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Abstract. An algorithm is given to generate all k-subsets of {1...n} as increasing
sequences, in an order so that going from one sequence to the next, exactly one entry
is changed by at most 2.

1. Introduction

Throughout this paper, n and k are assumed to be integers for which0 < k < n.

Every k-subset of {1...n} can be written in natural order as an increasing k-
sequence. These sequences can be generated in lexicographic order very easily
[10,13] and efficiently [1]. However for certain applications it is particularly con-
venient to generate the subsets in an order so that the next one differs from the
previous one by a minor change.

A variety of algorithms have been developed to generate the subsets in lists
satisfying a variety of refinements [3] of the notion of a “minor change™:

WMCP (Weak Minimal Change Property)
The next subset is obtained from the previous one by removmg a
single element, z, and replacing it by a new one, y [2,9,11,12].
SMCP (Strong Minimal Change Property)
The next increasing sequence is obtained from the previous one by
changing exactly one entry {4,6]. SMCP implies WMCP.
VSMCP (Very Strong Minimal Change Property)
WMCP where |z — y| = 1 [7). VSMCP implies SMCP.

In the lexicographic list of 3-subsets, {1, n— 1, n} is followed by {2,3,4} so
unless n = 4 this would constitute a major change. In [7] it is shown that lists with
VSMCP only exist in special cases: k maybe 1,n—1,orn,butifl < k< n—1
then n must be even and k& must be odd.

The recent algorithm by Philip Chase [5] generates all k-subsets in a list satis-
fying what might be called:

AVSMCP (Almost Very Strong Minimal Change Property)
WMCP where |z — y| < 2.
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But the algorithm very frequently alters two entries in the increasing sequences
so does not satisfy SMCP.

The purpose of this paper is to demonstrate the existence of a list satisfying both
SMCP and AVSMCP and to give a new and efficient algorithm for generating such
a list for any nand k. A “strong and almost very strong” minimal change will be
referred to simply as a minimal change.

2. Existence of a Minimal Change List

We shall say two distinct integer sequences differ by a minimal change if they
are identical except in one entry and the difference in that entry is at most 2. Our
objective is to construct a list of all M = (}) increasing k-sequences on {1...n}
as S = (51,8:2,...,8y) where, for 1 < i < M, S differs from S; by a
minimal change; we will call S a minimal change list.

LetS = (81,82,...,8x) beany list of the increasing k-sequenceson {1 ...n}.
IfT = (T1,Tz,...,Tw) is any permutation of {k, k + 1,...,n} then each entry
in T except the last has a unique successor in T, and we shall say S follows T if
and only if whenever S;4, differs from S; in position & then the last entry in S;41
is the successor in T" of the last entry in S;.

We shall say apermutationT = (T3, T3, ..., Tp) of {j,7+1,...,m} is suitable
if:

) IT;=Ti|<2fori=1,2,...,p—1;and

@ ifl<g<r<s<ptheneitherTy > T, orT, < Ts.
Condition (1) asserts that successive entries in T" differ by at most two, and condi-
tion (2) implies that T is “‘concave up” so there are never three consecutive entries
where T; < Tiv1 > Tisa.

For example, if m = 9 and j = 4 thenp = m — j + 1 = 6 and the following
permutations of {4,5,...,9} are suitable:
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It is easy to see that:
(3) T&, T written in reverse order, is also a suitable permutation;
(4) the extreme value, m, must occur at one end of T or the other;
(5) if the end of T which equals m is removed, the remaining sequence 7" is a
suitable permutation of {j,7 + 1,...,m — 1};
(6) T is completely determined by its two end values and 7, its minimum value,

Theorem. Given any suitable permutation T of {k,k+1,...,n} oflength m =
n— k+ 1, there is a minimal change list S = (8, 8,,...,Sy) which:

(a) followsT
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®) startswith Sy =(Th—k+1,.... T -2, - 1,T1) and
() endswith Sy = (Tm—k+1,.... T —2,Tyn—1,T},)

For example, ifn= 6,k = 3,and T = (4,3,5,6) then the following is a
minimal change list satisfying (a), (b), and (c).

i Si

1 2 3 4
2 1 3 4
3 1 2 4
4 1 23
5 1 25
6 1 35
7 235
8 2 45
9 1 45
10 3 45
11 346
12 2 46
13 1 46
14 1 2 6
15 1 3 6
16 2 36
17 2 56
18 1 56
19 356
M=20 4 5 6

Proof: We will assume 0 < k& < nand proceed by induction on n. If n = 1 then
k = nand, in general, when k& = n the suitable sequence T° must be (n). There
is then one k-subset of {1,2,...,n} corresponding to the increasing sequence
S1=(1,2,...,n). Butthen § = (S)) satisfies the conditions of the theorem.

The case that £ = 1 may also be dealt with in general because if S; is set equal
to(Tj) forj=1,2,...,nthelist S = (5,8,...,8,) satisfies the conditions
of the theorem.

Assume the theorem for all values of nfrom 1 to p— 1 and suppose T" is a given,
suitable sequence on {k,k + 1,...,n} wheren=p > k > 1.

Either T\ = nor T, = nand we deal with these cases separately.

