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Abstract

A (12,6, 3) cover is a family of 6-element subsets, called blocks,
chosen from a 12-element universe, such that each 3-element subset
is contained in at least one block. This paper constructs a (12,6, 3)
cover with 15 blocks, and it shows that any (12,6,3) cover has at
least 15 blocks; thus the covering number C(12,6,3) = 15. It also
shows that the 68 nonisomorphic (12, 6,3) covers with 15 blocks fall
into just two classes using a very natural classification scheme.

1 Introduction

A general (v, k,t) cover is a family of k-sets, called blocks, chosen from a
v-element universe, such that each of the (¥) possible i-sets is contained
in at least one of the blocks. The size of a cover is its number of blocks.
A minimum (v, k,t) cover is one with minimum size; that size is called
the covering number and is denoted by C(v,k,t). W. H. Mills and R. C.
Mullin [2] survey the known covering numbers for small v, k, and &.

The present paper has two main results. The first is that the covering
number C(12, 6,3) = 15. The second, loosely, is that the size-15 covers form
two natural classes; a more precise statement requires a few definitions. A
(v, k,t) covering family is the same as a (v, k,t) cover except that some
of its sets, still called blocks, might have fewer than k elements (but be
nonempty). An element-minimal (v, k,t) covering family is one for which
the removal of any element from any block leaves some t-set uncovered.
Element-minimal covering families, then, are covers with the fat trimmed
away, and hence are in a sense more natural than covers. A completion of a
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(k—d)-set, for 0 < d < k, is the k-set that results from adding to it d other
elements of the universe. A completion of a family of sets is the family of
k-sets that results from a completion of each of its sets. So a more precise
statement of the second main result is: Every (12,6, 3) cover of size 15 is
isomorphic to a completion of exactly one of two specific element-minimal
covering families (shown in Figures 1 and 6).

Here’s the layout of the rest of the paper. Section 2 constructs a (12,6, 3)
cover of size 15, providing the upper bound. (The construction generalizes,
yielding, for example, C(18,9,4) < 43, which currently is the best bound
for that case.) Section 3 lists some properties of minimum (11, 5, 2) covers;
R. G. Stanton [5] showed, in essence, that every such cover is a completion of
a single specific element-minimal covering family. Those (11, 5,2) properties
are useful, because the blocks of a (v,k,t) cover that contain a specific
element e, after e has been deleted, form a (v—1,k—1,t—1) cover, called
the e-induced cover, or sometimes just e-cover. So in general the properties
of (v—1,k—1,t—1) covers restrain (v, k,t) covers. Accordingly, using
properties established in Section 3, Section 4 proves a lower bound of 15
on C(12,6,3) and Section 5 shows that the size-15 covers fall into just two
classes, each given by an element-minimal covering family.

2 An Upper Bound on C(12,6,3)

We represent a (v, k,t) cover as an incidence matrix whose rows are the
blocks and whose columns are the elements of the universe. Figure 1 dis-
plays what turns out to be a minimum, element-minimal (12, 6, 3) covering
family. The (7, j) entry is a ‘e’ if the #th block contains the jth element
of the universe. (The symbols T and E stand for 10 and 11.) A subset
of elements corresponding to columns between two adjacent vertical lines
in a figure is called a file; the three files defined in Figure 1, for example,
are {0,1,2,3}, {4,5,6,7}, and {8,9, T,E}. A subset of blocks between two
adjacent horizontal lines in a figure is called a rank. And a subset of blocks
covers a set if one of its blocks contains the set.

Here are a few more definitions. The degree of an element (or a set) in a
set of blocks is the number of those blocks that contain the element (or the
set). The terms pairs and triples refer to unordered 2-sets and 3-sets; we
sometimes abbreviate the usual set notation, writing triples, for example,
in the form abc. And we sometimes abuse terminology by talking about a
block in a cover and the corresponding block in an induced cover as if they
were the same.

So in the family of twelve 6-sets and three 4-sets in Figure 1, each
element has degree 7 and each pair of elements, it so happens, has degree 3.
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Figure 1: An element-minimal (12, 6, 3) covering family of size 15.

That family can’t be a (12,6, 3) cover, because the last three sets aren’t
6-sets, but we’re about to prove that it nevertheless covers all triples.

Lemma 2.1 The fifteen blocks in Figure | constitute an element-minimal
(12,6, 3) covering family.

