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ABSTRACT. In this paper we study competition graphs of
digraphs of restricted degree. We introduce the notion of restricted
competition numbers of graphs. We complete the characterization of
competition graphs of indegree at most 2 and their restricted com-
petition numbers. We characterize interval (2, 3)-graphs and give
a recognition algorithm for interval (2,3)-digraphs. We character-
ize competition graphs and interval competition graphs of digraphs
of outdegree at most 2. The relationship between restricted com-
petition numbers and ordinary competition numbers are studied for
several classes of graphs.

1. INTRODUCTION

Graphs and digraphs in this paper are always finite. A graph G = (V, E)
has vertex set V and edge set E. A digraph D = (V, A) has vertex set V
and arc set A. The vertex set, edge set and arc set of graphs and digraphs
are also denoted V(G), E(G), V(D), A(D), respectively. An edge of two
ends u, v is denoted (u,v). An arc from u to v is also denoted (u,v). Using
terminology in food webs, we say that u preys on v and v is a prey of u.
Multigraphs are allowed to have parallel edges and loops. For definitions
of various graph theory terminology, book [35] is suggested.

Given an acyclic digraph D = (V, A), the competition graph of D is a
graph with vertex set V and there is an edge between u, v € V if there are
arcs from u and v to the same vertex in D. We will denote the competition
graph of digraph D by C(D). The resource graph of D is the competition
graph of the digraph obtained from D by reversing directions of all arcs of
D. The resource graph of digraph D will be denoted by R(D). The com-
pelition number of a graph is the minimum number of additional isolated
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vertices needed for a graph to be a competition graph of an acyclic digraph.
The competition number of graph is denoted by k(G).

This paper is organized as follows: In the rest of this section, we give
a brief review of problems studied and introduce restricted competition
graphs and restricted competition numbers. In the second section, we study
competition graphs of acyclic digraphs of indegree at most 2. In the third
section, we study competition graphs of acyclic digraphs of outdegree at
most 2, which are resource graphs of digraphs studied in Section 2.

1.1. Background. Competition graphs were introduced in the study
of the dimension of ecological niche spaces of food webs by Cohen (8]. Ap-
plications of competition graphs and their generalizations have also been
studied in other fields such as channel assignment, communication over
noisy channels, radio and television transmission, modeling of complex sys-
tems and network problems [16, 17, 18, 26, 27, 30, 31, 32]. In this paper, we
focus on problems related to food webs. In his study of food webs, Cohen '
asked, given a knowledge of competition, what is the minimum dimension
of a niche space such that the competition relation corresponds to niche
overlap in that space. The bozicity of a graph is the minimum dimension of
an Euclidean space such that the graph is the intersection graph of a col-
lection of "boxes” in the space. In the terminology of "boxicity”, defined
by Roberts [34], Cohen’s question is equivalent to the following: What is
the boxicity of competition graphs?

Surprisingly, Cohen and his colleagues observed [8, 9, 10] that almost
all competition graphs arising from actual ecosystems are of dimension 1,
Le., they are interval graphs. From a statistical point of view, Cohen [10)
studied this problem by considering a food web as a random digraph. By
making statistical models of food webs, he found that the probability that
the corresponding competition graph of a food web is an interval graph is
high. Sugihara [41] gave some ecological explanation on the high frequency
of food webs having interval competition graphs and statistically showed
that it could be accounted for by requiring the competition graph to be a
triangulated graph. Further developments on the random digraph model
can be found in Cohen and Newman [13], Cohen, Newman and Briand (14],
Cohen, Briand, and Newman [12], and Newman and Cohen [28].

The observation that most food webs from the real world have interval
competition graphs led Roberts [36] to ask whether it is an artifact that



all competition graphs were of boxicity 1. On the contrary, Roberts [36]
proved that by adding a sufficient number of additional isolated vertices,
any graph can be made into a competition graph of some acyclic digraph. So
the boxicity of competition graphs can be arbitrarily high. Then, interested
also from the biological point of view, Roberts [35, 36] raised the problem
of characterizing food webs that have interval competition graphs. Roberts
[37) says that this problem remains the fundamental open problem in the
subject.

It was observed by Steif [40] that there is no forbidden subgraph charac-
terization of acyclic digraphs whose competition graphs are interval graphs.
One approach proposed by Cohen [10] is to study the so called sink induced
subgraphs of acyclic digraphs. Cohen proved that an acyclic digraph has
an interval competition graph if and only if every sink induced subgraph
does. Though Steif [40] proved that there exists a forbidden sink induced
subgraph list for interval digraphs, no one has been able to present such a
list.

On the other hand, Lundgren and Maybee [25] characterized digraphs
whose competition graphs are interval graphs by means of edge clique covers
of the competition graph. (Some further results related to that can be
found in [26, 27, 32]). Though their result is interesting, it is mainly a
transformation of the characterization of interval graphs given by Fulkerson
and Gross [15] and it does not provide much information about the structure
of the digraph. Therefore, the characterization of acyclic digraphs having
interval competition graphs is still one of the most important open problems
in the theory of competition graphs.

Roberts [36] obtained competition numbers for several classes of graphs,
including triangulated graph and triangle-free graphs. Opsut [29] showed
that computing the competition number is NP-complete. Several vanatxons
of competition number have been studied in literature.

Recently, when considering this problem on some more restricted classes
of digraphs, progress was made by Hefner, Jones, Kim, Lundgren and
Roberts in [19]. Empirical results of Cohen, Briand and Newman [6, 11,
13, 28, 12] suggest that digraphs built up from real food webs usually have
very small degrees. The average is about two. Hefner, et al. studied com-
petition graphs of acyclic digraphs with restricted indegree and outdegree.
Part of our study here is a continuing effort in this direction. We focus on
the following problems:



L)

Introducing restricted competition numbers;

o Characterizing competition graphs of acyclic digraphs of restricted
degrees;

Studying the relation between ordinary competition numbers and re-
stricted competition numbers;

Characterizing acyclic digraphs of restricted degrees which have in-
terval competition graphs and resource graphs;

Characterizing interval graphs which are competition graphs of degree
restricted acyclic digraphs.

Remark: We focus our attention on acyclic digraphs because of the bi-
ological fact that most digraphs obtained from real world food webs are
acyclic.

1.2. Restricted Competition Graph and Restricted Competition
Number. We introduce restricted competition graphs and competition
numbers here. Given an acyclic digraph D, it is an

(1). (i, j)-digraph: If every vertex of D has indegree < i and outdegree
<4

(2). (i,j)-digraph: If every vertex of D has indegree < i and outdegree
either 0 or j;

(8). (i,*)-digraph: If every vertex of D has indegree at most #;

(4). (3,7)-digraph: 1If every vertex of D has indegree either 0 or i and
outdegree < j;

(5).  (3,7)-digraph: If every vertex of D has indegree either 0 or i and
outdegree either 0 or j;

(6). (3, *)-digraph: If every vertex of D has indegree either 0 or i;
(7). (*,j)-digraph: If every vertex of D has outdegree at most j;
(8). (*,7)-digraph: If every vertex of D has outdegree either 0 or j.



Then a graph G is a (u,v)-graph or (u, v)-competition graph if there is
some acyclic (u,v)-digraph D such that C(D) = G, where u,v take the
form of i,7, * and j, 7, *, respectively.

(1), (2), (4) and (5) were introduced by-Hefner, et al. in [19].

A graph G is an interval (u, v)-graph if it is an interval graph and there
is an acyclic (u, v)-digraph D such that C(D) = G. An acyclic digraph is
an interval digraph if its competition graph is an interval graph. An acyclic
digraph is an interval (u,v)-digraph if it is both a (u,v)-digraph and an
interval digraph.

The (u, v)-competition number of a graph G is the minimum number k&
of isolated vertices needed to add to G such that GU I, is a competition
graph of some acyclic (u, v)-digraph, where u, v take the form of {,1, * and
3,7, *, respectively. When there is no such number, the (u,v)-competition
number is co. We denote the (u,v)-competition number of a graph G by
ky,o(G).

In general, we call (u,v)-competition numbers restricted compelition
numbers. It is clear that we can view the ordinary competition number
as a (*,*)-competition number. Given graph G = (V, E), an edge cligue
covering of G is a family of cliques such that every edge of G is in at
least one of the clique in the family. Dutton and Brigham [7] characterized
competition graphs by means of edge clique coverings.

Theorem 1.1 [Dutton and Brigham [7]]. Suppose that G = (V, E) and
V| = n. Then G is the competition graph of an acyclic digraph if and
only if G has an edge clique covering C\, ...,Cy, and a labeling vy, ..., v, of
vertices such that if v; € Cy, then i > k.

(u, v)-graphs can be similarly characterized by means of edge clique
coverings of the graph. Let G = (V, E) be a graph of n vertices. Suppose
C1, Cy, ..., Cy is an edge clique covering of G, and vy, vy, ..., v, is an ordering
of V. We shall be interested in the following properties:

(a) if v; € Ck, theni > k;



(b) |Ck|<Lifork=1,..,n;

(c) |Ckl=ior|Ckl=0fork=1,..,n;

(d) Vv; € V(G), v; is in at most j of the Cy ’s;

(e) Vv; € V(G), v; is in either none or j of the Ci’s.

