On Generalizing a Theorem of Jung

Douglas Bauer*

Department of Pure and Applied Mathematics
Stevens Institute of Technology
Hoboken, NJ 07030, U.S.A.

H.J. Broersma, H.J. Veldman

Faculty of Applied Mathematics
University of Twente
7500 AE Enschede, The Netherlands

ABSTRACT. For a graph G, let o) = min {E:":l d(vi) | {w,...,
vk} is an independent set of vertices in G}. Jung proved that
every l-tough graph G with [V(G)l =n>1l1and oz > n—4
is hamiltonian. This result is generalized as follows: if G is a
1-tough graph with |[V(G)| = n 2 3 such that 03 > n and for all
z,y € V(G), d(z,y) = 2 implies max{d(z),d(y)} 2 3(n — 4),
then G is hamiltonian. It is also shown that the condition
03 > n, in the latter result, can be dropped if G is required to
be 3-connected and to have at least 35 vertices.

1 Results.

We consider only finite undirected graphs without loops or multiple edges.
Our terminology is standard except as indicated. A good reference for any
undefined terms is [4]. By w(G) we denote the number of components of a
graph G, and by x(G) its connectivity. Chvital [6] defined G to be 1-tough
if w(G—8) < |S] for every subset S of V(G) with w(G -8) > 1. By 0x(G),
or just ok, we denote min{Ef=1 d(v;) | {v1,...,v&} is an independent set
of vertices in G} (k > 2).

A well-known result in hamiltonian graph theory is the following theorem
of Jung.

Theorem 1 ([8]). Let G be a 1-tough graph on n > 11 vertices such
that o2 >n —4. Then G is hamiltonian.
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The proof of Theorem 1 given in [8] is lengthy and complicated. A much
simpler proof appears in [2]. Using arguments of the latter proof, Skupief
recently obtained the following improvement of Theorem 1.

Theorem 2 ([9]). Let G be a 1-tough graph on n > 11 vertices such that
g2 > n —4 —e(n), where e(n) =1 if n is even and n # 12, and e(n) =0,
otherwise. Then G is hamiltonian.

To show that Theorem 2 is best possible, we present, for each n > 11, a
nonhamiltonian 1-tough graph G, on n vertices with 02(G,) =n—5 —e(n)
If n is odd, then G, is obtained from K 1(n—1) UK. }(n—5) UK3 by joining
every vertex in Ky, ) to all other vertices ancf addmg a matching between

the vertices of K3 and three vertices of K 3(n-1)- If n is even, then G,, is
obtained from G,-; by adding a new vertex and joining it to a vertex of
degree 1(n — 6) in Gy and the 3(n — 6) vertices of degree n —2 in Gp_;.

A variation of the graphs G, for odd n (with K }(n—5) replaced by
7}(1;—5) already appeared in [8], while the graphs G, with n even appear
in [9].

In fact, Skupieni [9] proved more than Theorem 2. He additionally showed
that for odd n > 15 every nonhamiltonian 1-tough graph on n vertices with
o3 =n — 5 is a spanning subgraph of G,.

We will obtain a generalization of Theorem 2 by imposing two degree
conditions, each of which is weaker than the degree condition of Theorem

2. One of them is of a type introduced by Fan, who established the following
result.

Theorem 3 ([7]). Let G be a 2-connected graph on n vertices and c
an integer with 3 < ¢ < n. If, for all vertices z,y, d(z,y) = 2 implies
max{d(x),d(y)} > ic, then G has a cycle of length at least c.

Generalizations of Theorem 3 in the case where ¢ = n were obtained
in [5).

Suppose G satisfies the conditions of Theorem 2. If d(z,y) = 2, then
obviously max{d(z),d(y)} > {i(n—4 —€(n))} = {i(n —4)}, where {r}
denotes the smallest integer greater than or equal to r. Furthermore, o3 >
{3(n—4—¢€(n))} = n, since n > 11. Thus the following result, the proof
of which is given in Section 3, generalizes Theorem 2.

Theorem 4. Let G be a 1-tough graph on n > 3 vertices such that o3 > n
and, for all vertices z,y, d(z,y) = 2 implies max{d(z),d(y)} > 1(n —4).
Then G is hamiltonian.