Proof. Element minimality follows from Theorem 3.1, a result due to R. G.
Stanton [5] implying that each element must have degree at least 7.

To show that any given triple is covered by the family in the figure, we
assume that the triple isn’t contained in a single file, since block 13, 14,
or 15 would cover it, and we examine the structure of the first twelve blocks,
which have the form

AlA[A 01 2 3 01 2 3
g i g , where A = : ¢ . and B = * :
B|(B|A . . e o

The columns of the 4 x 3 matrix of A’s and B’s correspond to the files
of Figure 1, and the rows correspond to the first four ranks of the figure.
Notice that the matrices A and B are complementary, in that an element
of A is a ‘e’ if and only if the corresponding element of B is not, and that
A covers all three pairs containing 0 while B covers the other three pairs.
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We consider three cases, based on the number of distinct residues mod-
ulo 4 among the three elements of the triple. ‘

Case 1: ezactly one distinct residue. The AAA rank covers the triple,
using any of the three blocks if the residue is 0, or using block ¢ if the
residue is 1.

Case 2: ezactly two distinct residues. If one of the residues is 0, then
again the first rank covers the triple. Otherwise: If the three elements
occur in just two files, the rank having B’s in those two files covers the
triple, using block ¢ of the rank if the missing nonzero residue is ; and if
the elements are spread among all three files, then the rank having A in the
file containing the element with nonrepeated residue and having B’s in the
other two files covers the triple, using block 7 of the rank if the nonrepeated
residue is 4. .

Case 3. three distinct residues. If one of the residues is 0, then the rank
having A in the file containing that residue and having B’s in the other
two files covers the triple, using block i of the rank, where i is either the
residue of the other element in the A file, if such an element exists, or is the
missing residue if no such element exists. Otherwise, no residue is 0, and
at least one of the files contains exactly one element, say with residue i,
so the rank having A in that file and B’s in the other two files covers the
triple, using block ¢ of the rank.

That establishes the lemma. |}

Incidentally, a simple generalization of the construction above produces
a (6r,3r,r+1) covering family for arbitrary » > 0. The A and B matrices,
instead of being 3 x 4, are -;-(3,') x 2r, but the resulting covers, of size
2. ('i’) + 3, are not in general minimum—in fact they are poor covers
asymptotically. Nevertheless for r = 3 the construction gives C(18,9,4) <
43, the best current bound [1], cutting in half the gap between the previous
best 52 and the lower bound 34.

3 Properties of a Minimum (11,5,2) Cover

The previous section established an upper bound of 15 on C(12,6,3). A
fairly easy lower bound of 14 comes from the inequality

ookt > [fliz-izgql - o

which is due to J. Schénheim [4] and is called the Schonheim bound. That
bound follows from iterating the well-known inequality

Cv, k1) > [%C(v—l,k—l,t—l)], 2)
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Figure 2: The minimum, element-minimal (11, 5,2) covering family.

which in turn follows from a simple counting argument: The number of
element-in-block occurrences in a minimum (v, k, t) cover is k C(v, k,t), and
it also equals the sum, over all v elements, of the size of the element-induced
" (v=1,k—1,t—1) cover. Since that sum is at least vC(v—1,k—1,t—1),
we get kC(v,k,t) > vC(v—1,k—1,t—1), which implies inequality (2).

For our case, the inequality says C(12,6,3) > [%0(11’5’ 2)], which
gives the lower bound of 14. But there’s more to be gleaned from a minimum
(11,5,2) cover than that it’s of size 7; its structural properties will allow
us, in Section 4, to raise the lower bound to 15.

The main property of a minimum (11,5,2) cover, due to R. G. Stan-
ton [5] but stated in a slightly different form here, is that it is, in essence,
unique:

Theorem 3.1 (Stanton) Any minimum (11,5, 2) cover is isomorphic to
some completion of the element-minimal covering family in Figure 2.

Remarks. The covering family of Figure 2 is what R. C. Mullin [3] calls a
star design. Of its possible completions, only two covers are nonisomorphic.
The covering family is element minimal because each element has degree 3,
which the is minimum, since an element’s induced (10, 4, 1) covering family
must have size at least [10/4] = 3.

Either explicit or implicit in Stanton’s paper are several properties of
minimum (11, 5,2) covers that we’ll find useful; they are stated without
proof and are all evident from Figure 2. (They concern covers rather than
covering families.)

Property 3.2 No element has degree § or more, two elements have de-
gree 4, and nine elements have degree 3.

