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ABSTRACT. We consider the realizations of a sequence (p3,ps,pg,--.) of
nonnegative integers satisfying the equation 3", <, (k —4)pr +8=0as an
arrangement of simple curves defined by B. Griinbaum [4]. In this paper,
we show that an Eberhard-type theorem for a digon-free arrangement of
simple curves is not valid in general, while some sequences are realizable as
a digon-free arrangement of simple curves.

1. Introduction.

B. Griinbaum extended the notion of “an arrangement of lines” to “an
arrangement of curves” in his book [4], and obtained many results. Accord-
ing to his definition, an arrangement of simple curves is a family of simple
curves such that every two simple curves meet at precisely two points.

As we know, two curves can meet at a point in two different ways. That
is, they either cross or osculate each other. A point is called an intersec-
tion point (a kissing point or an osculation point, respectively) if two
curves cross (osculate, respectively) at this point. However, in this paper,
we shall assume that every meeting point of curves is an intersection point
unless stated otherwise. The terms “curves” and “arrangement” stand for
“simple closed curves” and “arrangement of simple closed curves”, respec-
tively, and the terms “points” and “vertices” will be used interchangeably
throughout this paper. .

B. Griinbaum’s definition allows that three or more curves may intersect
at the same point, but we assume that only two curves intersect at the same
point to keep the arrangements as 4-valent graphs. Thus, in this paper, an
arrangement of curves A = {C),---,C,} in the Euclidean plane E? is
a finite family of n simple closed curves with the properties:

(1) Every pair of curves has 2 points in common.
(2) Exactly two curves meet at each point (or vertex).
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The graph of an arrangement of curves A, denoted by G4, is a plane
4-valent graph whose vertices are intersection points and whose edges are
the segments of curves between each pair of adjacent points (perhaps, with
multiple edges). Let G be a 4-valent plane graph and let px(G) (or p:)
denote the number of faces with k sides in G for all positive integer k. We
call a sequence (p1, p2, 3, P, Ps, - - - ) a p-vector (or aface vector) of G.

Let A is an arrangement, then p;(G4) = 0 because of the definition of
the arrangement. An arrangement A is called a digon-free arrangement
if p2(G4) = 0. In this case, we have

(*) ps=8+) (k—4)-p

k>4

from the well-known Euler’s formula. Notice that the coefficient of p, is
zero in the equation (*).

A sequence (p3,pt,ps,...) of nonnegative integers satisfying the equa-
tion (#) is said to be realizable as a digon-free arrangement if there
is a nonnegative integer p; and an arrangement A such that px(G4) = p;
for all k, 3 <k < n, and px(G4) =0 for all k > n.

Let A be an arrangement of n simple curves. Then, each curve in A
contains the same number of vertices (or edges) of G4. Let r be the number
of edges (or vertices) in a simple curve, then r = 2(n —1).

Now, let us state our main results which concern about an Eberhard-type
question for an arrangement of curves raised by B. Griinbaum [4] (for the
Eberhard Problem, see [2], and for the analogues of Eberhard’s Theorem,
see 3], [6], [8], [9] and [10]).

Theorem A. A sequence (p3,ps, ps, . - - ) of nonnegative integers such that
pr = 1 for an integer k > 4, p3 =k +4, andp; =0 for all i # 3,4, and k
is not realizable as a digon-free arrangement.

Theorem B. A sequence (p3,pg, P§, - . . ) of nonnegative integers satisfying
the equation () where p} is even for all k is realizable as a digon-free
arrangement.

An arrangement of 4 curves in Figure 1 shows that the condition “digon-
free” in Theorem A is necessary. An easy modification shows the necessity
of the condition for all k£ > 5.

2. The proof of Theorem A.
For the proof of Theorem A, we need several lemmas and theorems.

Theorem 2.1 (W. Meyer [7]). Let A be a digon-free arrangement of n
simple curves, and let k be the largest integer such that pi(G4) # 0. Then,
k<2n-—4foralln>4.
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Corollary 2.2. Every face of the graph of a digon-free arrangement of 4
curves is either a triangle or a 4-gon.

Proof. By Theorem 2.1, the largest face of the graph of any digon-free
arrangement of 4 simple curves is a 4-gon. In fact, there are 8 triangles and
six 4-gons in such an arrangement.

Lemma 2.3. For a given sequence (p3, p§,ps, ... ) of nonnegative integers
such that p3 = 8 and p} = 0 for all i > 3, there is only one digon-free ar-
rangement of 3 curves (up to isomorphism) that realizes the given sequence
if we do not allow the addition of 4-gons (observe that the above sequence
satisfies the equation (x)).

Proof. Let A be a digon-free arrangement of n curves. Clearly, G4 is a
plane 4-valent graph. Thus,

2-e=4-v,ie., e=2-v,

where e and v are the number of edges and the number of vertices of
G, respectively. Moreover, e = n - r because every curve has r edges.
Combining these equalities with Euler formula, we have the fact that the
number of faces f(G4) in the graph G4 is 2+ 1(n-r). Since we have only 8
triangles, nr = 12. Hence, n = 2,r =6 or n = 3, r = 4 because n cannot be
larger than r. However, only the case “n = 3,r = 4” satisfies the equality
r = 2(n — 1). The arrangement of 3 curves is unique (up to isomorphism)
because there is only one arrangement of 2 curves that has 4 digons as its
faces, and the third curve must cut all 4 edges in the arrangement of 2
curves to make it a digon-free arrangement of 3 curves. This completes the
proof.