Theorem 4 is best possible in the sense that neither of the two degree
conditions can be relaxed. For n > 17, the nonhamiltonian 1-tough graph

G, has o3 > n and satisfies the second degree condition of Theorem 4
with 1(n — 4) replaced by {}(r—4)} —1. Fort = 2,3, n > ¢+ 5 and
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n—t—1=0 (mod 2), obtain the graph H, from K) +(K:U2K}(,_;_y))
by choosing one vertex from K, and one vertex from each copy of Ié (n—t-1)
and adding the edges of a triangle between them. The graph Hy. is 1-
tough and nonhamiltonian, while H,, . satisfies the second degree condition
of Theorem 4 and has o3 =n — 1.

We note that x(Hy ) = 2 for all n and ¢. Our next result, to be proved
in Section 3, shows that the condition on ¢3 in Theorem 4 can be dropped
completely if G is required to be 3-connected and large enough.

Theorem 5. Let G be a 3-connected 1-tough graph on n > 35 vertices
such that, for all vertices z,y, d(z,y) = 2 implies max{d(z), d(y)} > }(n—
4). Then G is hamiltonian.

The 3-connected graphs G, show that Theorem 5 is, in a sense, best
possible.

Theorem 5 generalizes Theorem 2 within the class of 3-connected graphs
that are large enough. We note that within the class of graphs on at least
17 vertices with x = 2, Theorem 2 is generalized by the following recent
result.

Theorem 6 ([1]). If G is a 2-connected gmph‘on n vertices with o3 >
n + k, then G is hamiltonian.

We do not believe that the requirement n > 35 in Theorem 5 is tight.
However, examples like the Petersen graph and the graph G;s show that
some lower bound on n has to be imposed. It would be interesting to
know the value of the smallest integer ng by which 35 could be replaced in
Theorem 5. The graph G2 shows that ng > 13.

2 Preliminaries.
For the proofs of our results we need some definitions and convenient nota-
tion. Let C be a cycle of a graph G and let u,» € V(C). C is a dominating
cycleif V(G)—-V(C) is an independent set of vertices. C denotes the cycle
C with a given orientation. By uCv we denote the consecutive vertices on
C from u to v in the dlrectlon specified by €. The same vertlces, in reverse
order, are given by v C u. We will consider uCv and v C u both as paths
and as vertex sets. We write uv € Pc(G) if u and v are connected by a
path of length at least 2 with all internal vertices in V(G) — V(C). We
use u* to denote the successor of u on € and u™— to denote its predecessor.
If § C V(C), then S* = {z* |z € S} and S~ = {z~ | z € S}. We
write u*tt, 4=, §**, and S, for (ut)t, (u‘)‘, (S*)*, and (S7),
respectively.

Our proof of Theorem 4 heavily relies on the following two lemmas, which
were established in [3]. The first one is a combination of {3, Theorem 5] and
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[3, Lemma 8], while the second is implicit in the proof of [3, Theorem 9].
Lemma 7 ([3]). Let G be a 1-tough graph on n > 3 vertices with

o3 > n and let C be a longest cycle in G. Then C is a:iominating cycle.
Moreover, if v€ V(G) — V(C) and A= N(v), then (V(G) — V(C))U At

is independent.

Lemma 8 ([3]). Let G be a nonhamiltonian 1-tough graph on n >
3 vertices with o3 > n. Then G contains a longest cycle C such that
max{d(z) | z € V(G) - V(C)} > 3n.

3 Proofs

Throughout this section we assume that G is a nonhamiltonian graph and C
a longest cycle in G, with a fixed orientation, such that x(C) = max{d(v) |
v € V(G) — V(C)} is maximum among all longest cycles of G. Let vp be a
vertex in V(G) — V(C) of degree x4(C) and H the component of G — V(C)
containing vo. Furthermore, A = U,ev() N(v) — V(H) and v,,... v
are the vertices in A, occurring on € in consecutive order. Since C is a
longest cycle, we clearly have v} # v41 (i = 1,... ,k, indices modulo k).
Fori=1,...,k, weset u; = v} and w; = v} ;. The parts of C of the form
-u;C-"uu will be called segments; u.-C'"w,- is a t-segment if Iuic-"wgl =t. For
distinct vertices =z and y of G, = — y will denote a path from z to ¥ which
has all internal vertices in H and has length at least 2 unless z,y € V(H).

