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Abstract: Given a graph G with weighting w : E(G) — Z%, the strength
of G(w) is the maximum weight on any edge. The weight of a vertex in
G(w) is the sum of the weights of all its incident edges. The network G(w)
is irregular if the vertex weights are distinct. The irregularity strength of G
is the minimum strength of the graph under all irregular weightings. We
determine the irregularity strength of the m x n grid for all m,n > 18.

1 Introduction

A network G(w) consists of the graph G together with an assignment w :
E(G) — Z*. The strength s of G(w) is defined by s(G(w)) = maz{w(e) :
e € E(G)}. For each vertex v € V(G), define the weight w(v) of v in G(w)
as the sum of the weights of all edges incident on v. The network G(w)
is irregular if for all distinct u,v € V(G), w(u) # w(v); there exists an
irregular weighting on G only if it contains no K2 component and at most
one isolated vertex.

The irregularity strength I(G) is defined to be min{s(G(w)) : G(w)
is irregular}. Thus the irregularity strength of a graph G is the minimum
integer ¢ such that G has an irregular weighting with maximum weight £.
We call an irregular weighting of G minimal if its strength equals I(G).

The study of I(G) was proposed in [1]. In [7] the following lower bound
was obtained:

Theorem 1.1 Let dy be the number of vertices of degree k in V(G), then

1(G) 2 XG) = "maz{((gdk) +i- 1) /i :isj}]

We call an irregular weighting w of graph G a A-weighting of G if s(G(w)) =
A(G).
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There are not many graphs for which the irregularity strength is known.
In [1] it was shown that I(K,) = 3 and I(K2q,2,) = 3; I(P,) was also
determined. That I(K2nq41,2041) = 4 was proven in [6]. Work has also
been done on dense graphs, cycles, and the disjoint unions of paths ([4, 8]).
The irregularity strengths of wheels, k-cubes and 2 x n grids has also been
determined [3]. In each of these cases it was found that I(G) = A(G) or
A(G) + 1. Results on irregularity strengths of graphs are surveyed in [9].

In this paper, we determine the irregularity strength of the m x n
grid Xm n for all m,n > 18. It is easy to derive the following result from
Theorem 1.1.

Proposition 1.2 If m,n > 3, and {m,n} # {3,5}, then A(Xmna) =
[(mn +1)/4].

However, it was shown in [2] that for certain values of m and n, I(Xy ) >
A(Xmn). We state this result in the following proposition.

Proposition 1.3 When m,n > 3, {m,n} # {3,5}, and mn =3 (mod 4),
then I(Xmn) > M(Xmn)-

The authors of [2] provided a set of constructions which, given a mini-
mal irregular weighting of a grid (with the proper ingredients), yields min-
imal irregular weightings for an infinite class of grids. In this paper, we de-
scribe a direct construction for minimal irregular weightings of all X616+,
k = 0 (mod 4). These weightings have the necessary ingredients for the con-
structions of [2], and the overlapping classes of grids which can be generated
cover the set of all Xp n for m,n > 18. Thus, we will show that, with the
exception of the cases specified in Proposition 1.3, I(Xm ) = AMXmn)
when m,n > 18. In the exceptional cases I(Xmn) = AM(Xmn) + 1.

The next section provides the construction for minimal irregular weight-
ings of X16,16+k, k¥ = 0 (mod 4). In Section 3 we show that the weightings
from the construction satisfy the constraints in [2], and we prove our main
result.

2 A-weightings of X6 16+k, £ =0 (mod 4)

We now present the construction which yields A-weightings of X6,164+ for
k =0 (mod 4).

Theorem 2.1 There ezists a A-weighting of X16,16+1 when
k=0 (mod §).
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Proof: From Proposition 1.2 it follows that A(X16,164%) = 65 + 4k when
k = 0 (mod 4). Since the minimum vertex degree in a grid is 2, the
smallest vertex weight in a grid, under any irregular weighting, is at least
2. Since the maximum vertex degree of a grid is 4, then in a A-weighting
of Xi16,16+k, Where k = 0 (mod 4), the maximum vertex weight possible
is 260 + 16k. However, to satisfy the constraints that will be described in
Section'3, the three highest vertex weights will not be used. Thus, since
[V(X16,16+4)| = 256 + 16k, each vertex weight from 2 to 257 + 16k will be
used in the weighting we develop.