Property 3.3 At least one of the blocks contains elements just of degree 3.
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That property makes it easy to see why there are only two nonisomorphic
covers: Assume without loss of generality that block 1 contains only ele-
ments of degree 3. Then block 7, the triple, must be completed with two
elements from 78TE, either both from the same file (78 or TE) or, noni-
somorphically, split across the two files (7T, 7E, 8T, or 8E); the two cases
are nonisomorphic because only in the former is there a pair of degree 4.

Property 3.4 Exactly four pairs of elements have degree 8 or more. Those
pairs are disjoint, and at most one of the pairs has degree 4.

It’s time for a few more definitions, which apply to minimum (11,5, 2)
covers. A couple is one of the pairs of degree 3 or 4, and an element of
a couple is a spouse of the other element. A block is short if it contains
at most one couple—it corresponds to the 3-set of the element-minimal
covering family. A block is full if it’s not short. An element is free if it
has degree 4—it corresponds to an element of the short block added upon
completion. An element is short if it’s contained in a short block but is not
free—it has degree 3. And a friad comprises the three other elements in a
full block containing a specified marking couple.

Property 3.5 The eleven elements are partitioned uniquely into four cou-
ples and three short elements.

Property 3.6 Two of the eight nonshort elements are free.

Property 3.7 A short block comprises three short elements and two free
elements.

Property 3.8 A free element occurs in three full blocks and in the short
block.

Property 3.9 Any pair containing a nonshort element occurs in some full
block.

Property 3.10 The seven blocks consist of one short block and siz full
blocks.

Property 3.11 A full block contains exactly two couples.

Property 3.12 Two full blocks meet in ezactly a couple or exactly a short
element.

Property 3.13 The short block meets a full block in at least a short ele-
ment.
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Property 3.14 The short block meets a triad in at least a short element.
Property 3.15 A couple has degree 3 in the full blocks.
Property 3.16 A triad consists of one short element and one couple.

Property 3.17 A couple marks three triads. For each such triad: In the
three full blocks not containing the marking couple, the triad’s couple occurs
ezactly twice and its short element occurs ezxactly once, in three separate
blocks.

For example in Figure 2 the couple 12 marks the triads 345, 678, and 9TE;
in the other three full blocks, triad 345’s couple 45 occurs twice, in blocks
5 and 6, and its short element 3 occurs once, in block 4.

Property 3.18 A block is short if it contains exactly one element of a
couple.

Property 3.19 A block is short if it contains two short elements.
Property 3.20 If a pair has degree 2, one of the two blocks is short,

Property 3.21 If a pair has degree 2, one of the two elements is free (it
has degree 4).

Property 3.22 If a pair occurs in three blocks, it’s a couple.

Property 3.23 If a pair occurs in two full blocks, it’s a couple.

4 The Matching Lower Bound on C(12,6, 3)

The lower-bound proof follows two simple facts about (12,6,3) covers of
size 14.

Proposition 4.1 Each element has degree 7.

Proof. Each element has degree at least 7, since any induced (11,5,2)
cover has at least seven blocks; but there are only 14-6 = 84 = 12 -7 total
occurrences to go around, so the twelve elements each have degree 7. 1

Proposition 4.2 No pair of elements has degree § or more.

Proof. Each element has degree 7, so each induced (11,5, 2) cover is min-
imum, and since by Property 3.2 no element has degree 5 or more in such
a cover, no pair has degree 5 or more in the (12,6, 3) cover (of size 14). 1
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Lemma 4.3 The covering number C(12,6,3) > 15.

Proof. Assume a size-14 cover. Element 0 has degree 7, so by Theorem 3.1
we may take the first seven blocks as below, with the two free elements of

01 2|13 4 516 7 8|9 T E
1|le o oo o o

2]le o o e o o

J|le o o e o o
4] e . o o o o
S|e o o e .
6)e o o o eo| o
T|e '3 . .