We state and prove four observations that will be useful in the proofs of
both Theorem 4 and Theorem 5. As for observations (1), (2), and (3), we
only prove the assertions obtained from them if E(G)U P¢(G) is replaced
by E(G); easy variations of the arguments give the rest.

(1) If i # 7, then wju; & E(G) U Pc(G).
Assuming the contrary to (1), the cycle u,-C-“vj - c uju; is longer than
C, a contradiction.

(2) If i # j, then there is no vertex z € uf C_"w_,-._l such that u;z, u;2* €
E(G) U Pz(G).

Assuming the contrary to (2), the cycle u;z c u;zt 50,- —v; c u; is longer
than C, a contradiction.

(3) If i # j, then there is no vertex z € v_.,-('fw,-_l such that
( a) wj—12z, uiz* € E(G)U Pc(G), or
( b) u;z, Wj_1z+ € E(G)U Pg(G).

210



Assuming the contrary to (a) ((b)), the cycle uizt Cv; — v;C2w;_y c u;
(uiz C vj — v C 2zt wj_y C w) is longer than C, a contradiction.
Note that observations (1) and (2), stating properties of vertices in A™,

have analogous counterparts for vertices in A~. These counterparts will
also be referred to as (1) and (2).

(4) If G is 1-tough, then |V(C)| > 2|A| + 2 and equality holds only if C
contains two 2-segments.

Suppose [V(C)| < 2|A| + 1. Then all segments of C are 1-segments, except
for at most one which is a 2-segment. But then by (1), w(G — A4) > |A|,
contradicting the assumption that G is 1-tough. Hence, |V(C)| > 2|A| + 2.
Suppose |V (C)| = 2|A]+2 and C does not contain two 2-segments. Then C
contains a 3-segment, say with vertices u;, u;, w;, while all other segments
of C are 1-segments. If u}u; € E(G)U Pc(G) for some j # i, then by (2)
wiw; € E(G)UPo(G) and, hence, by (1), w (G — (AU {uf})) > |[AU{uf}l,
a contradiction. If u}u; € E(G)UPc(G) for all j # i, then w(G — A) > |A],
again a contradiction.

Proof of Theorem 4: Let G satisfy the hypothesis of Theorem 4. By
Lemma 7, C is a dominating cycle, so that V(H) = {v} and A = N(vo).
By Lemma 8, d(vg) > 3n. Using (4) we deduce that n —1 > |V(C)| >
2|A|+2 >2{4n} + 2, which implies n = 9 or n > 11. We leave it to the
reader to derive a contradiction if n = 9 and, henceforth, assume n > 11.

Suppose d(vo) < 4(n — 4). Then d(z) > 3(n—4) forall z € ATUA",
since d(vo, ) = 2. If C would contain a 1-segment, say with u; as its unique
vertex, then the cycle C’ = v;vgviyy Cuv; would satisfy [V(C')| = [V(C)|
and u(C’) 2 d(u;) > 3(n —4) > d(v) = p(C), a contradiction with the
choice of C. Hence, C contains no 1-segments. But then d(v) = |A| <
3IV(C)| < 3n. This contradiction shows that d(v) > 3(n —4).

We also observe the following.

(5) At most one vertex of At has degree smaller than 3(n — 4).

Assuming the contrary to (5), let u; and u; be distinct vertices in A* with
d(u:), d(u;j) < 3(n —4). By the second degree condition of the theorem
we have d(u;,u;) > 2 and, hence, N(w) N N(u;) = 0. By Lemma 7,
N(u;) U N(uj) C V(C) and by (1), (N(u) U N(u;)) NAT = 0. It follows
that d(u;) + d(u;) < |V(C)| - |A*| = |V(C)| ~ d(vo) and, hence,d(u;) +
d(uy) + d(vo) < n. Since {u;,uj, v} is an independent set, this contradicts
the first degree condition of the theorem and proves (5).

Using observations (1) through (5) we now derive contradictions in all
possible cases. By (4) and the fact that [A] > J(n — 4) we have 2|A|+2 <
[V(C)| < n-1<2|A+3.
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Case 1. |V(C)| = 2|A4| + 2.