" We begin by partitioning X16,164% into 8 concentric cycles C;,1 < i < 8,
and the sets of edges that connect adjacent cycles; as an exception, we treat
the edges bridging the vertices in Cg as belonging to E(Cg). The vertices in
Ci,1 < i < 8, are all those vertices that are distance i — 1 from the border
of the grid. For example, C; consists of the vertices and edges around the
border of the grid. The vertices and edges in Cg are those that make up
the 2 x (2 + k) grid in the center of the graph. The {i,4 + 1}-connectors
(1 €1 < 7) are the edges that connect vertices in C; to vertices in C;4;.

_ Under the weighting w that we describe in this construction, edge
weights are assigned such that if u € V(C;), and v € V(C;) where i < j,
then w(u) < w(v). Further, all edges in a given set of connectors have the
same weight; thus, if distinct edges e and ¢’ are both {i,i 4+ 1}-connectors
for some i, then w(e) = w(e’).

Figure 1 shows the vertex weights for C;,1 < i < 7. In cycle 1, vertices
on the two sides have the 36 — 4i smallest weights; of these weights, those
equivalent to 2 (mod 4) appear on the vertices on the top half of the left
side, those equivalent to 3 (mod 4) appear on the vertices on the bottom half
of the left side, those equivalent to 0 (mod 4) appear on the vertices on the
top half of the right side, and those equivalent to 1 (mod 4) appear on the
vertices on the bottom half of the right side. The next k + (16 — 2i) vertex
weights in C; appear on the vertices along the top of the cycle (exclusive of
the vertices in the corners of the cycle); of these weights, the even weights
progress from the left side toward the center, and the odd weights progress
from the right side toward the center. In a manner similar to the vertices
along the top, the vertices with the k + (16 — 2¢) greatest vertex weights
appear along the bottom of the cycle. Note that Figure 1 shows the weights
for all vertices in the outer 7 cycles of X16,16 under weighting w. The grid
is split down the middle and shows that the vertex weights increase in the
same pattern for the k vertices in the middle of the top of each cycle, and
the k vertices in the middle of the bottom of each cycle. In each cycle, the
vertex with the smallest weight is on the top left corner, and the vertex
with the greatest weight is in the center of the bottom.
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Figure 1: Vertex weights for cycles 1 through 7



Figure 2 shows the edge weights under w for E(C;) and the {i,i+ 1}-
connectors, for 1 < i < 7. All such edge weights are shown for the weighting
of X16,16 under w; the figure is split open in the middle to show how the
pattern of increasing edge weights continues to the middle of the top (and
bottom) of each cycle. Thus, for example, note that along the top of C; in
Xi6,164%, the i edge from the left has weight i + 27 when i is even and
i < (16 + k)/2. When k = 0, the center edge along the top of Cy, which is
the eighth edge from the left, has weight 35. When k > 0, the center edge
along the top of C; is an additional k/2 edges from the left, and the weight
on that edge is k/2 greater than the center edge along the top of Xis, 1.

Figure 3 shows the vertex weights for Cs. Note the following difference
between Cs and the other 7 cycles. In C; through C7, the vertex weights
that would appear in an irregular minimal weighting of X1¢,16 Were on the
right and left sides of the figure; the 2k additional vertices in each cycle
were shown in the middle of the figure. In Figure 3, the four vertices from
cycle 8 of X16,16 are shown at the center of the figure; the 2k additional
vertices extend out to either side, with the greatest vertex weights at the
extreme left and right ends of Cs.

In Figure 4 we give the weights for E(Cs), the weight that is assigned
to all {7,8)-connectors (= 65 + 4k), and the weights on all edges that are
“inside” of Cs; note that all edges of this last type have weight 62 + 4k,
with the exception of one edge at the center which has weight 60 + 4k.