Theorem 1.2. Suppose G is a graph of n vertices and (a), (b), (c), (d),
(e) are given as above. Then ~

(1) G is an (i,j)-graph if and only if there is an edge clique covering
Ci, ...,C, and a labeling vy, ..., v, of V(G) such that (a), (b) and (d)
hold;

(2) G is an (i,j)-graph if and only if there is an edge clique covering
Ci,...,Cn and a labeling vy, ..., va of V(G) such that (a), (c) and (d)
hold;

(3) G is an (i, ])-graph if and only if there is an edge clique covering
Ci, ...,Cyn and a labeling v, ..., v, of V(G) such that (a), (b) and (e)
hold;

(4) G is an (i,7)-graph if and only if there is an edge clique covering
C1,...,Cn and a labeling vy, ..., v, of V(G) such that (a),(c) and (e)
hold.

(5) G is an (i,*)-graph if and only if there is an edge clique covering
Ch, ..., Cn and a labeling vy, ..., v, of V(G) such that (a) and (b) hold;

(6) G is an (i,*)-graph if and only if there is an edge clique covering
C1,...,Cn and a labeling vy, ..., v, of V(G) such that (a) and (c) hold;

(7) G is a (*,j)-graph if and only if there is an edge clique covering
C1, ..., Cn and a labeling vy, ..., v, of V(G) such that (a) and (d) hold;

(8) G is a (*,7)-graph if and only if there is an edge clique covering
Ci, ..., Cn and a labeling vy, ..., v, of V(G) such that (a) and (e) hold;

Proof. We give a detailed proof for (1). The others can be proved
similarly.

Suppose G is an (i, j)-graph of n vertices and let D be an acyclic (7, j)-
digraph D such that C(D) = G. Since D is acyclic, we can always label



vertices of D as vy, vy, ..., v such that (vz,vy) € A(D) = z > y. Consider
the cliques C;, i = 1,...,n, given by Ci = {v; : (vz,vx) € A(D)}. Clearly
this is an edge clique covering. Then (a) holds. Since the indegree of any
" vertex of D is at most i, |C| < i for any k showing (b). Also, since the
outdegree of any vertex of D is at most j, a vertex can be in at most j of
such Ct’s and (d) follows.

On the other hand, suppose G has an edge clique covering C = {C;}
satisfying (a), (b) and (d). Construct digraph D such that V(D) = V(G)
and A(D) consists of all arcs (vj,v;) such that v; € C;,i=1,...,n—1. By
(a),Cn = 0. Therefore C(D) = G. If (vj,v;) € A(D), then j > i, i.e., Dis
acyclic. By (b) and (d), D has indegree at most i, outdegree at most j. So
(1) is proved. D

2. COMPETITION GRAPHS OF AcycLic DIGRAPHS WITH Low
INDEGREE

Food webs from the real world usually have very small indegrees and out-
degrees. Especially, average indegrees or outdegrees are about 2. Here, we
are interested on the restriction of indegrees only. An example of such a
food web of small indegree is in the Figure 1.

2.1. (2,v) and (2,v)-Competition Graphs. A digraph D = (V, A) is
irredundant if it has no subgraph P(2,2) in Figure 2. Competition graphs
of acyclic digraphs of restricted degree were first studied by Hefner, et al.
(19]. The following theorem summarizes their main results on digraphs of
small degree.

Theorem 2.1 [Hefner, et al [19]]. Let G be a graph and I be a collection
of sufficiently many isolatex vertices. Then

(1) GUI is a (2,2)-graph if and only if each connected component of G
is either an isolated vertex, or a path, or a cycle.

(2) GU1 is a (2,2)-graph if and only if each connected component of G
is either an isolated vertex, or an edge, or a cycle.



(3) GUI is an interval (2,2)-graph if and only if each component of G is
either an isolated vertex, or a path, or a triangle.

(4) GUI is an interval (2,2)-graph if and only if each component of G is
either an isolated vertex, or an edge, or a triangle.

(5) A (2,2)-digraph D has an interval competition graph if and only if
each (2, 2)-irredundant subgraph of D of at least one arc induces one
of the digraphs in Figure 3 as a subgraph.

To complete the remaining cases of indegree at most 2, we characterize
(2, v)-graphs and (2, v)-graphs for v in the form of j,7 and . Intervality
will be discussed in the next subsection for the (2,3) case. Most results of
Theorem 2.1 follow as corollaries of our results here.

Denote the maximum degree of the vertices of G by A(G). A stable set
of size k is denoted by I.

Lemma 2.2. Suppose that G = (V,E) is a (2,j)-graph. Then A(G) <j .

Proof. Suppose that D = (V, A) is an acyclic (2, j)-digraph such that
C(D) = G. Since the indegree of every vertex of D is at most 2, for any
vertex v of G, its different neighbors in G, if there are any, correspond to
different outgoing arcs in D started at v. So the outdegree of v in D is
at least the number of neighbors of v in G, i.e., j > d},(v) > dg(v). The
lemma follows. O

Lemma 2.3. If A(G) < j, then G with sufficiently many additional iso-
lated vertices is a (2, j) -graph.

Proof. Construct an acyclic digraph D = (V(D), A(D)) as follows. For
each edge e € E(G), add a new vertex v,. Let the vertexset of D be V(D) =

V(G) U {vc|e € E} and let the arc set of D be A(D) = {(v, ve), (u, ve)le =
(v,u) € E}. Then D is acyclic and C(D) = G U Iy where k = |E(G)|. The
indegree of every vertex of D is either 2 or 0. If v is a vertex of nonzero
outdegree in D, then d}(v) = dg(v). Therefore D is a (2, j)-digraph. O
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Lemma 2.4. G with sufficiently many additional isolated vertices is a
(2,7)-graph if and only if A(G) < j.

Proof. If A(G) < j, then there is a (2, j)-digraph D such that C(D) = GU
I}, for some integer k by Lemma 2.3 since a (2, j)-digraph is a (2, j)-digraph.
For every vertex v of outdegree d+(v) in D such that 0 < d*(v) < j, add
j — d*(v) new vertices to D and add arcs from v to those new vertices.
Then we obtain a (2,7)-digraph. If D is acyclic, then the new digraph is
also acyclic and its competition graph is G together with some isolated
vertices. On the other hand, if G is a (2, 7)-graph, it is also a (2, j)-graph,
it follows from Lemma 2.2 that A(G)<j. O

Theorem 2.5. Every graph with sufficiently many additional isolated ver-
tices is a (2, *) -graph and also a (2, *)-graph.

Proof. This follows from Lemma 2.3 and that (2, j)-graphs are (2, j)-
graphs. O

Theorem 2.6. Given a graph G, the following are equivalent:

(1) G with sufficiently many additional isolated vertices is a (2, j)-graph;
(2) G with sufficiently many additional isolated vertices is a (2, j)-graph;
(3) G with sufficiently many additional isolated vertices is a (2, j)-graph;
(4) A(G) <. '

Proof. This follows from Lemmas 2.2, 2.3 , 2.4 and the observation that
a (2, j)-graph is also a (2, j) -graph. D

If D is a (2, j)-digraph, then D is a (i, j)-digraph for any i > 2. There-
fore, the following corollary follows from Theorem 2.6 (1).

Corollary 2.7. For any graph G, k; .(G) < co for all i > 2.
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The only remaining case is (2, j)-graphs. Let N be the nonnegative
integers. Let b, be a positive integer assigned to a vertex v € V of a graph
G = (V,E). A function B : E — N is a b-matching if

0< ) B(e)<by, YoeV.

elvEe

It is a perfect b-maiching if

> Ble)=by, YveV.

elvee

If B(e) # 0 for all e € E, we say it is a nowhere-zero b-matching. If b, = j
or 0 for all v € V, we call it as j-matching.

Theorem 2.8. A graph G = (V, E) with sufficiently many additional iso-
lated vertices is a (2, j)-graph if and only if it has a nowhere-zero perfect

j-matching.

Proof. First suppose that there is a (2, j)-digraph D such that C(D) =
G U I;. For any edge e = (u,v) € E, let B(e) equal the number of pairs of
arcs from u and v preying on the same vertex in D, then Levee Ble) =
since D is a (2, j)-digraph, i.e., G has a nowhere-zero perfect j -matching.
Next, if G has a nowhere-zero perfect j-matching B(e), then for each edge
e = (u,v), add vertices w,,1 < i < B(e), and two arcs from u, v to w, .
Since B (e) > 0 for any e € E, if the degree of vertex v is not 0, in D there
are exactly j arcs going out from v. Then we have a (2, 7)-digraph such that
its competition graph is GU I where k =), B(e). O

A graph G is called regularizable if a regular multigraph can be obtained
from G by adding edges parallel to some edges of G. The regularizable
tndez of G is the minimum degree of all possible regular realization of G.
Regularizable graphs were introduced and studied by Berge [1, 2, 3, 4].
Regularizable graphs were also a special notion of magic graphs studied by
others. From Theorem 2.8, it is easy to see that, in fact, a graph G is
a (2, 7)-graph if and only if each nontrivial connected component of G is
regularizable with regularizable index at most j.

Given a graph G = (V, E), a 2-matching is an assignment of nonnegative
integers to edges of G f: E — {0,1,2} such that Lejvee f(€) = 2 for all
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v € V. From observation that a (2, j)-graph is j regularizable, following is
other characterization of (2, j)-graphs borrowed over from characterization
of regularizable graphs of Berge [1].

Theorem 2.9. A graph G is a (2, j)-graph if and only if

(i) every edge of G is in some 2-matching of G,

(ii) there are j 2-matchings covering all edges of G.