By (4), C contains two 2-segments. All other segments are 1-segments.
Without loss of generality we assume that {u;,w;} and {u;,w;} are the
vertex sets of the two 2-segments. If ujw;, uyw; € E(G) U Po(G), then
by (1) w(G — A) > |A|, contradicting the fact that G is 1-tough. Hence,
assume, without loss of generality that ujw; € E(G) U Pc(G). By Lemma
7, (V(G) - V(C))U At is independent, so in fact u,w; € E(G).

We first show that ¢ = 2. Suppose ¢ > 3. By (1) and Lemma 7,
N(w._ ) € A and by (2), w;_ v & E'(G) Hence, d(w;_;) < |A] -1
= Q(IV(C)l —2) -1 < §(n — 4). Since d(u;,w;_;) = 2, it follows that
d(u;) > 4(n — 4). On the other hand, by (2), (3), and Lemma 7, N(%;) C
(AU {w;}) - {vig1,21}, 1mp1ymg that viy1 = v1. Since d(wi—1) < 3(n—4),
we also have d(uz) < (n 4) by an argument of symmetry. However,
wi_y = u;_ and, since n > 11, w;_; # up. This contradiction with (5)
shows that, indeed, ¢ = 2.

Now since d{up, w;) = 2, we may assume without loss of generality that
d(uz) > i(n —4). By (2), (3), and Lemma 7, however, N(uz) C (AU
{w2}) — {vs,v1}, a contradiction.

Case 2. |V(C)| = 2|A] + 3.

Then |A| = }(n — 4) and |[V(C)| = n — 1, so that v is the only vertex in
V(G) - V(C) There are three possnblhtles for the segments of C that are
not 1-segments.

Case 2.1. C contains one 4-segment.

Assume, without loss of generality, that u;, u], wy, w;, are the vertices of
the 4-segment. If neither u} nor wy is adjacent to a vertex of a 1-segment,
then w(G — A) > |A| by (1), a contradiction. Hence, assume, without loss
of generality, that ufu; € E(G), where u; € At N A~. By (2) and (3), w]
is not adjacent to any vertex in A*, while the same is true for w; by (1) and
(2). We conclude that w (G — (AU {uf})) > |AU {u}}|, 2 contradiction.
Case 2.2. C contains one 3-segment and one 2-segment.

Assume, without loss of generality, that u;,u},w; are the vertices of the
3-segment and let u;, w; be the vertices of the 2-segment.

Suppose u w;, wwy € E(G). If uyw; ¢ E(G), then w (G — (AU {u}}))
> |AU {uf}| by (1). If uyw; € E(G), then by (2) u; is not adjacent to
any vertex in (A* UA~) — {u;, w1}, which in combination with (1) implies
w(G — A) > |A|l. Thus we may assume, without loss of generality, that
ww; € E(G)

We now show that i = 2. Suppose i > 3. By (1) and (3), N(w;_))C A
and by (2), wi-1v1 € E(G). Hence d(w,_l) <4 -1< (n 4). Since
d(u;, wi—1) = 2, it follows that d(u;) > 1(n—4). On the other hand, by (1),
(2), and (3), N(w) € (Au{w;}) - {v,.,.l,vl} implying that v;y; = u. The
argument used to prove that d(w;_) < $(n—4) also yields d(uz) < 3(n—4).
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However, wi—; = u;—; and, since n > 11, w;_; # us. This contradiction
with (5) shows that i = 2. ,

By (1), (2), and (3), N(ug) € (AU {wp}) — {vs,v1}, so that d(up) <
3(n —4). Hence, since d(uz, w1) = 2, d(w;) > 1(n —4). Using (1), (2),
and (3) we conclude that N(w;) = (AU {u,u]}) — {vs,v1}. In particular
wyvy € E(G). Since d(uz) < }(n — 4), (5) implies d(uz) > 1(n — 4).
Using (1) and (2) we conclude that N(uz) = A, so that, in particular,
ugvg € E(G). Now the cycle w1v45v1 YoU3u3v2us w2 u1u] wy is longer than
C, a contradiction.

Case 2.3. C contains three 2-segments.

Without loss of generality, we assume that {u;,w;}, {ui, w;}, and {u;, w;}
are the vertex sets of the three 2-segments. If no vertex in any 2-segment is
adjacent to a vertex in a different 2-segment, then w(G — A) > |A|. Hence
we may assume, without loss of generality, that u,w; € E(G). By (3),
ujw; € E(G). We distinguish two subcases.