Lemma 2.4. Let G be a plane graph and let F be a face of G. Then there
is a plane graph G', isomorphic to G, such that the face of G’ corresponding
to F is the infinite face.

Proof. Since G is plane, it can be embedded on the sphere (see J.A. Bondy
(1], p138). Rotate the sphere in order to place the north pole inside the
region corresponding to F'. Now, embed the graph on the sphere into the
plane by using the stereographic projection.

Now, we are ready to prove Theorem A which shows that an Eberhard-
type theorem is not valid for the digon-free arrangements of curves.

We will use induction on m, the number of curves. Let G be the graph
of a digon-free arrangement of m curves. If m = 3, then all the faces of G
are triangles, by Lemma 2.3. If m = 4, then G has eight triangles and six
4-gons, by Corollary 2.1. Thus, our theorem is true for the case m = 3 and
m={4,
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Assume that our theorem is true for all digon-free arrangements of n
curves where n < m. That is, no digon-free arrangement of n(< m) curves
has only one k-gon (k > 4), k + 4 triangles and possibly some 4-gons.

Now, suppose that there exists a graph of a digon-free arrangement of
m curves that has one k-gon (k > 5), k + 4 triangles, and some 4-gons as
its faces. By Theorem 2.4, there exists a graph G’, isomorphic to G, whose
infinite face is the k-gon and all other faces are triangles and 4-gons (Figure
2 (a)).

Claim 1: No two sides of the infinite face of G’ are on the same
curve.

Otherwise, there is a curve that contains at least two edges of the infinite
face. Suppose that C; is such a curve that contains at least two sides of
the infinite face. Let e; be one of the edges of the infinite face contained in
the curve C;. Assign the labels ez, e3,..., e to all the other edges of the
infinite face counterclockwise (Figure 2 (b)). Let ¢; and ¢;,2 < i < j <k,
be two edges of the curve C) such that no edges between e; and e;, and no
edges between ¢; and e; can be an edge of the curve C) (note that ¢ and
j may be equal). Since two curves intersect each other only at two points,
two edges ¢, and e, where 2 < p < i < j < ¢ < k, cannot lie on the same
curve (otherwise, such a curve would intersect C) at least 4 times). Let
C3(Cs, respectively) be a curve that contains the edge ex(ex, respectively).
Then, the two curves C, and C3 must meet each other inside the curve
C, (Figure 2 (b)). Since the two curves C; and Cj create a digon, there
must be a curve that cuts through such a digon to make this arrangement
digon-free, and this curve must cut through the segments of the curve C;
from v; and v, as well as from vz and v4 to avoid making ¢-gons, where
t > 4 (dotted line in Figure 2 (b)). Then, the curve C; and this curve have
at least 4 intersection points in common. This violates the first condition
of the arrangement. In other words, every edge of the infinite face must be
contained in a different curve; that is, m > k > 4.

Claim 2: In G’, there is no configuration of three triangles as
in Figure 3.

Assume the contrary, i.e., assume that there is such a configuration of
three triangles as in Figure 3. Since m > k > 4 and r = 2(m—1), r cannot
be less than 8. Thus, the face F in Figure 3 that is adjacent to two triangles
is neither a triangle nor a 4-gon. In fact, if the face F' were a triangle, then
m = 3,r = 4 < 8. If the face F were a 4-gon, then the curve C is not
simple. Hence, the face F must be the infinite face of G’. This implies that
the infinite face contains two edges e and e’ which are on the same curve
(Figure 3), and this contradicts to the Claim 1. Thus, Claim 2 is true.

Claim 3: There is at least one curve C such that the arrange-
ment of m — 1 curves after removing the curve C from G’ is also
digon-free.
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Suppose that removing any curve in this arrangement creates a digon.
This means that every curve cuts through at least one digon. By Claim 2,
we can find at least k edge-disjoint digons, one for each curve. Thus, we
can assign two triangles to each curve, so the number of triangles in this
digon-free arrangement is not less than 2k. On the other hand, the number
of triangles p3 = k + 4. Therefore, k + 4 > 2k. But, this is absurd because
k > 5. Thus, Claim 3 is true.

Now, let’s complete the proof. By Claim 3, we can find a curve C such
that the arrangement of m — 1 curves, obtained from the arrangement of
m curves by removing the curve C, is still a digon-free arrangement. Then,
the infinite face becomes a k-gon or a (k — 1)-gon, depending on the face
F' (see Figure 4 (a) and (b)). Hence, we have a digon-free arrangement of
m— 1 curves with only one k-gon or one (k — 1)-gon, as well as some trian-
gles and some 4-gons as its faces. This violates our induction hypothesis.
Therefore, there is no digon-free arrangement of m curves that realizes the
given sequence.