(1) of Theorem 2.1 follows immediately from Theorem 2.6. (2) of The-
orem 2.1 can be easily derived from Theorem 2.8. Then (3) and (4) of
Theorem 2.1 follows from (1), (2) and that intervals graphs are triangu-
lated.

2.2. Interval (2,3)-Graphs. Hefner, et al. [19] made progress on char-
acterizing interval digraphs. They characterized interval (2, 2)-digraphs and
gave an algorithm based on their characterization to recognize if a (2,2)-
digraph has an interval competition graph. We make further progress on
this problem by characterizing (2, 3)-interval digraphs and giving a recog-
nition algorithm.

Though Hefner, et al. [19] proved that there is a forbidden subgraph
characterization of interval (2, 2)-digraphs, there is no forbidden subgraph
characterization of interval (2, j)-digraphs for general j, even for j = 3.
An example is illustrated in Figure 4. In the digraph D, D — e induces a
subgraph whose competition graph has an induced cycle of length 4. But
the competition graph of D is an interval graph.

Now we characterize interval (2, 3)-graphs and interval (2, 3)-digraphs.
A maximal subgraph of a graph without cut vertices and having at least
two vertices is called a block. We use K,, — e to denote the graph obtained
from K, by deleting one edge.

Lemma 2.10. If A(G) < 3 and G is triangulated, then each block of G is
eil{her a Ky orals oraKy—e, oralks.
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Proof. We may suppose that G is 2-connected and has at least two
vertices. It is easy to check that if G has at most 4 vertices, then G is
either a K,, or a K3, or a K4 — e, or a K4. Suppose that G has more
than 4 vertices. There must be vertices u,v nonadjacent to each other.
By 2-connectivity, there are two vertex disjoint paths Py, P, from u to v.
Without loss of generality, we may assume that Py, P, are induced. Since
u, v are nonadjacent, A(G) < 3 and G is triangulated, P;, P; form a cycle
of length exactly four containing u,v and another two vertices z,y such
that (z,y) € E but (z,y) is not on neither of Py, Py, i.e., u,v,z,y induces
a K4 —e. Since A(G) < 3, z,y have no other neighbor in G. Let w be any
other vertex of G. By 2-connectivity there must be a path P{ from w to
u and a path P} from w to v. Now by A(G) < 3, G must has an induced
cycle of length at least four containing u, v, z, w, contrary to the fact that
G is triangulated. So G cannot have more that four vertices. O

Double star and crab are graphs shown in Figure 5. In a graph G, three
vertices a, b, c form an asteroidal triple if there are simple paths Py, Py, P5
such that P, is from a to b, Py is from b to ¢, P3 is from ¢ to a and c is not
adjacent to any vertex on Pj, a is not adjacent to any vertex on P, and b
is not adjacent to any vertex on Ps.

Theorem 2.11 [Lekkerkerker and Boland [24]]. A graph G is an interval
graph if and only if it is triangulated and has no asteroidal triples.

Lemma 2.12. Suppose that G plus sufficiently many additional isolated
vertices is a triangulated (2, 3)-graph. If G has a subgraph (not necessarily
induced) which is a double star, then G has either an induced double star
or an induced crab.

Proof. Suppose that S is a double star of G but it is not induced. Let
the vertices of S be V(S) = {z,u;,us, us, v1,v2,v3} such that ds(z) =
3,ds(u;) =2, i=1,2,3 and ds(v;) =1, i = 1,2,3, and (u;, v;) are edges
of S,i=1,2,3. Since GU I} is a (2, 3)-graph for some k, A(G) < 3. There
must be an edge between vertices of S other than those edges in the double
star. Since G is triangulated, there must be an edge between two u;, say
uy, u2. Now we have a crab as a subgraph. If this crab is not induced, G
has a 4-cycle without a chord, which is impossible. O

14



Theorem 2.13. A graph G with sufficiently many additional isolated ver-
tices is an interval (2, 3)-graph if and only if A(G) < 3, G is triangulated
and has no induced double star or crab.

Proof. Since double stars and crabs both have asteroidal triples, the
necessity follows from Lemma 2.2 and Theorem 2.11.

If A(G) < 2, since G is triangulated, each component of G is either an
isolated vertex, a path or a triangle. G is clearly an interval graph. After
adding isolated vertices to G, we still have an interval graph. Hence G
together with sufficiently many isolated vertices is an interval (2, 3)-graph
by Theorem 2.6. .

Suppose that A(G) = 3 and G is not an interval graph. By Theorem
2.11, G has an asteroidal triple with vertices a, b, c, simple paths Py, Ps,
Ps. If Py, P;, P3 only meet at vertices a,b,c, then G would have a cycle
of at least 6 vertices, contrary to Lemma 2.10. Without loss of generality,
suppose that P;, P, meet at some vertices other than b. Starting travel
from vertex b along P, let the last common vertex of P;, P, be w. Let the
next vertex on P; be u and let the next vertex on P2 be v. See Figure 6.
Let the vertex on P; before w be z. Then {z,u,v} N {a,b,c} = @ since
{a,b,c} is an asteroidal triple. Now G has a subgraph which is a double
star. By Lemma 2.12, G has either an induced double star or an induced
crab, contradicting our assumption. So there is no asteroidal triple in G.
By Theorem 2.11, G is an interval graph.

Again, since adding isolated vertices to an interval graph produces an
interval graph, by Theorem 2.6, G with sufficiently many additional isolated
vertices is an interval (2,3)-graph. O

2.3. Interval (2,3)-digraphs. In this section, we characterize (2,3)-
interval digraphs. We call a digraph nontrivia! if it has at least one arc.

Lemma 2.14. For a (2,3)-digraph D, C(D) has a cycle (not necessarily
induced) if and only if D has a nontrivial irredundant (2, 2)-subgraph.
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Proof. If D has a nontrivial irredundant (2,2)-subgraph D*, then by
Theorem 2.6, A(C(D*)) < 2. Since D* is irredundant, there is no vertex of
degree 1 in C(D*). Each component of C(D*) is either an isolated vertex
or a cycle. Since D* has at least one arc, there is a component which is
not an isolated vertex. It follows that C(D) has a cycle since C(D*) is a
subgraph of C(D).

On the other hand, suppose C(D) has a cycle with vertices zy, ...., 2
such that (2;, z;4+1) € E(C(D)). (In this paragraph, additions of subscripts
are always modulo k.) Then for each edge (z;,zi4+1), in the digraph D,
there is a v; such that (z;, v;), (zi+1,v) € A. Since the indegree of D is
at most 2, each v; is distinct. Hence arcs (z;,v:), (zig1,%:), ¢ = 1,...,k
together with vertices zy, ..., zx, vy, ..., vg give a (2,2)-subgraph of at least
one arc. The irredundancy follows from k£ >3. O

Given digraph D = (V, A), for any subset S C VU A, denote by D— S
the digraph obtained from D by deleting S. When [S| = 1, we simplify
D—-SasD—-vforveVorD-aforac A

Lemma 2.15. Suppose D = (V, A) is an acyclic (2,3)-digraph such that
C(D) has a triangle but C(D — v) has no triangle for any v € V. Then D
is one of the digraphs in Figure 7. Conversely, if D is a digraph in Figure
7, then C(D) has a triangle.

Proof. Let {z1,z2,z3} be a triangle of C(D). Let D' be the subgraph
of D consisting of z,,z2, 23 and common prey of each of the pairs of z;
and 29,z and z3, 23 and 23, as well as arcs from ;’s to these prey. These
common prey are different because D is a (2, 3)-digraph. Then C(D’) has
a triangle. So V(D) = V(D’) by the minimality. Now D’ contains either
the vertices and arcs in Dy, or the vertices and arcs in Dg. Since D is an
acyclic (2, 3)-digraph, it is easy to check that D; through D;o are the only
possibilities under the assumption that D is acyclic. The last part of the
lemma is obvious. 0O ‘

Given an irredundant (2,2)-subgraph D* = (V*, A*) of a digraph D =
(V, A), two vertices u,v € V* are a chord pair of D* if there is a w such
that (u, w), (v, w) € A— A* but u,v have no common prey in D*. Let v be a
vertex of D. The competitors S, of v are vertices which have common prey
with v, i.e., S, = {z|(z,w), (v, w) € A(D) for some w}. The out-competitor
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family of v is the collection of {Sy — {v}| u is a competitor of v}.

Given a family of subsets S = {5;} of aset S, asubset R C S is a system
of distinct representativesof S if [RNS;| =1 for all i and RN S; # RN S;
for all i # j. A digraph D = V, A) is minimal (2,2)-digraphif D — S is not
a (2,2)-digraph for any S C V U A.

Theorem 2.16. An acyclic (2,3)-digraph D = (V, A) is interval if and
only if the following hold:

(1) Every nontrivial minimal irredundant (2,2)-subgraph either has a
chord pair or it has at most 6 vertices inducing a subgraph which
has one of the digraphs in Figure 7 as an induced subgraph.

(2) There is no outdegree 3 vertex such that its out-competitor family
has a system of distinctive representative.

(3) There are no three vertices uy, ug, uz such that every pair of them has
a common prey and that there are v; € Sy, — {u1,uz, ug} with all v;
distinct, i = 1,2, 3.

Proof. The necessity: Suppose that C(D) is an interval graph.