Suppose T = (Th,T3,...,Tm = m). The minimal change list we want will
decompose into two “blocks” because all S; which end in n occur after those
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which do not end in n.

i S;

1 (T)—k+l,...,T1—2,T1—l,T1 )
M ( E :Tm—l)
M+l ( : o)
M (n—k+1,..., n—=2,-1,n )

The first block consists of the S; which do not end in =, so they do not con-
tain » and correspond to the M’ = (”;‘) k-subsets of {1,2,...,n— 1}. Since
T' = (T1,T2,...,Tm-1) is a suitable permutation of {k,k+ 1,...,n— 1} by
our inductive assumption, there is a minimal change list §' = (8, S2,...,Su)
which follows T, starts with
Si=(M—k+1,... T -2, - 1,T7)
and ends with
S =T —k+1,...., Ty =2,Tra1 — 1, Tm-1).
Now what remains is construction of the second block. To begin let
SM'+1 = (Tm_| —k+ l,...,Tm_l —Z,Tm, -1, T,=n).
The change from Sy to Sy is then a minimal change.

WhenTy, = n,n—2 < Tp—1 < nsoeitherTy,_1 —1 = n—3 orn—2. Ineither
case there is a unique, suitable permutation T” of {k — 1,k,...,n — 1} which
ends in (n — 1) and starts with T}’ = T,,_; — 1. By the inductive assumption,
there is a minimal change list S” of the M" = 2:',) increasing ( k — 1) -sequences
on{1,2,...,n— 1} starting with

=T -k+2,....T{ - 1,T =Tp_1 = 1)
and ending with
Siyn=(n—k+1,....n=2,n-1).
To complete the construction of the second block, forj=1,2,..., M" let

Suwj = 8] followed by n as a last entry.
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Then the first block, S’, followed by this second block is a minimal change list
satisfying all the conditions of the theorem.

Finally we deal with the case when T" begins with n. In this case 7' is a suitable
sequence which ends with n and by the above argument there is a minimal change
list S which

(a) follows TR
(b) starts with

Si=(Tf-k+1,...,TE-1,TH
and (c) ends with
Sy=(TE—k+1,...,TE_1,TH),

But then S&, S written in reverse order, satisfies the conditions of the theorem. |

Conditions (a), (b), and (c) do not determine S uniquely unless they are applied
recursively to construct S in “blocks” as described in the proof, The algorithm in
the next section does precisely that.

Many variations of the construction are possible, such as making the first entry
(rather than the last) of the increasing sequences “follow” some suitable (but con-
cave down) permutation T = (T1,T3,...,Tw) of {1,2,...,n—k+ 1} and speci-
fying that the list (and subsequent blocks) begin with (T}, T3 + 1,71 +2,..., T\ +
k — 1) and end with (T, , Ty + 1,T + 2)}..., Ty, + k — 1). For example when
n=6,k=3andT = (3,4,2,1) weobtain the following minimal change list:

345 346 356 456 256 246 245 235 236 234
134 135 136 156 146 145 125 126 124 123

Evidently there are many minimal change lists of all k-subsets of {1,2,...,n}.

3. An Implementation Algorithm

In the construction, values in S[ k] “follow” some predetermined, suitable permu-

tationT of {k,k+ 1,...,n} and are constant in “blocks” until the last increasing
k-sequence in the block is encountered. At the end of a block the current value of
S[ k] is changed to its successor in T", nv.

We remarked earlier that a suitable permutation is completely determined by
its first, last, and minimum entries. The function nextvalue appearing below has
parameters z, first, min, and last as inputs and returns either the successor of
inT or, when z = last, returns z + 1 or z + 2 by default. A default value larger
than last is important to the algorithm.

While S[k] is fixed at some value z, all (k — 1)-subsets of {1,...,z— 1} are
generated in S[1],..., S{k— 1] to follow the unique suitable permutation of {k —
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1,...,z—1} withfirst = S[k—1],min = k—1 and, last = minimum{z,nv}-1.
These are generated recursively until = = last.

The algorithm is given below (without types and declarations) as a pseudo code
procedure where n, k, and S are global variables and Process is a procedure which
receives the subsets as they are generated for some unspecified purpose.

FUNCTION nextvalue ( z, first , min, last);

BEGIN
IF z > first THEN RETURN z + 1
ELSIF z > last + 1 THEN RETURN z — 1

ELSIF  ((first < last) AND ODD(first — z) OR
((first > last) AND ODD(last + 1 — z)) THEN

RETURN z + 2
ELSIF z > min + 1 THEN RETURN z -2
ELSIF z = min + 1 THEN RETURNz —1
ELSE RETURN z + 1
END
END nextvalue;

PROCEDURE GenSubsets(first , index , last);
BEGIN
IF index = k THEN
FOR1:=1TO kDO
Slil:=first —k+14
END;
Process
END;
nv = first;
REPEAT
z :=nv; Slindex] := z;
IF z <> first THEN Process END;
nv = nextvalue(z, first ,index, last) ;
IF (index > 1) AND (z > index) THEN
IF < nv THEN newlast ==z — 1
ELSE newlast :=nv — 1
END;
GenSubsets(S[index — 1], index — 1, newlast)
END
UNTIL z = last
END GenSubsets;

4. Complexity of the Algorithm

Since each complete execution of the procedure results in several subsets being
generated and sent to Process, the number of calls of GenSubsets is less than the
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number of k-subsets. Therefore the amortized running time per subset is O(1)
independent of n and k.

The recursion may be removed by “stacking” values of first, last, and nv in ar-
rays indexed from 1 to k. Also a “next index to alter” array may be constructed for
returns from the recursion to produce a non-recursive version. However formu-
lating a version which is “loopless” in the sense of [8] remains an open problem.
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