This completes the construction. It is straightforward to see that the
weighting is irregular, and has strength A(Xy6,16+%) = 65+ 4k, when k =0
(mod 4). 1§

3 The irregularity strength of X,,, for
m,n > 18

The authors of [2] showed that whenever there exists a properly constrained
A-weighting of a grid G = Xmn, then there exist irregular weightings of
strength A or A+1 for an infinite class of grids. A weighting w of Xm,» that
satisfies the constraints necessary to begin the recursive constructions in [2]
is called Type 1. In order to understand the definition of Type 1, we first
develop some terminology. The edges in C; of Xy n are called border edges.
The border edges are further described as left, right, top, and botiom edges.
When m and n are both even, and if the border edges along one side are
labeled 1,2,3, ... starting from a corner vertex, then the edges with odd
labels are termed heavy edges.
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Figure 2: Labelings of the edges in cycles 1 through 7, and of the connecting edges between the cycles



Figure 3: Vertex weights for cycle 8
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Figure 4: Weights on all edges incident to vertices in cycle 8

The definition of Type 1 given in [2] applied to all X, , when m and
n were even. We constrain the definition of Type 1 weightings to the grids
Xi6,16+x When k = 0 (mod 4); these are the grids we examined in the
previous section.

Definition. An irregular weighting w of X¢,164%, £ = 0 (mod 4) is Type
1 if for every edge e, w(e) < 65 + 4k (=A(X16,16++)) and furthermore,

1. If e is a top or bottom heavy edge, then w(e) < 39 + 7k/2;
2. If e is a left heavy edge, then w(e) < 55+ 9k/2;
3. If e is a right heavy edge, then w(e) < 55+ Tk/2; and

4. There is a one-factor f in Xj6,164+ Which has the property that for
all e € f, w(e) is less than or equal to the previous constraints minus
three. Thus,

(a) If e is internal or a non-heavy border edge, then w(e) < 62+ 4k;
(b) If e is a top or bottom heavy edge, then w(e) < 36 + 7k/2;

(c) If e is a left heavy edge, then w(e) < 52 + 9k/2;

(d) If e is a heavy right edge, then w(e) < 52+ 7k/2.

Theorem 3.1 There is a Type 1 weighting of X16,164+% for k =0 (mod 4).
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Proof: One can check that the first three constraints for Type 1 are met by
the construction in Theorem 2.1. We now show the existence of a 1-factor f
which meets the tighter constraints of part 4 in the above definition. First
we label the vertices in V(X16,16+¢),k =0 (mod 4) as v; j, 1 < i < 16 and
1 < j <16+ k. The vertex vy is in the upper left corner of the grid,
and v16,16++ is the vertex in the lower right corner. We now identify the
1-factor f which has the appropriate constraints.

f= {(vij,vigrj)liiseven,2<i<14,1<j<16+k} U
{(vij,vij41)li € {1,16},jis 0dd,1 < j < 15+ k}

The first set of edges in f includes all edges connecting a vertex in an even
numbered row to its neighbor in the row below it. The second set of edges
includes the alternate edges (starting with the first) in the first and last
rows. I

Beginning with any Type 1 weighting of X, where m,n > 16, the
constructions in [2] yield irregular weightings for all Xy n where m’ =
m+a,n’ =n+b,a,b>0,and 2|(a+2)/4] < b < 4|a/2]. The set of pairs
(m’, n') satisfying these constraints is called the feasible region of m and n:
F(m,n). This is the infinite region in the first quadrant of the plane that
is approximately bounded by the two lines through (m, n) with slopes 1/2
and 2. The weightings of Xy/n¢ have strength A(Xmin:) when m'n’ # 3
(mod 4), and strength A(Xm/n’) + 1 when m'n’ = 3 (mod 4). Thus, from
the definition of Type 1, the set of constructions, and Proposition 1.3, [2]
provides the following result.

Theorem 3.2 If there is a Type 1 weighting of X(m, n), where m,n > 16,
then for all m' and n' such that (m’,n’) € F(m,n),

| MXmt 1) ifm'n' £3 (mod §)
I(Xowt 1) = { MXmin)+1 ifm'n' =3 (mod )

We can now present the principal result of this paper.

Theorem 3.3 For allm,n > 18,

_f AMXmpn if 3 (mod 4
I(Xma) = { ,\%Xm'ng +1 :‘f m z 3 ?mod 4&

Proof: Assume that m < n. Note that (m,n) € F(16, 16 + k), where

k= { 4|(n — m)/4] ifm#19
1 4l(r-m+1)/4] fm=19
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Since k£ > 0 and k£ = 0 (mod 4), then by Theorem 3.1 there exists a Type
1 weighting of X6,164+%. Thus, by Theorem 3.2, there exists an irregular
weighting of Xy, , with the strength specified in the theorem. When m > n,
a minimal irregular weighting of Xy, » is produced by taking the transpose
of a minimal irregular weighting of Xn m. I
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