If D* is a minimal irredundant (2, 2)-subgraph of D (not necessarily
induced), then by Lemma 2.14 and minimality, C(D*) is a cycle with some
isolated vertices. Since C(D) is triangulated, C(D"*) either has a chord
(u,v) in C(D) for u,v nonadjacent in C(D*) or C(D*) is a triangle with
at most three isolated vertices. If C(D*) has a chord in C(D), since u,v
are two nonadjacent vertices on C(D*), they cannot have a common prey
in D*.- Therefore u,v is a chord pair of D*. If C(D*) is a triangle with
at most 3 isolated vertices, then D* has at most 6 vertices. Let D’ be the
subgraph induced by D*. Then C(D’) has an triangle. Now D' has vertex
minimal subgraphs as in Lemma 2.15. Hence D' has one of the digraphs in
Figure 7 as an induced subgraph. This gives (1).

Let v be a vertex of outdegree 3 such that u,, us, us are its competitors
and that v; € Sy; ~ v, i = 1,2,3, v1, v2, v3 distinct. Now C(D) would have
a double star subgraph with vertices v, u;, ua, us, v, v2, v3. By Lemma
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2.12, since C(D) is a (2, 3)-graph, C(D) has either an induced double star
or an induced crab, which contradicts the assumption that C(D) is interval.
Therefore (2) holds.

(3) must hold for otherwise u, uz, u3 and vy, v2, vs in (3), if any, give an
induced crab in C(D) since D is a (2, 3)-digraph. Again, this contradicts
the assumption that D is an interval graph.

The sufficiency: From (1), C(D) is triangulated: Let C = {z,...,z¢}
be a cycle of C(D) such that (zi,zi41) € E(C(D)), i = 1,...,k, where
addition of subscripts is modulo k. Let v; be the common prey for z; and
zi41. Then the z;’s and v;’s form a nontrivial irredundant (2, 2)-subgraph
D* of D. Since C(D* — z) does not contain any cycle for any arc or vertex
z of D*, D* is a minimal irredundant (2, 2)-digraph. If there is a chord
pair in D*, then C has a chord. If D* has no such chord pair, then D* has
at most 6 vertices which implies that C(D*) is a triangle.

C(D) has no induced double star and crab. Suppose first C(D) has
an induced double star centered at v. Then it is easy to see that in D the
out-competitor family of v has a system of distinct representative, violating
(2). Next, if C(D) has an induced crab, then it is easy to see that the three
vertices in the triangle of the crab and the three vertices of degree 1 in the
crab violate (3). So by Theorem 2.13, C(D) is interval. O

Now we present an algorithm to recognize interval (2, 3)-digraphs di-
rectly from the digraph. Rather than using the characterization of Theorem
2.16, the algorithm utilizes as a subroutine the algorithm given by Hefner,
et al. [19] for recognizing interval (2, 2)-digraphs. It enables us to avoid
the difficulty of directly checking the long forbidden induced subgraph list
given in Figure 7 and the existence of chord pairs.

The algorithm is implemented in two stages. At the end of the first
stage, the algorithm either reports that the digraph is not an interval di-
graph, or it produces a (2,2)-digraph. We will show that the newly pro-
duced (2, 2)-digraph is interval if and only if the original (2, 3)-digraph is
interval. In the second stage we use the algorithm given by Hefner, et al.
[19] on the (2, 2)-digraph produced in stage 1.

Algorithm 2.17. Given a (2, 3)-digraph D = (V, A).
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Step 0 If D has P(2,2) as a subgraph, then deleting one of the two pairs
of arcs of P(2,2) preying on the same vertex will not change the
competition graph. Therefore we can first reduce the digraph into an
irredundant (2, 3)-digraph. Next, reduce the digraph D into a (2,3)-
digraph by removing all arcs which go to vertices of indegree 1. Go
to Step 1.

Step 1 If there is no vertex of outdegree 3, then go to Step 3. Otherwise
take a vertex v of outdegree 3. Let a,b, c be the vertices which have
common prey with v.

If every one of a, b, c has outdegree at least two, then go to Step 2. If
one of a, b, c, say a, has out degree one, then:

1.1 If at least one of b, ¢ has outdegree at most two, then remove the
single arc going out from a and all arcs coming to the prey of a.
Go to Step 1.

1.2 Now a has outdegree one and b, c both have outdegree 3. If b,c
have a common prey but no common competitor, then stop and
report that D is not interval.

1.3 If b, c have a common prey and also a common competitor, re-
move all arcs going out from b and all arcs coming to the prey
of b. Go to Step 1.

1.4 If b,c have no common prey, then remove the single arc going
out from a and all arcs coming to the prey of a. Go to Step 1.

Step 2 Now every one of a, b, c has outdegree at least 2. Check common prey
of pairs a and b,b and ¢,a and c.

2.1 If every pair of a and b, a and ¢, b and ¢ has a common prey, then
delete all arcs with tail in {v,a,b,¢,}. Go to Step 1.
2.2 If there are exactly two pairs of @ and b, and ¢, b and ¢ having

common prey, then delete all arcs e, €2, e3 going out from v and
arcs sharing heads with e;, e2,e3. Go to Step 1.

2.3 If there is exactly one pair, say a and b, of a and b,a and ¢,b
and ¢ having one common prey, then:
If a,b have a common prey but at least one of them, say a, has
outdegree 2, then remove any arc going out from a and any arc
going to prey of a. Go to Step 1.
If both a,b have outdegree 3, then

(a) if a,b have no common competitor, then stop. Report that
D is not an interval digraph.
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(b) if a,b have a common competitor, then remove any arcs
going out from a and arcs going to prey of a. Go to Step 1.

2.4 If there is no pair of ¢ and b,a and ¢,b and ¢ having common
prey, then stop. Report that D is not interval.

Step 3 We have an irredundant (2,2)-digraph. We now use the algorithm
giving by Hefner, et al for testing if an irredundant (2,2)-digraph is
interval or not. Make all vertices are unlabeled. Choose an unlabeled
vertex v. Go to the following:

LABEL Construct an irredundant (2, 2)-subgraph D* of D which con-
tains v. If G* gives a cycle of length larger than 4, then stop.
Report D is not an interval graph. Otherwise label all vertices of
G* having nonzero outdegree. Then check if there is unlabeled

vertices. If not, report that D is interval. Otherwise, repeat
LABEL.

Now we prove that the above algorithm works.

Lemma 2.18. Suppose that u is a vertex of G such that N[u] = N[v] for
some vertexv € V(G). Then G is interval if and only if G — {(u, w)|(u, w) €
E(G)} is interval.

Proof. G- {(u,w)|(u,w) € E(G)} is isomorphic to (G — u)U I, where I,
is an isolated vertex. So if G is interval, G — {(u, w)|(u, w) € E(G)} is also
interval. Now if G — {(u, w)|(u, w) € E(G)} is the intersection graph of a
collection of intervals {I,|w € V(G — {(u,w) € E(G)})}, then replacing
interval I, by I} = I,,, we have that the intersection graph of (I-r)yur;
is isomorphic to G. 0O

Lemma 2.19. Let D be an irredundant (2, 3)-digraph and G = C(D).
Then dg(v) = dj(v) Vv € V(D). Let v be a vertex of outdegree 3 in D
and let a,b, ¢ be neighbors of v in G such that dg(a) = 1.

(1) If one of b, ¢ has degree at most 2, then G is interval if and only if
G — a is interval.
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(2) If dg(b) = dg(c) = 3 and in D, b,c have a common prey only if
they have a common competitor, then when b,c have common prey G is
interval if and only G — b is interval and when b, ¢ have no common prey G
is interval if and only if G — a is interval.

Proof. The necessities are clear for both parts of the lemma. Now, for
the sufficiency, suppose that G — a is interval in (1) and (2). If at least
one of b,c, say b, has degree 1 in G, and G — a is interval but G is not,
then there must be an asteroidal triple T in G such that a € T. But T can
contain only one of a,b. Since a,b have the same neighbor, {T'— a} Ub is
an asteroidal triple of G — a, which contradicts the assumption that G —a
is interval. Hence dg(b),dg(c) > 2. If b, c are nonadjacent, by dg(v) = 3
and G — a is triangulated, b,c are in different blocks of G — a, i.e., v is
a cut vertex. Then no asteroidal triple of G can contain all a,b and c.
Now it follows that if there is an asteroidal triple in G containing a, then
there will be an asteroidal triple in G — a. Therefore b, c are adjacent. If
dg(b) = dg(c) = 2, then a,b,c,v induces a connected component of G and
(1) follows. If exactly one of dg(b),dg(c) is 3, say, dg(b) = 3, then b is a
cut vertex and there is an asteroidal triple contains a if and only if there is
an asteroidal triple contains v. Therefore (1) follows.

