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ABSTRACT. In this paper we bring out more strongly the con-
nection between the disconnection number of a graph and its
cycle rank. We also show how to associate with a pizza sliced
right acroes in a certain way with n — 2 cuts a graph with n
vertices, and show that if the pizza is cut thereby into r pieces,
then any set of r — 1 of these pieces corresponds to a basis for
the cycle space of the associated graph. Finally we use this to
explain why for n > 3 the greatest number of regions that can
be formed by slicing a pizza in the certain way with n — 2 cuts,
namely $(n? - 3n+4), equals the disconnection number of K.

Introduction

If S is a compact connected metric space and there is a cardinal number
P < Ro such that whenever A C S, |A] = p then S—A is not connected, then
the smallest such p is the disconnection number D(S) of the space S. This
was introduced recently by S.B. Nadler, Jr. ([2,Chap. 9], [3]), where he also
showed that if S has a disconnection number and if D(S) > 2 then S is a
finite connected graph. He also showed that if G is a finite connected graph
then D(G) = 2+|E(G)|-|V(G)|+|P(G)|, where E(G), V(G) and P(G) are
the sets of edges, vertices and end vertices of G, respectively. For a finite
graph G without isolated vertices, the number |E(G)] — |V(G)| + |C(G)},
where C(G) is the set of components of G, is the cycle rank ¢(G) of G,
that is, the dimension of the cycle space of G (see [1]). Thus for a finite
connected graph, D(G) = 1+ ¢(G) + |P(G)].
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In Section 1 we extend the definition of the disconnection number of
finite graphs to include finite graphs which are not connected, and provide
a proof of the corresponding extension of Nadler’s result; this proof brings
out the connection between the disconnection number and the cycle rank
more vividly.

From the formula above, it follows that the disconnection number of K, is
1(n®-3n+4). Forn = 3,4,5,... this yields the sequence 2,4, 7,11, 16, 22,.
whxch is known in some clrcles as the pizza slice sequence. It is the greatest
number of pieces you can slice a pizza into with (n — 2) straight cuts. For
a proof of this, se¢ [4], pages 261 and 286.

The question naturally arises as to whether there is any kind of combi-
natorial connection between the disconnection numbers of graphs and the
number of parts a pizza is sliced into. In Section 3 we explain what the
connection is; we show that it lies in the fact that, for a wide class of pizza
cuts, the number of parts a pizza is cut up into equals one plus the cycle
rank of an associated graph.

1 The disconnection number and the cycle rank of a graph

We first remark that the graphs we consider consist of a finite number of
vertices, and a finite number of arcs, or edges. Each arc is homeomorphic
to the closed unit interval, and joins two distinct vertices. Thus loops are
not permitted. In this paper there is no loss of generality in assuming that
any two vertices are joined by at most one edge (since we can introduce
extra vertices). Two distinct arcs do not meet except possibly at one of
their end vertices. If a point p of G is a vertex, then the order of p is the
number of edges it is incident with (i.e. the degree), and if p is an interior
point of an edge, then its order is two. If F is a subgraph of a graph G, the
notation G\ E(F) means the subgraph of G with the same vertex set as G,

but with the interior of each edge of F removed. An edge is pendant if it
has a vertex of degree one. As remarked earlier, the notation P(G) denotes
the set of vertices of degree one (end vertices); we let E(P(G)) denote the
set of interior points of edges incident with vertices of P(G).

Let G be a graph without isolated vertices. The disconnection number
D(G) of G is the least number g such that the removal of any ¢ points
from G disconnects at least one of the components of G. Here we use the
word ‘disconnects’ in the topological sense. Clearly D(G) is one greater
than the greatest number of points which can be removed from G without
disconnecting any of the components. If G is a graph and S is a set of
points of G, let C(G\S) be the set of (topological) components of G\S. The
topological foundation for the maneuvers below may be found in Nadler’s
paper [3]. Essentially the proofs of Lemma 1 and Theorem 1 below provide
an alternative to his proof of his Theorem 5.1, and in this alternative proof
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the connection with the cycle space is brought out more.