Case 2.3.1. i < j.

Suppose d(w1), d(u;) < 3(n —4). Then d(w,u;) > 2 and hence N(w;) N
N(u;)=0. By (1), (2), and (3), (N(w1) U N(u;)) N ((A* U {v1}) = {w1}) =
0. It follows that d(w, )+d(u;) < [V(C)|-|A*| = |V(C)|—d(vo) and hence
d(w,)+d(uj) +d(vo) < n, a contradiction since {w;,u;,vo} is independent.
Thus we may assume, without loss of generality, that d{u;) > ;—(n—4). By
(1), (2), and (3), N(u;) € (AU{w;}) —{v1,vj41}. It follows that vj1 = v,
and d(‘Uj) = -2-(n - 4)

Since n > 11, C contains at least one 1-segment. Let {u,} be a 1-segment.
Then, by (1) and (2), N(up) C A—{;} and hence d(up) < (n—4). From
(5) we now deduce that C contains no other 1-segments. Thus n = 12,
d(vo) = d(u;) = 4 and d(up) < 3. But then d(vo) + d(u;) + d(up) < n, a
contradiction.

Case 2.3.2. i > j.’ .

Suppose there is a 1-segment in v2C'v; and let {u,} be such a 1-segment.
Then, by (1) and (2), N(up) C A — {v1} and hence d(up) < 3(n — 4).
Now by (5), p = 2 and j = 3. Since d(w;,u2) = d(us,uz) = 2, we have
d(wl)’d(u:") 2 %(n _4) By (l)s (2)$ and (3): N(wl) c (AU {ulsul'})
~{v4,v1}. It follows that d(w;) = 4(n—4) and wiu; € E(G). By the same
token, d(us) = 3(n —4) and ugw; € E(G). If v4 # v;, then, by (1) and (2),
N(u4) € A — {vs} and hence d(us) < 3(n — 4), contradicting (5). Thus
v4 = v; and, similarly, vs = v;. But then n = 12, d(v) = d(w;) = 4 and
d(uz) < 3, implying that d(vo) +d(w;)+d(u2) < n. From this contradiction
we conclude that j = 2.

Since d(w;,u2) = 2, we may assume, without loss of generality, that
d(ug) > 4(n —4). Using (1), (2) and (3), we conclude that N(ug) =
(AU {w2,w;}) — {vs,v1}. In particular, usw; € E(G). The argument used
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to show that j = 2 now also applies to show that § = 3. Since n > 11,
v4 # v; and hence upvy € E(G). But then the cycle v, Cvy vovaw v w2
vsugwaus is longer than C, our final contradiction. a

Proof of Theorem 5: Let G satisfy the hypothesis of Theorem 5. Using
observations (1) through (4) we derive contradictions in all possible cases.
Case 1. d(v) < 4(n —4).
Since G is 3-connected, we have k > 3. For each i € {1,... ,k} thereis a
vertex v € V(H) with d(v,u;) = 2, implying that d(u;) > 2(n —4). We
also observe the following.

(6) If i # j, then wul ¢ E(G).

Assuming the contrary to (6), the cycle C’ = u;Cvj —y; C u+ui contradicts
the choice of C, since |V(C’)| = |[V(C)| and u(C’) > d(uj) > i(n-4)
> d(w) = u(C).
Note that by a similar argument C contains no 1-segments. Define
= {z € u;Cu | mzt+ € E(G)},
Sy = {z € u;Cvz | uaz € E(G)},
Ss = {z € u;Cv; | usz* € E(G)},
T; = {z € u,Cvs | wz* € E(G)},
Ty = {z € usCus | woz** € E(G)},
Ts = {z € upCus | uaz € E(G)},
= {z € usCv; | w1z € E(G)},
Uz ={z € u3Cu, | uezt € E(G)},
Us = {z € u3Cv, | uzz™* € E(G)},
={ze€V(G)-V(C)|wz e E(G)} (i=1,2,3).
Using (1) and (6) and taking into account that u;ul € E(G), we have
d(w;) = |S;] +ITi| + |Us| + [Wi| +1 (i =1,2,3). By (1) and (2),
Si1NS3=8%NS3=TTNnTe=TNNT3=U1NU=UsNU; =
WinWeo=WinWs=WonWs=0.
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Noting that vo @ U3, W;, we obtain