Now, to prove (2), suppose that both b and ¢ have degree 3 in G and in
D b, c have a common prey only if they have common competitor. Assume
G — b is interval and suppose b,c have a common prey. Then they have
a common competitor d. Hence v,b,¢,d induce a K4 — e in G such that
\ dg(b) dg(c) = 3. By A(G) <3, N[b] = N|[c]. Then by Lemma 2.18, G
is interval if and only if the graph obtained by removing all edges incident
to b is interval. (The new graph is G — b plus an isolated vertex. ) Suppose
b, c have no common prey, and suppose G — a is interval. Let G — a be
the intersection graph of I = {I,} where I, is an interval corresponding to
u € V(G —a). Then I; N 1. = @ by b not adjacent to c and I, NI, # 0,
IL,nlI, ;6 0. Since in G —a the degree of v is 2, there is at least one point of
I, not in any other intervals. Then we can choose a small interval I, such
that G is the intersection graph of {I,}UI,. O

Lemma 2.20. Suppose {u v, w} induces a triangle in a (2, 3)-graph such
that d(u) = 2. Then G is interval if and only if G — {(u,v), (u, w)} is
interval.
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Proof. The necessity follows from that delete any vertex of an interval
graph and then add an isolated vertex to the graph gives an interval graph.
Now suppose that G — {(u,v), (u,w)} is the intersection graph of open
intervals I = {I:|z € V(G)}. If one of v, w, say v, is of degree 2, then
N[v] = N[u). The lemma follows by Lemma 2.18. Now suppose that both
v, w are of degree 3. (By Theorem 2.6, their degree < 3.)

Case 1: v, w have no common neighbor other than u. Since I, N1, # 0,
without loss of generality, we may suppose that ¢ = max{y € I,} > b =
min{y € I,}. Since v, w are of degree 2 in G — {(u,v), (u,w)}, we can
choose €> 0 such that I} = (b+¢,a —¢) is an interval and G is isomorphic
to the intersection graph of (I — I,) U L.

Case 2: v, w have a common neighbor z other than u. Then {z, u, v, w}
induces a K4 —e and z is adjacent to at most one neighbor other than v, w.
If z has no other neighbor, then {u, v, w,z} induces a 4 —e as a connected
component and the Lemma follows. Suppose z is adjacent to z other than
v,w. Since z is not adjacent to v,w, I, is totally on the left (right) side
of I,,I,. Since v, w have the same neighborhood, we can let I, = I,, and
extend I, I, such that they are not contained in I;. We can choose I,
intersecting I,, I, but not I;. Then G is the intersection graph of TU {1,}.
a

Theorem 2.21. Algorithm 2.17 correctly recognizes if an acyclic (2,3)-
digraph is interval.

Proof. The reduction in Step 0 certainly does not change the competition
graph. After Step 0, the degree of a vertex in the competition graph equals
its outdegree in the new digraph. Also, every time when some arcs are
removed, the produced new digraph is still an irredundant (2, 3)-digraph
since whenever we remove an arc a, we also remove all arcs sharing heads
with a.

If there is no vertex of outdegree 3, then the digraph is a (2, 2)-digraph.
So we can go to Step 3 to start the subroutine to check the intervality of a
(2,2)-digraph. Now suppose after Step 0 the digraph still has a vertex of
outdegree 3.
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If the algorithm reports that the digraph is not interval in Step 1. It
stops in Step 1.2. Let v,a,b,c be as described in the algorithm. In the
competition graph, v, b, ¢ all have degree 3, and b is adjacent to c. Then G
has crab as a subgraph containing vertices v, a, b, c. Since A(G) < 3, either
this is an induced crab, or there is an induced cycle of length larger than
3. So the algorithm correctly reports that G is not interval.

Suppose the algorithm does not stop at Step 1. If there are no arcs
removed, the digraph is not changed. Suppose some arcs are removed. If
some arcs are removed in Step 1.1, then v has degree 3, and a has degree 1
in G. One of b, or ¢, say b, has degree at most 2. It follows from the first
part of Lemma 2.19 that G is interval if and only if G — a is interval. So
removing arcs in Step 1.1, which is equivalent to deleting a than add in an
isolated vertex, does not change the intervality of D.

If some arcs are removed in Step 1.3, then b and ¢ have a common prey
and a common competitor. By the second part of Lemma 2.19, D is interval
if and only if the newly obtained digraph is interval since removing arcs in
Step 1.3 is equivalent to removing b from G and adding an isolatd vertex.

If some arcs are removed in Step 1.4, then by the second part of Lemma
2.19, G is interval if and only if G—a is, if and only if G —a plus an isolated
vertex is.

In Step 2.1, every pair of vertices a, b and ¢ has a common prey. There-
fore {v,a,b,c} induces a K4 subgraph of C(D). {v,a,b,c} must be a
connected component of C(D). C(D) is interval if and only if (C(D) —
{v,a,b,¢,})U L4 is interval, where I is a set of four isolated vertices. So
C(D) is interval if and only if the digraph obtained after Step 2.1 is interval.

In Step 2.2, vertices v, a, b, c induce a subgraph K4 — e in C(D). Then
one of a,b, or c, say a, will have the same neighbors as v by A(C(D)) < 3.
Arcs going out of v and arcs coming to prey of v are removed. This is
equivalent to removing edges {(v,w)|(v,w) € E} from C(D). Then by
Lemma 2.18, C(D) is interval if and only if C(D) — {(v, w)|(v, w) € E(G)}
is interval. So C (D) is interval if and only if the digraph obtained after
Step 2.2 is interval.

In Step 2.3, v is a vertex of outdegree 3. If the algorithm stops, then
among competitors a,b, and c of v, there is exactly one pair, say a and b,
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such that a,b have a common prey. If a has degree 2, then by Lemma 2.20
(1), C(D) is interval if and only if C(D) deleting a and adding an isolated
vertex is. If both of a, b have degree 3 and a, b have no common competitor,
then either v,a,b,c is in an induced crab of C(D) or C(D) has a cycle of
length larger than 4. C(D) is not interval. The algorithm will report this
correctly. If a, b have a common common prey, then N [a] = N [b)in C (D).
By Lemma 2.18, C(D) is interval if and only if the newly obtained digraph
is interval.

At Step 2.4, the degrees of a,b and ¢ in C(D) are at least 2, and these
three vertices form a stable set. Either C(D) has some induced cycle of
length at least 4 or it has a double star. Hence D is not interval.

Step 3 utilizes the algorithm of Hefner et al. for (2,2)-digraphs. To
entering Step 3, the digraph cannot have any vertex of outdegree 3. So
it must be (2,2)-digraph. Therefore, the correctness of the algorithm is
proved. O

2.4. (2,7), (2,%¥)-Competition Numbers and Ordinary Competi-
tion Numbers. In this section, we initialize studying the relation be-
tween the ordinary competition number and the restricted competition
numbers. We first compute the (2, *x)-competition numbers.

Lemma 2.22. For any graph G = (V, E), k2,.(G) > |E| - [V]|+ 2

Proof. Let D be an acyclic (2, *)-digraph such that G U I,,, is the com-
petition graph of D and |V(D)| = |V(G)| + m. Since indegree in D is at
most 2, each edge of G corresponds to a distinct vertex of D. There is a
labeling of vertices of D such that there is an arc from i to j only if i < j.
The vertices with the smallest two labels have at most one incoming arc.
It follows that |V|+m > |E|+ 2. So k2..(G) > |E|-|V|+2. O

Theorem 2.23. For any connected graph G = (V(G), E(G)) with at least
one edge, k2,.(G) = |E(G)]| - |V(G)] + 2.

Proof. Roberts [36] showed that if H is a connected triangle-free graph,
then the competition number of H is exactly |E(H)| — |V(H)| + 2. Now
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suppose G is a connected graph. We subdivide every edge (u,v) of G by
adding a new vertex z., and replacing edge (u, v) by edges (u, Zuv), (v, Tuv).
Then the new graph G* is a connected triangle-free graph with |V(G*)| =
[V(G)| + |E(G)| and |E(G*)| = 2|E(G)|- There is an acyclic digraph D*
such that G* U Iyg.) = C(D*) and k(G*) = |E(G*)| - |[V(G*)|+ 2 =
|E(G)| - |[V(G)] + 2. 1t is clear that D* is a (2, *)-digraph. Let s,,s, be
prey of u,zy, and z,,, v, respectively, in D*. For vertices sy, 5y, assume
without loss of generality that there is no directed path in D* from s, to
sy. Now for all u, v, delete from D* vertices z,, and arcs incident to z,.
Let u,v prey on s, and let vertices which prey on xzy, prey on s,. Then
the new digraph D is still an acyclic (2, j)-digraph. C(D) = GU I, and
V(@l+m =|V(D*)|-|E(G)
V(G +k(G*) - |E(G)|
V(G +|E(G)+IE(G) -V (G*)+2-|E(G)|
|E(G)|+2

ie, V(D) = |E(G)| + 2. Since |V(D)| 2 [V(G)| + k2,.(G), |E(G)| -
[V(G)| +2 > k2,.(G). The theorem follows from Lemma 2.22. O

Corollary 2.24. For any connected graph G with at least one edge and
for any integer i > 2, k(G) < ki +(G) < k3,.(G) = |E(G)| - |V(G)| + 2.

Theorem 2.25. Suppose graph G has no isolated vertices and has m + ¢
components, t of which are trees. Then

k2,.(G) = max{1, |E(G)| - |V(G)| + 2}.