Lemma 1. Let G be a graph without isolated vertices. Let S be a finite
set of points of G of order at least two, and let |S| be maximal with the
property that |C(G\S)| = |C(G)|. Then |S| = ¢(G).
Proof: Let S be as large as possible such that |C(G\S)| = |C(G)|. By
hypothesis, the points in S have order at least two. If S contains a point
of order greater than two, such a point is a vertex v of G, and it can be
replaced by an interior point of an edge incident with v. Thus we may
assume that each vertex of S has order exactly two. Clearly no edge of G
contains two or more points of S, for if it did then [C(G\S)| > |C(G)|. Thus
each point of S is an interior point of an edge, and it is the only interior
point of that edge in S. Let (G\S)* denote the graph obtained from G\S'
by removing the interior points of all edges which contain a point of S.
Then |C((G\S)*)| = |C(G\S)|. Moreover (G\S)* is a spanning forest of G
and it contains |C(G\S*)| = |C(G)| trees. Therefore
IS| = |E(G)| - |E((G\S)*)|

= |E(G)] - (IV(G\S)")| - IC(G\S)")])

=|E(G)| - (IV(G) - IC(G)))

= ¢(G). :

Lemma 1 now follows. O

Theorem 1. Let G be a graph wzthout isolated vertices. Then D(G’)
1+¢(G) +|P(G)I.

Proof: We may suppose that each component of G has at least three edges
(by introducing further vertices if necessary). Let S’ be a set of points of
G with |C(G\S')| = |C(G)|, and let |S’| be as large as possible. It is clear
that S’ includes all points of order 1, that is, all end vertices, and includes
no interior points of any pendant edge. The set S\ P(G) satisfies Lemma
1 with respect to the graph G\(P(G) U E(P(G))), so
IS’ = |P(G)| = IS'\P(G)| = (G\(P(G) L E(P(G)))) = ¢(G).
Since D(G) =1+ |S’|, the theorem follows. a
We remark that the disconnection number of K, can be deduced imme-
diately:
D(K,)=1+c(Ky)
=2+ |E(Kn)| - [V(Ka)|

()

= %(n2 —3n+4).
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2 Pizza cuts and the cycle rank of the associated graph

We have seen that the disconnection number D(K,) of the complete graph
K, equals the maximum number of parts a pizza can be cut up into with
n — 2 cuts. Is there any combinatorial connection between these two facts,
or is it a mere coincidence?

We shall show that to each cut up pizza in a fairly wide class of cut
up pizzas we can associate a graph G(P) whose cycle rank ¢(G(P)) and
disconnection number D(G(P)) are closely related to the number of parts.
In the case of the maximum number of parts we will see that G(P) =
K,,, and thus the disconnection number of K, and the number of parts
a pizza can be cut up into will both be shown to be closely related in
a combinatorial way to the cycle rank ¢(Ky,) of K,. This provides the
combinatorial connection we sought.

We shall consider pizzas with n — 2 straight line cuts, each going right
across starting on the boundary and finishing on the boundary. We shall
suppose that no three cuts meet at the same point. Let the separated parts
we obtain be referred to briefly as parts.

Given two points z and y on the boundary of the pizza, let the two arcs of
the boundary with end points = and y be denoted by A,(z,y) and Az(z, y).
For n > 3, let P(n —2) be the set of all pizzas cut with n — 2 cuts with the
property that there are two points, z and y, on the boundary of the pizza,
such that each of the straight line cuts meets each of A;(z,y) and Ax(z,y)
exactly once (and so does not go through z or y). This is illustrated in

Figure 1.
b3 x
Y y
In P(3) In P(4) Not in P(4) .

Figure 1

With each cut up pizza in P(n —2), n > 3, we associate a graph with
n vertices in the following way. The two circular arcs with endpoints z
and y forming the boundary of the pizza are labeled 1 and 2, and the
remaining n — 2 cuts are labeled 3,...,n. The associated graph has vertex
set {vy,...,v,}. The vertices v, and v, are each joined by an edge to all

222



other vertices, and for 3 < ¢ < j < n, the vertices v; and v; are joined by
an edge if and only if the cut labeled ¢ intersects the cut labeled j in the
interior of the pizza. For each cut up pizza P in U2 3P(n — 2), let G(P)
denote the associated graph.

Lemma 2. For n > 3, each partition into two non-empty subsets of the set
of parts of a cut up pizza P € P(n—2) corresponds to exactly one non-zero
cycle vector in the cycle space of G(P).

Proof: (i) Note that the condition that each cut has z on one side and
v on the other implies that there are no parts or unions of parts bounded
by one cut and one of the boundary arcs. Moreover, for n > 4 each part
is bounded by a distinct set of lines (or arcs). Of course, if Q is a set of
parts, then Q is bounded by the same set of lines (or arcs) as is @, the
complementary set of parts, except possibly for the inclusion or exclusion
of a complete arc. [If n = 3 there are two parts, one the complement of the
other, and these are both bounded by the line and the two boundary arcs.]