™

3
D d(w)

i=1

3
=Y _(ISil + T3] + U] + Wil + 1)

s 3 3 3
Us|+|Uz|+|Uv|+|Uw
i=1 i=1 =1 i=1
+[S1N S| + | NTs|+ Uy NUs| + 3
SV + (IV(G) —v(C) -1)
+ 151 N S| + T2 N T3} + Uy NUs| + 3
=n+2+|S1NS| + |TaNTs|+ Uy NUs|.

<+

We now establish the following.

(8) If v € S; N Sy, then v, v+ &€ S, N Ss.

Assume v € S; N Sa. By (2), vt € S;NS2. Now suppose vt+ € §1NS,. If
vyttt € B(G), then the cycle vy — vz C v+++ 4, Cv+ vH++y++ 4wl
is longer than C, a contradiction. If vtvt*+ ¢ E(G), then one of v* and
v+++, for example v+, has degree at least §(n —4), since d(vt,vT++) =2,
But then the cycle ¢’ = v; — v, C vt* u;CvusCu, satisfies v 2
[V(C)| and p(C’) > d(v*) > 4(n — 4) > pu(C). This contradiction proves
(8).

By (1) and (6), ul,u'l", wy,v2 € S1 N Sy. If S; NSy # O, then together
with (8) we obtain |u;Cuy| > 3|S; N Sy| 4+ 2. Clearly, this inequality is.
also valid if S; N Sz = . Similarly, we have [uzCus| > 3|T3 N T3] + 2 and

lusCv1| > 3|U;y N Us| + 2. 1t follows that

1 1
1511 82| + T2 N T3] + U1 NUs| < 3(IV(C)| - 6) < 35(n - 7).

In combination with (7) we obtain

3 .
1
D dw)<n+2+ 3 =7
i=1

On the other hand,

3 3
Y d(w) 2 5(n-4).
i=1
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It follows that n < 34, a contradiction.
Case 2. d(vo) > 3(n —4).
Case 2.1. V(H) — {vo} #0.
Case 2.1.1. There is a vertex up € V(H)— {vo} with d(ug) > 3(n — 4).
Set B = N(vp) N N(uo)NV(C). By Theorem 3, |V(H)| < 4, implying that
|Al = |(N(vo) U N(uo)) N V(C)|
= |N(vw) N V(C)| + IN(u0) N V(C)| - | B]

> 2(%(7;-4) — V()| +1) —|B|>n—-10—|B|.

On the other hand, by (4), |A| < £ ([V(C)|-2) < 3(n—4). It follows that
(9) |1B| 2 3(n—16).
We now establish the following.

(10) If v; € B, then u;Cw; is not a 1-segment.

Assuming the contrary to (10), let v be a vertex of H adjacent to v;41.
Then v # v or v # ug, say that v # vg. Now the cycle v;up — vvi41 Cvu; is
longer than C. This contradiction proves (10).

Using (9) and (10) we obtain

n-2 > [V(C)| 2 3|BH2(|AI-1B)=2|AI+/B| > 2 (g(n—o-s)%(n—w),

implying that n < 32, a contradiction.
Case 2.1.2. d(z) < }(n - 4) for all z € V(H) — {uo}.
Since G is 1-tough, vy is not a cut vertex of G, implying the existence
of v, € A and v € V(H) with vv; € E(G) and d(v) < 1(n —4). Since
d(ui,v) = 2, we have d(u;) > }(n — 4). Define
So = {z € V(C) | voz € E(G)},
= {z € V(C) | wiz* € E(G)},
Ty = {z € V(G) - V(C) | woz € E(G)},
= {z € V(G) - V(C) | wiz € E(G)}.
Using (1) we have SoN Sy = To N Ty = @. Furthermore, if v; € So and
v # v, then u; ¢ So and also u; € S;, otherwise the cycle v;v — vov;