Proof.  Suppose Ti,...,T;,Gy,...,Gm are connected components of G
such that Tj, ..., Tt are all tree components. By Theorem 2.23, k3 .(G;) =
|E(G:)|=IV(Gi)|+2 2> 2, i=1,..,mand k2.(T}) = |E(T)|-|V(T})|+2 =
1,i=1,..,¢t

Suppose D, ..., Dyym are acyclic (2, *)-digraphs such that C(D;) = T;U
{ai}, i=1,...,t,and C(Di4t) = Gi UL, i = 1,...,m, where a;,i = 1,..,t,
are isolated vertices and |;| = |E(G;)| — |[V(Gi)| +2,i = 1, ..., m. Without
loss of generality, we may assume that D; has no vertex of indegree one.
Therefore by D; is a (2, *)-digraph, in each D; there are exactly two vertices
of indegree zero. Denote them as zi,z}, i = 1,...,t + m.
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In digraph Dy UD2U...U Dy, first let arcs from vertex 2 of D; to a;,
i=2,..,t, be changed to from z to x‘;‘l. Next order isolated vertices in
LU..Uly, as by < ba... < by < ... such that if b € I;,by € I;,i < j, then
b < bi. According to the order of

t 1 .2 t ot ot 142 i1
31,32,22,...,32,$l+ y To ,.’Bl+ y T

change arc (z,b1) of Dey1 U ... U D to (z,2), (,b2) to (z,z8) . (z,b3)
to (z,23),..., until either all (z,b;)’s are replaced or all zf,j = 1,2,i =
1,..,t+m— 1, are used. Remove any a;’s and b;’s having no arcs coming
in. If all b;'s are replaced, then k2. (G) < 1. If all 2%, except gitm ghtm,
are used up, then by |E(T})| - |V (T3)| = -1,

1<ka(G) € L+E(EG=IV(G)I+2) =2t +m—1)
Tic (B (@) = IV (T)| +2) + T2, (1B (Gi)
—-V(G)I+2)-2(t+m—1)

|E(G)| = [V(G)| +2(t +m) —2(t +m = 1)
|E(G)| - V(G)| +2.

t+m-1 t+m-1
,...,:L’l+ yx2+ )

nin

Since in any.acyclic (2, *)-representation of G, the number of vertices
having at least 2 incoming arcs are at least the number of edges of G and
also there are at least two vertices having at most one incoming arc, so
k2, (G) > |E (G)| = |V (G)| + 2. The theorem follows. O

As we proposed here to study the relationship between competition
numbers and restricted competition numbers, we characterize when the in-
teresting equality k(G) = k2,.(G) holds for a graph G. The answer strength-
ens the well-known result by Roberts. Another similar result will be pre-
sented in the next section on the relation between the (*,2)-competition
numbers k. 2(G) and competition numbers k(G).

Lemma 2.26. If a connected graph G has a triangle, then k(G) < |E(G)|-
IV(G)| + 2.

Proof. We proceed by induction on |V(G)|. The lemma is trivially true
for graphs of only two vertices. Suppose that [V(G)| = 3. Since G is
connected, there is at least one vertex v such that G — v is still connected.

Case 1. If G — v has a triangle, then by induction,
E(G = v) < |E(G - v)| = V(G = v)| +2 = |E(G)| — d(v) = IV(G)| + 1 +2.



There is an acyclic digraph D such that C(D) = (G — v) U I(g-v). Since
G — v is connected and has at least one edge, k(G — v) > 1. Suppose
a € Ii(G-v)- Let D' be an acyclic digraph as follows:

V(D) = [V(D)U{v} U{zu|w € N(v)}] - {a};
A(D') = A(D-a)U{(w,zu), (v, zw)|w € N(v)}U{(3, v)I(y, 0) € A(D)}.

Then C(D') = GU Iy , |Imm| = k(G = v) + d(v) — 1. Therefore k(G) <
k(G —v) +d(v) - 1 < |E(G)| - [V(G)| + 2.

Case 2. If G — v has no triangle, then v is in least one triangle, say
{v, f,9}. Note that k(G - v) = |E(G - v)| - |[V(G - v)| + 2 = |E(G)| -
d(v) — [V(G)| + 1+ 2. There is an acyclic digraph D such that C(D) =
(G =) U Iig_v). Since G — v is connected, k(G —v) > 1. Suppose
a € Iy(G-v). Let D' be an acyclic digraph as follows.

V(D') = [V(D)U{v} U {zu|w € N(v), w# f}] - {a};
A(D'") = A(D - a)U {(w,zv), (v,zuw)|w € N(v) and w # f}
U{(v, v)I(v,a) € A(D)} U {(f,=,)}.

Then C(D') = G U I, |Im| = k(G = v) + (d(v) — 1) — 1. Hence
k(G) < k(G - v) +d(v) - 1 = |E(G)| - [V(G)|+2. O

Using Lemma 2.26, we can strengthen the following theorem by Roberts.

Theorem 2.27 [Roberts [36])]. Let G be a connected triangle-free graph
with at least one edge. Then

k(G) = |E(G)| - |V(G)] +2.

Theorem 2.28. Let G be a connected graph with at least one edge. Then
k(G) < k2,.(G) = |E(G)| - [V(G)| + 2
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and
k(G) = k2,.(G) = |E(G)| - [V(G)| + 2

if and only if G is a triangle-free graph.

Since k(G) < ki .(G), it is natural to ask, at least for connected graphs
with at least one edge, if k£(G) = ki .(G) is equivalent to that G is Kiy1-
free. The following example shows that this is not true in general. Since
triangulated graphs have competition numbers at most 1, the graph in
Figure 8 has k(G) = 1. But it is easy to see k4,.(G) = 1 by the acyclic
(4, *#)-digraph D in Figure 8. Nevertheless G has an induced Ks.

3. CoMPETITION GRAPH OF SMALL OUTDEGREE

Suppose D = (V, A) is an acyclic digraph. The resource graph R(D) of D
is a graph having the same vertex set as D and there is an edge between
two vertices a, b if and only if there is a vertex z in D such that (z, a), (z, b)
are two arcs of D. Resource graph can also be viewed as the competition
graph of the digraph obtained by reversing directions of arcs in D. Resource
graphs are also known as common-enemy graphs studied by Scott and oth-
ers [21, 39, 38). Study of resource graphs of food webs can be found in [41]
by Sugihara. Since to study resource graphs of digraphs of restricted inde-
gree is equivalent to studying competition graphs of digraphs of restricted
outdegree, in this section we study competition graphs of digraphs of small
outdegrees.

3.1. Characterization of (*,2)- and (*,2)-Graphs.

*

Lemma 3.1. If G = (V, E) with sufficiently many additional isolated ver-
tices is a (,2)-graph, then for any v € V, N(v) can be covered by at most
two cliques.

Proof. Let D be an acyclic (*,2)-digraph such that C(D) = G U .
Suppose that v € V is a vertex of G. Each neighbor of v preys on one of
the (at most) two prey of v. Since vertices having the same prey induces a
clique, vertices of N(v) of v can be covered by the (at most) two cliques.
a
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Remark Not every graph in which the neighborhood of every vertexv € V
can be covered by at most two cliques can be made into a (*,2)-graph by
adding isolated vertices. An example is in Figure 9. Tosee that the graph G
in Figure 9 is not a (x, 2)-graph after adding isolated vertices, let us suppose
to the contrary that D is an acyclic (*, 2)-digraph such that C(D)=GUlI,
for some k. Notice that the only way to cover the neighborhood of vertex
b by two cliques is to choose one clique as {a,b,d} and another clique as
{b,c,e}. Therefore in D there are v; # vy such that a,b,d prey on v; and
b,c,e prey on v;. Then vertices d, f cannot prey on vy , since f is not
‘adjacent to d,b and d is not adjacent to c. It implies that e has at least
another two prey other than vy, contradicting the assumption that D is a
(*,2) -digraph.

Lemma 3.2. Every line graph plus sufficiently many additional isolated
vertices is a (*,2)-graph. The collection of all graphs obtained from line
graphs by adding sufficiently many additional isolated vertices is a proper
subset of (x,2)-graphs.

Proof. Let L(G) be the line graph of graph G. Construct a food web
as follows: Let V(D) = V(G) U E(G). There is an arc in D from some
e € E(G) to some v € V(G) if and only'if v is an end of e. It is clear that
C(D) = L(G)U ljv(g) and D is an acyclic (,2) -digraph. On the other
hand, the graph in Figure 10 is a (3, 2) -graph after adding in some isolated
vertices, but is not a line graph. O

We call vertices z and y equivalent, denoted by z ~ y, if N[z] = N[y].
Then the relation ~ is an equivalence relation. A graph is called reduced if
it has no pair of equivalent vertices. Suppose G = (V, E) is a simple graph
of vertex partition Vi, ..., V.. A contraction G* of G is a graph having
vertex set {V1, ..., V;n} with V;, V; adjacent in G* if and only if there are
z € Vi,y € V; such that (z,y) € E. When the Vi’s are equivalent classes
under ~, G is also called a multiplication of G*.

Lemma 3.3. Let graph G be a simple graph with vertex set partitioned
into equivalence classes Vi, ..., V,, by the equivalence relation ~. Let G* be
the contraction of G under this partitioning. Then k. ;(G) < k. ;(G*).
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Proof. Suppose D is an acyclic (¥, j)-digraph such that C(D) = G* U .
Let V; be a vertex of G*. Replace each V; by all vertices v in V;. (u,v)
is an arc if and only if u € V;,v € V}, and (V;, V) is an arc of D. Then
the new digraph is still acyclic and has G as its competition graph. Since
no additional isolated vertices not in G* U I, have been added to D. So
k.;j(G) <k, j(G*). O

Lemma 3.4. If G is a (*,j)-graph and G’ is an induced subgraph of G,
then G' plus sufficiently many isolated vertices is a (*, j)-graph. If G is a
(*,7)-graph, then any multiplication of it is also a (*, j)-graph.