block 7 coming from 78TE. Element 0 occurs no more, and elements 1 and 2
occur four more times each. But by Proposition 4.2 the pair 12 has degree at
most 4, so the remaining seven blocks are three lzzzzz’s, three 2zzzzr’s,
and one 12zzzz, where 2 # 0, 1, or 2. Now in the 1-cover the pair 02 occurs
in blocks 1, 2, and 3 and thus by Property 3.22 is a couple. Furthermore
the block 12zzzz is short, by Property 3.18, so by Property 3.10 all three
blocks 1, 2, and 3 are full, hence the couple 02 marks the triads 345, 678,
and 9TE. Similarly, in the 2-cover the couple 01 marks the same triads.
Moreover since the block corresponding to 12zzzx is short in each of the
two covers, elements 1 and 2, in each other’s cover, belong to couples and
thus are not short, by Property 3.5. Thus the 1- and 2-covers share a short
element a (in fact they share at least two), and since element a is in a
triad abc among 345, 678, and 9TE that occurs in both covers, the three
lzzzzz’s must, by Property 3.17, contain the couple bc twice, and so must
the three 2zzzzz’s. Hence given its occurrence in block 1, 2, or 3 the pair bc
has degree at least 5, contradicting Proposition 4.2. 1

Lemmas 2.1 and 4.3 prove that size 15 is the minimum:

Theorem 4.4 The covering number C(12,6,3) = 15.

5 The Two Classes of Minimum Covers

A final few definitions for minimum (12,6, 3) covers: An a-element has
degree a. An abc-triple consists of an a-element, a b-element, and a c-
element. A duplicate (triplicate) triple has degree at least 2 (at least 3).
An ab-couple, in the induced cover of a 7-element, is a couple consisting of
an a-element and a b-element (counted in the (12,6, 3) cover). The excess
of an element is seven fewer than its degree. The excess of a set of elements
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is the sum of their excesses. And an element or a block is a-short if it is
short in the induced cover of the 7-element a.

Proposition 5.1 Any minimum (12,6,3) cover contains siz or more 7-
elements.

Proof. Since each element has degree at least 7, and since there are only
15-6 = 90 total occurrences, at most 90 — 12 - 7 = 6 elements have degree
more than 7, so at least six have degree 7. I

Lemma 5.2 Any 7-element in a minimum (12,6, 3) cover has degree 3 in
the induced cover of another 7-element.

Proof. Assume to the contrary that 0 and 1 are 7-elements, and that 1 has
degree 4 in the 0-cover. (It has degree 3 or 4 by Property 3.2.) Since 1 is
not short, let 2 be 1’s spouse; let the couple 12 mark the triads 345, 678,
and 9TE in blocks 1, 2, and 3; let 3, 6, and 9 be the corresponding short
elements; and let block 7 be short. Now consider the 1-cover. The pair 02
is a couple, by Property 3.22, and none of blocks 1, 2, or 3 is short, by
Property 3.13, so it must be block 7—the other one containing the free
element 0—that’s short, by Property 3.8. Couple 02 marks the triads 345,
678, and 9TE in blocks 1, 2, and 3; and at least two of the 0-short elements
3,6, and 9, say 3 and 6, are also 1-short, and thus the files 345 and 678 in
blocks 4, 5, and 6 are duplicated in blocks 8, 9, and 10, by Property 3.17.
The first ten blocks thus start out

01 2|3 4 5(6 7 8|9 T E
1|le o oo o o
2|0 o o e o o
J|le o o e o o
41 e ° o o o o
5| e e o e o o
6| e o o o oo
Tle o 2 7 ?2]le 7 2|e 7 7
8 . e e |7 72 2
9 L 4 [ ] L [ ? ? ?
10 [ 4 [ ] [ [ ] * ? ? ?

with one more element in block 7 along with the uncertain region in blocks
8, 9, and 10 to be filled in. Now by Proposition 5.1 there are at least four 7-
elements besides 0 and 1. But none of 4, 5, 7, or 8 is a T-element, because its
spouse in the 0-cover would have degree at least 5 in its own induced cover,
violating Property 3.2; nor is 3 or 6 a 7-element, because the pair 01 in the
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3- or 6-cover would violate Property 3.21, as both 0 and 1 have degree 3
in each. Thus 2, 9, T, and E are 7-elements. But 9 can’t be 1-short, since
then it would by Property 3.17 have degree 1 among blocks 8, 9, and 10,
and thus in the 9-cover the pair 01 would again violate Property 3.21; so
either T or E is 1-short, say T. Then among 9, T, and E, only T occurs
in block 10, and only 9 and E occur in blocks 8 and 9, by Property 3.17.
Finally, in the E-cover the pair 0T is a couple that marks the triads 129,
378, and 456 (in blocks 3, 4, and 5); but block 9 isn’t short, because it
misses the triad 378 completely, contrary to Property 3.14, yet it’s also not
full, as it contains the complete triad 456, violating Property 3.12. That
contradiction finishes the lemma. [}

Corollary 5.3 In a minimum (12,6, 3) cover, if a 7-element z is in the
short block of a y-cover (y is a 7-element), then z is y-short.