3. The proof of Theorem B.

For the proof, let us introduce an operation called “adding a curve”
for the arrangement of curves. The first step of the operation is to “draw
a parallel curve”. Let A be an arrangement of n curves. Select a curve C
in A, and draw a new curve C’ inside the curve C such that C’ is parallel
to the curve C and no vertex is between two curves C’' and C. Clearly, we
can apply this operation to the curve C from outside. Observe that this
process only creates exactly 2(n — 1) 4-gons since there are 2(n — 1) edges
on the curve C. The second step of this operation is to move a part of the
new curve C’ over the curve C to create two intersection points of C' and
C. Figure 5 illustrates the application of the operation “adding a curve”, to
the digon-free arrangement of 3 curves. Hence, if we apply this operation
to an (digon-free, resp.) arrangement of n curves, then the result is also an
(digon-free, resp.) arrangement of n + 1 curves. This yields the following
fact.

Lemma 3.1. Let A be an (digon-free, resp.) arrangement of n curves,
then the result of the application of the operation “adding a curve” is an
(digon-free, resp.) arrangement of n+ 1 curves.

Now, let’s consider the change of the face structure due to the operation,
“adding a curve”. As we see-in Figure 5, the number of sides of the four
faces are increased by one while four triangles and some 4-gons are created.
Let F;,i = 1,2,3,4 in Figure 6 (a) be the four faces to which the second
step of the “adding a curve” is applied. Figure 6 (b) shows the change
of the face structure after the application of the operation where C) is a
new curve. We are also able to apply the same operation to the curve
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C; again, which increases the number of sides of the faces, F; and F3,
by one once more. Therefore, if the faces, F;,i = 1,2, are k-gons, and
F;,i = 3,4, are triangles, then we can change the faces F;, i = 1,2 to (k+m)-
gons by applying the operation “adding a curve” m times consecutively.
Observe that only several triangles and some 4-gons are created due to this
application. Moreover, in the final configuration, we can locate the two
4-gons and two triangles (see Figure 6 (c)). Thus, we are able to change
two 4-gons to another two k-gons by repeating the same process.

To construct a digon-free arrangement which realizes the given sequence
in Theorem B, we will use the operation “adding a curve” as follows. The
base configuration of our construction is the digon-free arrangement of 3
curves. Let k be the largest integer such that p; # 0 in the given sequence.
Select a curve and apply the operation “adding a curve” consecutively to
construct two k-gons. After making two k-gons, we can locate the config-
uration of two triangles and two 4-gons as in Figure 6 (c). Hence we can
start the application of the operation “adding a curve” again to change
these two 4-gons to another two k-gons. Using this method, we are able
to have a digon-free arrangement of curves that contains p; k-gons, some
triangles, and some 4-gons. For another i-gons such that p; # 0, repeat the
above process. Finally, we can have a digon-free arrangement realizing the
given sequence. This completes the proof.

4. Other results.

In the arrangement of curves, two curves have exactly two common
points. However, J. Malkevitch generalized the definition of an arrange-
ment of curves by allowing that every pair of curves can have more than
2 common points (the common point is either an intersection point or an
osculation point).

A generalized arrangement of curves A = {C},---,Cy,} in the Eu-
clidean plane 2 is a finite family of n simple closed curves with the prop-
erties:

(1) Every pair of curves has exactly ¢ intersection points (¢ is even)
and k kissing points in common,
(2) Exactly two curves meet at each point (or vertex),

Clearly, every curve has the same number of edges. Let r be the number
of edges in a curve. Then, r = (n — 1)(t + k). We will denote a generalized
arrangement of curves by an (n,r,t,k)- arrangement of curves. If there
is no digons in the graph of an (n,r,t,k)-arrangement, then we call it a
digon-free (n,r, t,k)-arrangement.

Among the several results on the generalized arrangements, we’d like to
state some of them without proof. For the proof and other results, see D.
Y. Jeong [5]. One of them shows the relationship between the p-vectors
and the values n,r,t, and k of the arrangement.
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Theorem 4.1. Suppose that (p3, p4,Ps, Ps, - - . ) be the p-vector of a digon-
free (n,r,t, k)-arrangement. Then,

. _n(n=1)t+k)
D=3 p=———pr——"-6

i>4
We also have a theorem that is similar to Theorem B.

Theorem 4.2. A sequence (p, p%,pé, - - -) of nonnegative integers satisfy-
ing the equation (+), where p}, is even for all k = 0 (mod 3) and p} = 0
otherwise, is realizable as a digon-free (3,r,t,0)-arrangement. In this case,
t=2+435,(i —1)psi and r = 2t.

Finally, we may extend Theorem A to the generalized arrangement as
follows:

Conjecture. For a given sequence (p3,ps,p§,--.) of nonnegative integers
satisfying the equation () where pr = 1 for an integer k > 4,p; = 0 for all
i# k and 3, and ps = k + 4, there is no digon-free (n,r,t,0)-arrangement
with t > 2, which realizes the given sequence.
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