Proof. Suppose G has a (%, j)-representation D. If z € V(G), remove all
outgoing arcs of z from D, replace z by a new vertex a ¢ V(G) in D, and
let all vertices which prey on r prey on a. We obtain a (*, j)-representation
of (G—z)U {a}. On the other hand, for y € V(G), if y is an isolated
vertex, it is clear that G plus some additional isolated vertices is still a
(*,j)-graph. If y is not an isolated vertex, then adding w to D such that w

preys on any vertex which is preyed by y gives an (i + 1, j)-representation
of G’ = (V(G) U{w}, E(G)U(y,w) U{(z,w)l(z,¥) € E(G)}). O

Theorem 3.5 [Krausz [23]]. A graph G is a line graph of a simple graph
if and only if there is an edge clique covering C1,...,Cn, such that every
edge of G is in exactly one of the C;’s and every vertex is in at most two
of the C;’s.

Theorem 3.6 [Hemminger [20], Bermond and Meyer [5]]. A graph is the
line graph of a multigraph if and only if it does not contain the graphs in
Figure 11 as induced subgraphs.

Theorem 3.7. The following are equivalent

(1) G together with sufficiently many additional isolated vertices is a
(*» 2)'graph;

(2) G together with sufficiently many additional isolated vertices is a
(*) 2)-graph;
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(3) G is the line graph of a multigraph;

(4) G does not contain any of the graphs in Figure 11 as induced sub-
graphs.

Proof. (1) = (2): Let D be an acyclic (%, 2)-digraph such that C(D) =
G U I for integer £ > 0. Then for any vertex v of outdegree 1, add an
isolated vertex =, and add an arc from v to z,.

(2) = (3): Let G be a (*,2)-graph. Contract all equivalent vertices
in G to obtain a reduced graph G’. By Lemma 3.4, G’ with sufficiently
many additional isolated vertices is also a (*,2)-graph. Let D be a (*,2)-
representation of G’. Let Sj,..., S be such that S; contains all vertices
preying on the same vertex v; of D. Since D is a (*,2)-digraph and G’ has
no equivalent vertices, |S; N S;| < 1 Vi # j. Every S; induces a clique of
G'. Now S),...,Sm give an edge clique covering of G’ such that each edge
is in exactly one clique and each vertex is in at most 2 such cliques. By
Theorem 3.5, G’ is a line graph of a simple graph. Hence G is a line graph
of a multigraph.

(3) = (1): Since line graphs of simple graphs are (,2)-graphs by
Lemma 3.2 when sufficiently many additional isolated vertices are added,
it follows from Lemma 3.4 that line graphs of multigraphs are also (*,2)-
graphs when sufficiently many additional isolated vertices are added.

(3) & (4): This follows from the characterization of line graphs of
multigraphs of Theorem 3.6 by Hemminger [20], Bermond and Meyer [5].
o

3.2. (*,2)-Competition Number. In this subsection we discuss the
relationship between (*,2) -competition number and the competition num-
ber. The (*,2) competition number is also related to a conjecture proposed
a decade ago by Opsut on competition numbers.

Conjecture 3.8 [Opsut [29]]. If vertices in the neighborhood of every ver-
tex of G can be covered by at most two cliques, then the competition number
of G is at most 2.
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Opsut [29] proved that the competition number of a line graph is at
most 2. By the characterization given in the last subsection, (+,2)-graphs
are exactly line graphs of multigraphs. Therefore it is natural to ask what
is the competition number of an (%, 2)-graph.

Given graph G = (V,E), for any § C V, let §(S) be the minimum
number of cliques needed to cover all vertices of S. For vertex v € V,
N(v) is the neighborhood of v, i.e., all vertices adjacent to v. We say that
6*(N(v)) < 2if 8(N(v)) < 2 and there are two cliques Cy, C; covering
N (v) such that for all w € Cy, 8(N(w) — C1) < 1. Wesay 6*(N(v)) =2 if
6*(N(v)) <2and 8 (N(v)) = 2.

Lemma 3.9. If GU I, is a (*,2)-graph, then 6*(N(v)) < 2 for all v €
V(G).

Proof. Since (*,2)-graphs are line graphs of multigraphs, suppose G =
L(H) where H is a multigraph. Suppose that e = (u,v) is an edge of H.
Let E, and E, be the sets of edges incident to u and v, respectively. In the
line graph L(H), Ey, E, are two cliques covering Ng(e). Suppose w € Ey.
Any neighbor of w which is not in Ng(e) is an edge of H not incident to
either u or v. So all such edges are incident to the same end of w other
than u, i.e., §( Ng(w) — Ey) < 1. The argument is similar for w € E,. O

Theorem 3.10 [Kim and Roberts [22]]. If G is such that 6*(N(v)) < 2
for all v € V(G) , then k(G) < 2 and k(G) = 2 if and only if 6(N(v)) = 2
for all v € V(Q).

By Theorem 3.10, we have the following.

Theorem 3.11. If G with sufficiently many additional isolated vertices is
a (*,2)-graph, then the competition number of G is at most 2, and k(G)=2
if and only if (N (v)) =2 forallve V.

We have shown that for triangle-free graphs, k2 «(G) = k(G). Now we
show that if G is a (*,2)-graph, then k. »(G) = k(G). Denote by P(s) the
set of vertices which prey on s for s € V(G).
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- Lemma 3.12. Suppose G is a reduced (*,2)-graph with a representation
D . Let C be a clique of G corresponding to a P(t) for some t € V(D).
Then removing all edges in C produces another (x,2)-graph G'.

Proof. Note that [P(t)NP(s)| < 1 foranys # ¢, i.e., all edges in C are only
produced by prey on t. For if there are s # ¢, s,t € V(D) such that z,y € C
and z,y € P(s)N P(t), then N[z] = N[y], contrary to the assumption that
G is reduced. Therefore, removing edges in C corresponds to removing all
incoming arcs of t in D, i.e., (G—E(C))Uln = C(D—{(r,t)|(r,t) € A(D)})
for some m. So G — E(C) is a (x,2)-graph. O

Given a graph G, a minimal (i, j)-representation is an acyclic (i, §)-
digraph D such C(D) = G U I, for some integer m but for any subgraph
D' of D, C(D') # GU I for any m'.

Lemma 3.13. Suppose G is a (*,2)-graph. Suppose v is a simplicial vertex
of G. Then there is a minimal (*,2)-representation of G such that v has
exactly one prey. Moreover, if N(v) contains no equivalent vertices, then
in any minimal (*, 2)-representation, v has exactly one prey.

Proof. Let D be a minimal (%, 2)-representation of G. If v has only one
prey in D, then we are done. Suppose v has two distinct prey z,y in D.
Now add a new vertex z to D and let all arcs going to z,y instead to go
to z. In the new digraph D', v has only one prey. D’ is still acyclic. If
m € P(z) U P(y) and n € P(z) U P(y), then m,n € N[v]. Therefore m
is adjacent to n and D' is a (*,2)-representation of G U z. So there is a
minimal representation of G such that v has only one prey.

Now suppose that v has no equivalent neighbors in G. Suppose that
D is a minimal (%, 2)-representation of G and v has two different prey z,y
in D. Since D is a minimal representation, P(z) ¢ P(y) and P(y) ¢
P(z). Hence there are two vertices m # n such that m € P(z) — P(y);
n € P(y) — P(z). Since m,n are both neighbors of v and v is simplicial,
there must be some 2z € V such that z # z,y and {m,n} C P(z). Let
w € N(n). Then either w € P(y) or w € P(z) since n has only z,y as
prey. If w € P(z) then w € N(m); if w € P(z), then w € P(y). Since v is
simplicial, it follows that w € N(v), w € N(m). Therefore, N[n] C N[m].
By symmetry, N[n] = N[m], contradicting the assumption that v has no
equivalent neighbors. The lemma is proved. O :
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Lemma 3.14. Suppose G is a reduced (*,2)-graph. If v is a non-isolated
simplicial vertex, then the graph obtained from G by removing edges in N [v]
and deleting v is also a (%, 2)-graph if sufficiently many isolated vertices are
added.

Proof. This follows from Lemmas 3.12 and 3.13. a

Lemma 3.15. Suppose G is a reduced (*,2)-graph. Suppose that C(D) =
GU .. Then in the graph G* obtained by removing edges in a clique C of
G corresponding to a P(s) of s € V(D), Ng.(v) has no equivalent vertices
for anyv € C. ‘

Proof. That G* is a (%, 2)-graph follows from Lemma 3.12. Now suppose
that there are u, w € Ng-(v) such that Ng.[u] = Ng-[w] for some v € C. It
is clear that u, w ¢ C for otherwise u, w are not neighbors of v in G*. Hence
Ng.[u] = Ng[u] and Ng.[w) = Ng[w]. This contradicts the assumption
that G is reduced. O

Lemma 3.16. If§(N(v)) > k for all v € V, then k; j(G) > k.

Proof. Opsut [29] proved that if (N (v)) > k for all v € V, then k(G) > k.
Since for any fixed i, j, ku,o(G) > k(G), the lemma follows. O

Theorem 3.17. If G plus sufficiently many additional isolated vertices is
a (*,2)-graph, then k. 2(G) < 2, with equality if and only if 8(N(v)) = 2
Yv € V(G). Furthermore, there is a (*,2)-representation of G such that
every simplicial vertex has exactly one prey.

Proof. The argument is by induction on [E(G)| + |V(G)|: It is trivial
that the theorem i s true for graphs having at most 3 vertices. Suppose the
theorem is true for graphs smaller than G.