Proof. By the preceding lemma, z is not free, hence by Property 3.7 it is
short.

Lemma 5.4 In a minimum (12,6, 3) cover, if a 7-element z is y-short,
then conversely y is z-short.

Proof. In the y-cover, z occurs in two full blocks meeting in just z, by
Property 3.12, hence in the z-cover those blocks meet in just y; so y is
z-short, by Properties 3.12 and 3.13. 1

Lemma 5.5 In a minimum (12,6,3) cover, if a block is both z- and y-
short, then for any other 7-element z in the block, it’s also z-short.

Proof. By the previous corollary and lemma, both £ and y are z-short,
hence by Property 3.19 the block, too, is 2-short. §

Next we consider minimum covers without duplicate 777-triples. Part
of those covers’ structure, derived in the next paragraph, is used both in
Lemmas 5.6 and 5.7 and is shown in files 012 and 345 and blocks 1 through 7
of Figure 3.

The excess of the twelve elements in a minimum cover is six. If the
cover has no duplicate 777-triple, then the induced cover of any 7-element,
say element 0, contains no 77-couple, so the excess of each of the four
couples is at least 1, hence there is a couple with excess exactly 1. Let
its 7-element be 1 and its 8-element be 2, so that 012 is a triplicate 778-
triple. In the 0-cover let the couple 12 mark the triads 345, 678, and 9TE
in blocks 1, 2, and 3, let blocks 4, 5, and 6 also be full, and let block 7 be
short. Similarly, in the 1-cover the couple 02 marks in blocks 1, 2, and 3
the same three triads; let blocks 8, 9, and 10 be full and block 11 be short.
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Since there are at least four 7-elements among 3 through E, at least one
of the triads contains exactly two 7T-clements, say elements 3 and 4. (No
triad may contain three 7-elements, since each couple has positive excess.)
Furthermore, each of 3 and 4 is either 0-short or l-short but not both,
since, of the triad 345, (a) element 5 can’t be 0- or 1-short, as that would
create a couple 34 without positive excess, and (b) element 3, say, can’t
be short in both covers, as 5 would then have degree at least 5 in the
4-cover, contrary to Property 3.2. Thus let 3 be 0-short and let 4 be 1-
short. So by block 11 elements 3 and 4 have occurred exactly five times,
exactly once together, hence each must occur exactly twice more, and thus
together, say in blocks 13 and 14. Now the 8-element 2 doesn’t occur in
blocks 4 through 6 or 8 through 10, so it must occur at least once in blocks
7 or 11, say 11. It must also occur at least once in blocks 13 and 14;
but then it must occur in both blocks 13 and 14, since otherwise in the
4-cover the pair 23 would violate Property 3.21. Moreover element 5 can’t
occur in either block 13 or 14, because the six elements 6 through E must
each occur in those two blocks, lest one of the six triples 34z, for £ among
6 through E, be uncovered. Finally, by Property 3.18 block 11 is 4-short,
due to the couple 23.

Lemma 5.6 If a minimum (12,6, 3) cover has no duplicate 777-triple then
no element is both z- and y-short for 7-elements x and y of a triplicate
778-triple.

Proof. Assume to the contrary that 6 is both 0- and 1-short, as shown in
the first eleven blocks of the file 678 of Figure 3. (For now, ignore the rest
of that file, along with blocks 8 through 15 of file 9TE.) In the 4-cover,
the couple 05 marks the triads 123, 6TE, and 789, and by Property 3.23
the pair 78 is a couple, since it occurs in the full blocks 6 and 8 (block 11
is short). Furthermore, by Property 3.12 the full blocks 6 and 8 can’t
both contain element 9, hence 9 must be missing from block 8, which by
Property 3.17 makes 9 the 1-short element in the triad 9TE, so that the
file 9TE in blocks 8 through 11 is as shown in the figure. Therefore back
in the 4-cover, Property 3.23 shows that the pair TE is a couple, along
with 78; and in blocks 13 and 14 each couple occurs with the short element
of the other’s 05-marked triad (the triads are 6TE and 789), since if, say,
78 occurred with the short element 9 from its own triad Property 3.12 would
be violated (recall that each element 6 through E has degree 1 in those two
blocks). Thus we may take blocks 13 and 14 as in the figure. Finally, since
each pair 78 and TE has degree at least 5, Property 3.2 ensures that no
element in 78TE is a 7-element; and neither 2 nor 5 is a 7-element, since
in the 1-cover each couple (02 and 35 in particular) has positive excess. So
6 and 9 must be 7-elements. But in the 6-cover blocks 2 and 13 meet in
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Figure 3: An unfinishable partial (12,6, 3) cover.