The labels on the lines (and arcs) bounding each part of P, taken in order
going round the boundary, correspond to a cycle in G(P). Thus each union
of a set of parts of P corresponds to a unique cycle vector in the cycle space
of G(P). The union of the complementary set of parts corresponds to the
same cycle vector [We assume here that neither the set of parts, nor the
complementary set of parts is empty]. Thus a partition of the set of parts
into two non-empty sets corresponds to a unique nonzero cycle vector in
the cycle space of G(P). Note that mod 2 summation (i.e. cancellation)
takes place in forming the cycle vector. If a complete arc is contained in
the bounding set of lines {(or arcs) of the set Q of parts, it is not included
in the cycle vector corresponding to Q.

Figure 2

[Aside. We illustrate the process of forming a cycle vector from the union of
cycles corresponding to the union of several parts in the following example.
The example illustrates the point about the case when a complete arc is
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contained in the boundary of the union. In this case we actually obtain
a cycle in G(P), rather than the edge-disjoint union of cycles. This is to
be expected since the union of A,B,C,D and E forms a connected region.
Note that this cycle does not include vo, and that the whole arc 2 is in the
boundary of the union of A,B,C,D and EJ.
A corresponds to the cycle with edges vgv2, v2v1,v1v4, v4Vg.
B corresponds to the cycle with edges v3vz, vovs, vevy, vsvs.
C corresponds to the cycle with edges vous, v3vs, v4va.
D corresponds to the cycle with edges vovy, v4v3, V305, YgUs, Usvs.
E corresponds to the cycle with edges vgv, v1v2, vovs, v5vs.

The modulo 2 sum of all these cycles is

+ V14, V43, V3V, VgV1.

(ii) If a cycle in G(P) is traversed, the corresponding lines (or arcs)
bound a part, or union of parts, of the pizza. [Aside. Note here that the
order of the vertices is important, as different orders correspond to different
sets of edges in G(P). This is illustrated in Figure 3.]

X

s Y G Y
3 parts correspond 1 part corresponds
to the cycle (v, v3, v4, v¢) to the cycle (vy, v4, v, v3)

Figure 3

Thus a cycle corresponds to a partition of the set of parts of the pizza into
two. If T is the union of parts corresponding to some cycle, let T denote the
complementary set of parts; then {T, T} represents the partition of the set
of parts corresponding to the cycle. If U is a set of parts corresponding to
some other cycle, let TAU be the symmetric difference of T' and U. Then

{TAU, TAU} = {TAU,TAU} = {TAU, TAU)} = {TAU, TAU)},

and this is the partition corresponding to the union of the two cycles; clearly
it is unique. Of course the symmetric difference operator A corresponds to
mod 2 summation; this is illustrated in Figure 4. This idea extends to any
non-zero cycle vector, and shows that to each non-zero cycle vector there
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corresponds a unique partition into two non-empty parts of the set of parts

of the pizza. This proves Lemma 2. O
X
2 2
1
3
Z
4 %/ 4
5
5
y 6 Y
The partition The partition The partition corresponding
corresponding corresponding to the two cycles
to the cycle to the cycle taken together.
(V], Ve, v!) . (vll Vs, V:)
Figure 4

Theorem 3. For P € P(n — 2), the dimension of the cycle space of G(P)
is one less than the number of parts in the cut up pizza P.

Proof: If py,...,p, are the set of parts of P, then any set R of » — 1 of
them are independent, since no one is the union or the complement of the
union, of the remaining parts of R. However any one of py,...,p, is the
complement of the unit of the remainder, and any set Q of parts is the
union, or the complement of the union, of parts of R. Thus R corresponds
to a basis of the cycle space of G(P). a

We can now use this connection between the dimension of the cycle space
and the number of parts to provide a new proof of the fact that the greatest
number of parts a pizza P € P(n — 2) can have is 1(n? — 3n +4).

Theorem 4. Any cut up pizza P € P(n — 2) with the maximum number
of pieces has P(G) = Ky, and the number of parts is (n® — 3n +4).

It is easy to construct a cut up pizza P in P(n—2) such that G(P) = K,,;
it is only necessary to ensure that each slice cuts each other slice at a distinct
point inside the pizza, and also cuts both zy-arcs.

Proof: Now let P be any cut up pizza in P(n — 2). Then the number of
parts in P is 1 + ¢{(G(P)). But

1+4+c(G(P)) <1+ c(Kn)
=14+ (IE(Kn)I - |V(Kﬂ)| + l)

2+(3)-

= %(n2 - 3n+4).
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To sum up, we have shown that

D(Kn)
= The greatest number of parts a pizza P € P(n — 2) can have

= %(n2 —3n+4).
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