Case 1. Suppose that G has an isolated vertex v. Apply induction,
kv,2(G — v) < 2. Then by using v as a prey, k. 2(G) < 1.
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Case 2. Suppose that G has a non-isolated simplicial vertex v. Let
G* be the reduced graph obtained from G by contracting all equivalent
vertices. Still denote the equivalence class containing v as v. Since G*
plus sufficiently many isolated vertices is a reduced (*, 2)-graph, by Lemma
3.14, removing edges in Ng. and deleting v from G* produces another
graph G’ with fewer edges. G’ is a (*,2)-graph after sufficiently many
isolated vertices are added. All vertices in Ng.(v) are simplicial in G'. By
induction, k. 2(G') < 1. By Lemma 3.15 and Lemma 3.13, every simplicial
vertex of G’ in Ng. (v) has exactly one prey in any minimal representation.
Let D be a minimal (*,2)-representation of G’ and let C(D) = G' U {a}.
Now add v to G’. Let all vertices preying on a instead prey on v and let v
and vertices in Ng.(v) prey on a. Then the (x,2)-competition number of
G* is at most 1. By Lemma 3.3, the (%, 2)-competition number of G is at
most 1.

Case 3. Suppose that G has no simplicial vertex or isolated vertex. Let
G* be the graph obtained from G by contracting equivalent vertices. G*
has no simplicial vertex or isolated vertex. Let D* be a (%, 2)-representation
of GU I, ,()- Let C be a clique of G* corresponding to a P(s) for some
s € V(D*). Let G’ be the graph obtained from removing all edges in
C from G*. G’ is a (*,2)-graph by Lemma 3.12. Every vertex of C in
G’ is a simplicial vertex because it has outdegree 2 in D*. By induction
k.2(G') < 1. By Lemmas 3.15 and 3.13, there is a digraph D’ such that
C(D') = G' U{a}, where {a} is an isolated vertex, and that every vertex in
C has at most one prey. We can add one more isolated vertex to D’ such
that all vertices in C prey on it. So k. 2(G*) < 2 which gives k. 2(G) < 2.

On the other hand, by Lemma 3.16, if G has no simplicial or isolated
vertex, then k, 2(G) > 2. O

The following corollary is similar to k;.(G) = k(G) for triangle-free
graphs.

Corollary 3.18. k. 2(G) = k(G) for (*,2)-graphs.

Proof. This follows from Lemma 3.9 and Theorems 3.10 and 3.17. O
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3.3. Interval (x,2)-Graphs. We characterize interval (x,2)-graphs and
interval (, 2)-digraphs in this section.

Lemma 3.19. Suppose H is a graph such that L(H) is triangulated. Then
H has no cycle of length greater than 3. So each block of H is either an
edge or a triangle.

Proof. The lemmafollows from that any cycle, not necessarily an induced
one, of H corresponds to an induced cycle in the line graph L(H) . (m]

A connected graph G is a worm of length m if G has a longest induced
path of length m + 1, i.e., having m + 1 edges, such that every edge of H
is either on P or incident to P and each block of G is either an edge or a
triangle. The end vertices of a worm are vertices which can be the first and
the second vertices of a longest path of the worm. An example of a worm
is given in Figure 12. Dark vertices in Figure 12 are end vertices of the
worm. A triangle of a regular worm or a worm is called an end triangle if
it contains some end vertices.

Given graph G = (V, E), we say that its maximal cliques can be con-
secutively order if there is a labeling of its all maximal cliques Cy, ..., Cy
such that for any v € V and i < j, if v € C; N C;, then v € Cy for any
i<k<j.

Theorem 3.20 [Fulkerson and Gross [15]]. A graph G is an interval graph
if and only if its maximal cliques can be consecutively ordered.

Double star is the graph obtainable from a star K 1,m by subdivide each
edge by a vertex. It is easy to check that the line graph of a double star is
not interval if m > 3. Since any induced subgraph of an interval graph is
still interval, if the line graph L(H) of H is interval, then H has no double
star subgraph.

Theorem 3.21. A line graph L(H) of a simple graph H is interval if and
only if each component of H is a worm.
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Proof. Necessity: Without loss of generality, we may assume that H is
connected. Since L(H) is interval, Lemma 3.19 implies that each block of
H is either a triangle or an edge. If H has at most three vertices, clearly H
is a worm. Suppose H has more that 3 vertices and suppose by induction
that theorem is true for graphs having less vertices than H.

H must have a cut vertex v. Let Hy,..., Hp, m > 2, be components
of H —v. At most two of the H;’s are nontrivial, i.e., have at least one
edge, for otherwise H would have a double star subgraph. Suppose that
there is only one nontrivial component, say H,. Then H' = G(H1Uv) is
an induced subgraph of H. By induction, H' is a worm. Since there is at
least one different vertex w in H, djacent to v, if v is not an end vertex of
H’, then H would have a double star as a subgraph. Therefore, v must be
an end vertex of H'. Then H is also a worm since H' is the only nontrivial
component of H — v,

If there are exactly two nontrivial components Hj, Hy, let H{ = G(HyU
v) and Hj = G(Hz Uv). By induction, H{, H} are worms. Similar to the
case of one nontrivial component, v must be an end vertex of H 1 and Hj.
Furthermore, in at least one of H{ and H;, v is an end of a longest path
there. For otherwise, L(H) would have an asteroidal triple. Then it follows
that H is a worm.

Sufficiency: It is easy to see that we can consecutively label maximal
cliques of a worm L(H). Then by Theorem 3.20, L(H) is interval. O

Theorem 3.22 [Roberts [33]). Suppose G is a graph. Then the following
are equivalent:

(1) G is a unit interval graph.
(2) G is a proper interval graph.
(3) G is an interval graph and does not contain K 1,3 as induced subgraph.

(4) G is triangulated and does not contain any graph of Figure 13 as an
induced subgraph.

The underline graph of a multigraph is the graph obtained from it by
removing parallel edges. A multigraph is a multi-worm if its underline
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graph is a worm.
Theorem 3.23. Given graph G, the following are equivalent:

(1) G with sufficiently many additional isolated vertices is a unit interval
(*,2)-graph;

(2) G with sufficiently many additional isolated vertices is an interval
(*,2)-graph;

(3) Each component of G is the line graph of some multi-worm;

(4) G is triangulated and does not contain any graph in Figure 14 as an
induced subgraph.

Proof. It is sufficient to consider only connected graphs.
(1) = (2): This is trivial.

(2) = (3): By Theorem 3.21, the line graph L(H) of a simple graph
is interval if and only if every component of H is a worm. A multigraph
is interval if and only if the line graph of its underlying graph is interval.
By Theorem 3.7, G plus sufficiently many additional isolated vertices is an
interval (*, 2)-graph if and only if H is the line graph of a multi-worm.

(3) = (4): Suppose that G is the line graph of a multi-worm. Then
8(N(v)) <2 Vv € V(G). G has no G as induced subgraph. The charac-
terization given by Hemminger [20], Bermond and Meyer [5] implies that
G does not have G4 as an induced subgraph. It is easy to check that G,
and G3 are not line graphs of multi-worms. Since any induced connected
subgraph of the line graph of a worm is still line graph of a worm, so G»
and G3 cannot be induced subgraphs for line graphs of worms.

(4) = (1): Suppose that G is a triangulated graph having no induced
subgraphs as in Figure 14. Then by Roberts’ Theorem 3.22, G is a unit
interval graph. The graphs of Figure 11 all contain an induced Ci, &k > 4,
except F) and Fy. Since G is triangulated, F3 through F7 are not induced
subgraphs of G. But F; and Fy are G, and G4 in Figure 14. Hence by
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Theorem 3.7 G with sufficiently many additional isolated vertices is a (*, 2)-
graph. O

4. CLOSING REMARKS

(1) The fundamental problem of characterizing interval digraphs remains
open.

(2) It is interesting to characterize competition graphs for which their
restricted competition numbers equal their competition numbers.

(3) An interesting problem is to characterize acyclic digraphs whose com-
petition graph and resource graph are both interval graphs.

(4) Another problem of interest from the point of view of both ecology
and graph theory is to characterize digraphs which have triangulated
competition graphs.

(5) Another simpler but interesting problem related to characterizing in-
terval digraphs is to characterize digraphs whose every induced sub-
graph is interval. Similar questions can be asked for triangulated
competition graphs.
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2. Attached Plants
5. Hyporhamphus
6. Mugil

7. Upogebia

8. Lamya

9. Solen

10. Arenicola 12. Johnius 14, Rhabdosargus
11. Hymenosoma 13. Lithognathus  15. Hypacanthus

Figure 1: Digraph for the Knysna esturary community (Day 1967, Sugihara
1982)

P(2,2)

Figure 2: Forbidden structure of irredundancy: P(2,2)
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Figure 3: Digraphs in (2, 2)-interval digraphs
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Figure 4: Interval (2, 3)-digraph containing induced non-interval subgraph

o 0O l 0 0 o \ o

Double Star Crab

Figure 5: Double star and crab

=
»

<
(g}

Figure 6: Proof of Theorem 2.13
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Figure 7: Subgraphs of (2, 3)-digraphs



Figure 8

Figure 9

b

-

d

Figure 10



AL AN




o

Gl G,

Figure 13

[o]

LA

G, G,
g i : /°i 4‘;_\ v
G, G, '
Figure 14

48