a triple, as do blocks 5 and 9, contradicting Property 3.12 and completing
the lemma. |}

Lemma 5.7 A minimum (12,6,3) cover without a duplicate 777-triple is
isomorphic to some completion of the covering family in Figure 1.

Proof. The covering family in Figure 1, after permuting the elements by
(267T8)(13954) and the blocks by (789101214 11 13), becomes the one in
Figure 4, so to prove the lemma it suffices to use the covering family of
Figure 4, which more clearly shows the (11, 5, 2) structure of the 0-, 1-, and
2-covers.

By Lemma 5.6 and the paragraph preceding it, we may take 012 to
be a 778-triplicate triple for which none of the 0-short elements, say 3, 6,
and 9, is among the 1-short elements, say 4, 7, and T. Thus the first eleven
blocks, along with files 012 and 345, in which 3 and 4 are 7-elements, are
as in Figure 5. Furthermore in the 4-cover the couple 05 marks the triads
123, 6TE, and 789, and by Property 3.23 the pairs 6E and 89 are couples,
since each occurs in two full blocks. Thus in blocks 13 and 14 each of thosc
couples occurs with the short element from the other couple’s triad, and
we’ve reached the state of Figure 5.

It remains to show that, as in Figure 4, block 12 is exactly 25679T and
block 15 contains 258E. Let a and b be two 7-elements among 6 through E.
Eight of the (§) possible cases—a is in 679T and b is in 8E—are disallowed,
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Figure 4: A canonical element-minimal (12, 6, 3) covering family.
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Figure 5: A finishable partial (12,6, 3) cover.
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because ab would be a 77-couple in the induced cover of the 7-element
0, 1, 3, or 4, yielding a forbidden duplicate 777-triple. For the remaining
cases—ab is 8E or is chosen from 679T—a and b have occurred, outside of
blocks 12 and 15, exactly six times, exactly twice together (neither @ nor b
corresponds to a ‘7’ of blocks 7 or 11 of Figure 5, as a or b would then be
free in the 0- or 1-cover, violating Lemma 5.2), so in blocks 12 and 15 they
must each occur just once, together. If ab is 8E then the pair must occur,
say in block 15, with both 2 and 5, since neither triple 258 nor 25E occurs
elsewhere; thus block 15 contains 258E, as required. Also as required,
block 12 must be exactly 25679T, since the other six elements have used up
their seven occurrences elsewhere. Finally, if ab is chosen from 679T then
each of @ and b is 0- or 1-short. Now block 7 is 3-short, by Property 3.11,
since it contains at most one of the 3-cover’s couples 15, 24, 7E, and 8T.
So block 7 is 0- and 3-short, and, as we’ve seen, block 11 is 1- and 4-
short, hence by Lemma 5.5 the short block of each of a and b is 7 or 11,
whichever is relevant. Thus a and b must occur, say in block 12, together
with the other two elements z and y from 679T, since otherwise neither
triple abz nor aby would occur outside both a’s short block and b’s short
block, violating Property 3.9 (for example bz, at most one of whose elements
is a-short, would be the violating pair in the a-cover). Similarly, 2 and 5
must be in block 12 if the triple 25a is to occur outside a’s short block.
Hence again block 12 is 25679T, and block 15, which must cover 28E and
58E, therefore contains 258E. Both cases yield the desired covers, and the
lemma is proved. I

Finally we turn to minimum covers that contain a duplicate 777-triple.

Lemma 5.8 A minimum (12,6, 3) cover containing a duplicate 777-triple
is isomorphic to some completion of the covering family in Figure 1 or to
the cover of Figure 6.