c ugu'*”C'v; would be longer than C Observing that v ¢ To U T;, we
conclude

n — 4 < d(vo) + d(u;) = |So| + |To| + |S1] + |T1| = [So U 81| + [To U Th|
S (VO = 1Sl + 1) + (IV(G) = [V(C)| - 1) =n — |50,
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so that [So| < 4. On the other hand, by Theorem 3, |So| > 3(n —4) —
\V(H)+12 2(n 4) — 3. It follows that n < 18, a contradxctlon
Case 2.2. V(H) = {vo}
Then [A| = |[N(w)| 2 3(n —4). Set R = (V(G) - V(C)) —{wo}. By
(4), [V(C)] = 2|1A]+2 > n — 2, implying that |R| < 1. The case that C
contains a 4-segment is settled in exactly the same way as Case 2.1 of the
proof of Theorem 4. Reasoning as in the proof of Theorem 4, we may hence
assume that u10w1 is a 2-segment or a 3-segment, uCuy is a 2-segment
(i # 1) and wyw; € E(G) U Po(G). If wyuy € Po(G), then |R| = 1, say
that R = {v}, and uyv, vw; € E(G), implying that the cycle vyvp v; C u,
vwgém is longer than C. Hence, in fact, vyjw; € E(G). b
Let us call a segment of C special if either it is a ¢-segment with ¢ > 2 or
it is a 1-segment whose unique vertex is adjacent to a vertex in V(G)-V(C)
(which is possible only if |R| = 1). By (1), at most one 1-segment of C is
special, implying that C contains at most four special segments. .
In the remainder of the proof we will frequently use observations (1), (2),
and (3) without explicitly referring to them.

Suppose 1 < r <  and both {u,} and {u,+1} are nonspecial 1-segments.
Then d(uy,ur41) = 2 and hence either d(u,) > 3(n — 4) or d(ur41) >
(n- 4) However, N(u,) C A - {v1}, so d(u,) < |A| 1< 3(IvV(0)-2)
-1 < 4(n —4). Similarly, d(ur41) < 2('n 4). This contradiction shows
that every nonspecial segment in v2C; is followed by a special segment.
Since with the exception of at most one 2-segment all segments in v..HCvl
are 1-segments and since n is large enough, we conclude that there exists
an integer s with i + 1 < s < k such that both {u,} and {u,.,.l} are
nonspecial l-segments Since d(u,,us+1) = 2, either d(u,) > 5 (n 4) or
d(us41) 2 3(n—4). Let u, be a vertex in {u,, u,41} with d(u,) > 1(n-4).
It follows that N(u;) = A, whence, in particular, u,v; € E(G).

If wv, € E(G), then the cycle vlvov¢+16v,u;w¢ u;Cvu,Cv, is longer
than C. Hence u;v, € E(G). Similarly, w;—1v; € E(G).

Set B = {vi+1,v¢,v1}. Then N(u;)NB = Qand, since i+1 <t <k, |B| =
3. Hence |N(u;) N A| < |A| — 3. Furthermore, N(u;) N (AT U {vo,w1}) = 0.
Since |V(G) — (AU AT U {vo,w1})| £ 2, it follows that d(u;) < |A|
1< 1(11 4). Similarly, the observations that |N (wi )N Al < |A|
and N(w. 1) N A~ U {vo,u;}) = @ imply d(w;_;) < $(n —4). However,
d(ui, wi—1) = 2 and hence d(u;) > 3(n —4) or d(w,_l) > 3(n —4). This
contradiction completes the proof. a

Remark

One of the referees pointed out that by suitably modifying the proof of
Theorem 5 the following extension of Theorem 5 can be obtained.
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Theorem 5a. Let p > 4 be an integer and G a 3-connected 1-tough graph
on n > 12p — 13 vertices such that, for all vertices z,y, d(z,y) = 2 implies
max{d(z),d(y)} > 4 (n —p). Then there exists a longest cycle C of G such
that C is a dominating cycle and |V(C)| 2 n—p+4.

Similarly, a simple modification of the proof of Theorem 4 yields the
following extension of Theorem 4.

Theorem 4a. Let p > 4 be an integer and G a I-tough graph on n > 3
vertices such that os > n and, for all vertices z,y, d(z,y) = 2 implies
max{d(z),d(y)} > 4(n — p). Then every longest cycle C of G is a domi-
nating cycle and |[V(C)|2n—~p+4.

We do not believe, however, that Theorem 4a and Theorem 5a are best
possible for p > 5 (cf. [3]).
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