le j \le 2r + k\} \text{ and }$$

$$E(G) = \{(a, b_i), (a, c_i), (a, d_i), (a, e_i), (b_i, c_i), (c_i, d_i), (d_i, e_i), (f_j, g_j), (b_i, f_j), (b_i, g_j), (c_i, f_j), (d_i, g_j), (e_i, f_j), (e_i, g_j), : 1 \le i \le r, 1 \le j \le 2r + k\}.$$

Similarly, if n is even, then n = 8r + 2k + 2 for some integer r and -2 < k < 1 and we define

$$V(G) = \{a, b_i, c_i, d_i, e_i, f_j, g_j, h : 1 \le i \le r, 1 \le j \le 2r + k\} \text{ and }$$

$$E(G) = \{(a, b_j), (a, c_j), (a, d_j), (a, e_j), (b_j, c_j), (c_j, d_j), (d_i, e_i), (f_j, g_j), (b_i, f_j), (b_i, g_j), (c_i, f_j), (d_i, g_j), (e_i, f_j), (e_i, g_j), (h, f_j), (h, g_i) : 1 \le i \le r, 1 \le j \le 2r + k\}.$$

 G_8 and G_9 are shown in Figure 2.

To show that G_n has the desired properties, we first state a simple observation as a lemma:

Lemma 1. A graph G contains no wheel if and only if for every vertex v in G, there is no cycle in N(v), where N(v) is the subgraph of G induced by the neighbors of v.

Figure 2

For a graph G and a vertex v of G, we define t(v) to be the number of triangles in G that contain v. It is easy to see that t(v) = |E(N(v))| and $t(G) = \frac{1}{3} \sum_{v \in G} t(v)$.

Theorem 2. G_n contains no wheel and for $-3 \le p \le 4$, and $r \ge 1$, if n = 8r + p, then $t(G_n) = \frac{n^2 + n + c_p}{8}$, where $c_{-3} = c_2 = -6$, $c_{-2} = -18$, $c_{-1} = 0$, $c_0 = -8$, $c_1 = -2$, $c_3 = c_4 = -12$.

Proof: For each vertex of G_n , we will show that N(v) does not contain a cycle and count the number of edges in N(v). By symmetry, we only need to do this for $v \in \{a, b_1, d_1, f_1\}$, if n is odd; and for $v \in \{a, b_1, d_1, f_1, h\}$ if n is even.

Suppose n is odd and n=8r+2k+1, $-2 \le k \le 1$. We list the information describing the neighborhoods of specified vertices in the following table, where i is any integer such that $1 \le i \le r$ and j is any integer such that $1 \le j \le 2r + k$.

v	V(N(v))	E(N(v))	t(v)
a	b_i, c_i, d_i, e_i	$(b_i,c_i),(c_i,d_i),(d_i,e_i)$	3r
b_1	a, c_1, f_j, g_j	$(a, c_1), (c_1, f_j), (f_j, g_j)$	4r + 2k + 1
d_1	a, c_1, e_1, g_j	$(a, C_1), (a, e_1), (e_1, g_j)$	2r + k + 2
f_1	g_1, b_i, c_i, e_i	$(b_i, g_1), (b_i, c_i), (e_i, g_1)$	3r

It is easy to see that N(v) does not contain any cycles for every $v \in \{a, b_1, d_1, f_1\}$. Therefore, G_n does not contain a wheel according to Lemma

1 and

$$t(G_n) = \frac{1}{3}[3r + 2r(4r + 2k + 1) + 2r(2r + k + 2) + 2(2r + k)3r]$$

= $\frac{1}{3}[24r^2 + 12rk + 9r] = 8r^2 + 4rk + 3r = \frac{1}{8}(n^2 + n - 4k^2 - 6k - 2).$

This gives the values of $t(G_n)$ when n is odd.

The case when n is even can be dealt with in exactly the same way and the details are left to the reader.

Theorem 2 gives $t_n \ge \frac{n^2+n}{8} - 3$ for all values of n. We believe that $t_n = \frac{n^2}{8} + \mathcal{O}(n)$ but at this time, only the trivial upper bound $t_n \le \frac{n^2-n}{6}$ is known.

Theorem 3. If G is a graph on n vertices and contains no wheel, then $t(G) \leq \frac{n^2-n}{6}$.

Proof: Let the vertex set of G be $\{v_1, v_2, \ldots, v_n\}$. Since G contains no wheel, $N(v_i)$ is a forest for all i.

Thus we have

$$3t(G) = \sum_{i=1}^{n}$$
 number of triangles in G that contain v_i

$$\leq \sum_{i=1}^{n} [d(v_i) - 1]$$

$$= 2|E(G)| - n.$$

For every graph G in \mathcal{G}_n from [1] it is known that $|E(G)| \leq \frac{n^2+n}{4}$, giving

$$t(G) \leq \frac{1}{3}\left(\frac{n^2+n}{2}-n\right) = \frac{n^2-n}{6}.$$

References

[1] P. Erdös, Problems and results in combinatorial analysis and graph theory, *Discrete Mathematics* **72**(1988), 81-92.