Proof. The duplicate 777-triple must also be triplicate, since otherwise if
a, b, and ¢ are the three 7-elements, the pair ab has degree 2 in the c-cover
and hence by Property 3.21 contains a free element, violating Lemma 5.2.
Thus we may take blocks 1, 2, and 3 and file 012 to be as in Figure 6. Since
0, 1, and 2 are 7-elements, every block is in either the 0-, 1-, or 2-cover,
and the locations of the short elements in blocks 7, 11, and 15 completely
determine the nine remaining full blocks. We distinguish three cases, based
on the distribution of the 0-, 1-, and 2-short elements among 3 through E.

Case 1: no element is 0-, 1-, or 2-short twice. Any such cover is iso-
morphic to a completion of the covering family in Figure 4, and therefore
Figure 1.

Case 2: an element is 0-, 1-, and 2-short. Assume it’s element 3. Then
none of the twelve triples 3yz, for y in 45 and z in 6789TE, occurs outside
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Figure 6: The other minimum (12, 6, 3) cover.

the 0-, 1-, and 2-short blocks 7, 11, and 15, and at most four such triples can
occur in such a block, so exactly four must occur in each. Thus 45 occurs in
all three blocks, and we may take the remaining 0-, 1-, and 2-short elements
as in Figure 6, which determines the rest. It remains to show that what’s
in the figure is actually a cover. Any triple containing 0, 1, or 2 is covered,
since the 0-, 1-, and 2-covers are completions of the covering family in
Figure 2. And it’s not hard to show that the remaining (3) = 84 triples in
3456789TE are covered; we omit the details.

Case 3: an element is 0-, 1-, or 2-short exactly twice. We may assume
that element 3 is 0- and l-short, and that 4 is 2-short, as in file 345 of
Figure 7. If 3 were a 7-element, it wouldn’t occur in block 15, and block 1
would be 3-short, because it’s the only block in the 3-cover that contains
both 0 and 1, which by Lemma 5.4 are both 3-short. But then 2 would
be 3-short, by Corollary 5.3, and vice versa, by Lemma 5.4, contradicting
3’s nonoccurrence in block 15, and showing that 3 is an 8-element and that
it occurs in block 15. Furthermore neither 4 nor 5 is a 7-element, since
the pair 45 has degree at least 5 and thus the 4- or 5-cover would violate
Property 3.2. So any file with an element that’s 0-, 1-, or 2-short exactly
twice contains no 7-element and has excess at least 3. Now to cover all six
triples 342, for z in 6789TE, either 34 occurs three times in blocks 7, 11,
and 15, in which case file 345 has excess at least 4, or it occurs just twice in
those blocks, in which case files 678 and 9TE each have excess at least one;
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Figure 7: Another unfinishable partial (12,6, 3) cover.

but in both cases, neither file 678 nor 9TE has excess 3, hence neither file
has an element that’s 0-, 1-, or 2-short twice, and we’ve reached the state of
Figure 7. Finally, since one of the last two files contains two 7-elements, we
may assume that the 0-short element 6 is a 7-element. Then in the 6-cover:
Element 0 is short, by Lemma 5.4; the pair 39 occurs exactly twice—in
blocks 7 and 8—so block 7 is 6-short, as it’s the one containing 0; and the
pair 45 has degree 2 outside the short block, contradicting Property 3.15.
Therefore Case 3 is impossible, completing the lemma. |

Theorem 5.9 Any minimum (12,6,3) cover is isomorphic to a comple-
tion of the element-minimal covering family in Figure 1 or to the element-
minimal cover of Figure 6, but not both.

Proof. The isomorphisms and the covering family’s element minimality
follow from Lemmas 5.7, 5.8, and 2.1. The cover is element minimal, since
(i) each element but 4 and 5 has degree 7, the minimum, and (ii) there
exists, for z in 012, for y in 45, for s an z-short element, and for n an -
nonshort element, a nonduplicate triple of the form 01y in block 1, zyn in
blocks 5, 6, 9, 10, 13, and 14, and yss in blocks 7, 11, and 15. Finally,
the pair 45 has degree 10 in the cover, which thus is not isomorphic to a
completion of the covering family. 1§

Remarks. Our computer calculations have shown that the covering fam-
ily of Figure 1 has exactly 67 nonisomorphic completions, giving exactly
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68 nonisomorphic minimum (12, 6, 3) covers in all. Also, the relation defined
by two minimum covers being completions of the same element-minimal
covering family is not in general an equivalence relation, since there ex-
ist three minimum (13, 4, 1) covers for which transitivity fails. Still, for the
(12, 6, 3) case this classification scheme is much nicer (two classes versus 68)
than simple isomorphism.
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