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ABSTRACT. The class of parity graphs, those in which the car-
dinality of every maximal independent subset of vertices has
the same parity, contains the well covered graphs and arose
in connection with the PSPACE-complete game “Generalized
Kayles”. In 1983 [5] we characterized parity graphs of girth 8
or more. This is extended to a characterization of the parity
graphs of girth greater than 5. We deduce that these graphs
can be recognized in polynomial time,

1 Introduction

Let G be a simple graph with vertex set V(G). For z € V(G) and each
integer k we define: Ni(z) = {v € V(G) : d(z,v) = k} and Ni[z] = {v €
V(G) : d(z,v) < k} where d(z,v) is the edge distance between x and v.
When k = 1 the subscript is usually dropped. If S is a set of vertices,
we write N(S) = U{N(v) : v € S} and N[S] = U{N[v] : v € S}. A
set of mutually nonadjacent vertices of a graph is called independent. An
independent set S covers a vertex v if v € N[S]. An independent set S
isolates a vertex v if Nfv] — N[S] = {v}.

A graph is called well covered if every maximal independent set is of
the same size. The class of well covered graphs, in which the NP-complete
problem (see M.R. Garey and D.S. Johnson [10], p.194 [GT20]) of finding
a maximum independent set is trivial, was first studied by M. D. Plummer
[11] in 1970. Since then considerable effort has been expended towards the
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elucidation of this class (among others [1]-[4], [6]-[9], [12], [13], [16], and
[17.)

A graph G is said to be a parity graph if every pair of maximal inde-
pendent subsets S and T of V(G) satisfy |S| = |T| (mod 2), where |S| and
|T'| are the cardinalities of S and T respectively. See Figure 1 for some
examples. This class too is one in which an NP-complete problem, indeed
a PSPACE-complete, problem is trivial.

§ g

{2,4,6) {8,10,12,14,16,18,20,22}
(a) (b)
(4} {5,7,9,11}

(c) (d)

The set accompanying each graph is the set of cardinalities of maximal
independent sets. Note that graph (c) is well covered.

Figure 1

The game “Generalized Kayles” is played by two on an arbitrary graph
G. They alternate removing a vertex and its neighbours from G, the winner
being the last player with a nonempty vertex set from which to choose. The
problem of whether the first player can force a win is PSPACE-complete
(see T.J. Schaefer [14] and Garey and Johnson [10], p.254 [GP3]), but if G
is known to be a parity graph the problem becomes easy to solve.

Recently, R.S. Sankaranarayana and L.K. Stewart [13], V. Chvatal, as
well as P.J. Slater [15] have independently shown that the recognition prob-
lem for well covered graphs is co NP-complete. Their arguments apply
equally to the recognition problem for parity graphs showing that it is also
co NP-complete.
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In this paper we characterize the parity graphs of girth greater than 5
in such a way as to show that these graphs can be recognized in polyno-
mial time. -This extends the work of A. Finbow and B. Hartnell [5] which
characterized parity graphs of girth 8 or more and parallels the work of
A. Finbow, B. Hartnell and R. Nowakowski [6] which characterized well
" covered graphs of girth 5 or more (see Theorem 2.)

|

2 Results

The main result is Theorem 1. For ease of exposition, the proof is broken
down into a series of lemmas.

Lemma 1. If G is a parity graph then so is G — N[v] and G.— N[S] for
vertex v and independent set S. '

Proof: If d—N [S] were not a parity graph, then there would exist maximal
independent, subsets R and T of V(G — N|[S]) of different parity. However,
this cannot happen since then RUS and TUS would be maximal indepen-
dent subsets of V(G) of different parity. a

The following terminology will be useful in what follows. A leaf is a
vertex of degree one while a stem is a vertex adjacent to a leaf. A bush
is a subgraph induced by a stem and its leaves and is called odd or even
when the number of leaves involved is respectively odd or even. Finally, a
vertex which cannot be isolated in G is called eztendable (with respect to
G). When no confusion will arise, the parenthetical modifier is dropped.

Lemma 2. If G is a parity graph of girth > 6 then v € V(G) is extendable
if and only if v is a stem with an odd number of leaves attached.

Proof: If v is a stem it cannot be isolated and thence is extendable. On
the other hand if v is extendable then, since by the girth restriction N2(v)
is independent, v has neighbours in G — N[N2(v)] which must be leaves.
Extend Na(v) to a maximal independent set T which does not contain v.
Then G — N|[T] consists of v and its set of leaves L. By Lemma 1 this graph
is a parity graph and clearly {v} and L are its only maximal independent
sets. Hence |L]| is odd. 0

Since any vertex of G is either extendable or not extendable and since
any stem must be extendable, it follows that:

Lemma 3. If G is a parity graph of girth > 6 then each v € V(G) has
either an odd number of leaves attached or has no leaves attached.

The role of nonextendable vertices in this setting turns out to be very
special.

Lemma 4. Let v be a nonextendable vertex in a parity graph G of girth
2> 6. Then deg(v) < 2.
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Proof: Assume that the Lemma is false and suppose that H is a parity
graph with the minimum number of vertices and with a nonextendable
vertex v of degree strictly greater than two. Observe that deg(v) = 3, for
if S were an independent set isolating v and w € SN Na(v) then H — N{w)]
would be a smaller counter example. We can also assume that Ng[v] 2 H
for if some vertex, say w, was at a distance greater than three from v
then the component of H — N[w] containing v would be a smaller counter
example.

Let N(v) = {z1,72,23} and ¥; = N(z;) — {v}, i = 1,2,3. Since v is
nonextendable, Y; is not empty. We note that if N3(v) were empty then
the girth conditions would imply that ¥; is a set of leaves for z; and hence
|Y:] would be odd by Lemma 3. But then the odd set {z;,z2,z3} as well
as the even set {v} UY; UY2 UY3 would both be maximal independent sets
of H which would contradict the fact that H is a parity graph. Thus N3(v)
is not empty.

Now since H is minimal, for each u € N3(v), v is extendable in H — Nu]
and thus each u must be adjacent to all members of Y; for some j € {1,2,3}.
It follows, by the lack of 4-cycles, that |Y;] = 1. Since N3(v) # @ at least
one such j exists. Without loss of generality, j =1 and we let Y; = {31}.

If every vertex in N3(v) were adjacent to y;, then by considering H —
N[{z2,z3}] in which N3(v) U {z,} would be leaves at 3 we observe that
| N3(v)| would have to be even. Now N3(v)U{z1,Z2, 3} and {y1, v}UY1UY2
are both maximal independent sets of the same parity forcing |Y>|+ |Y3| to
be odd. This implies that one of Y2 and Y3, say Y2, is of even parity. But
then in H — N[y1) z2 has an even number of leaves attached (namely, the
set Y2). Hence there must be some vertex, say uz € Na(v), which is not
adjacent to y;.

Again, since v is extendable in H — N{ug], us must be adjacent to all of
Y; or Y3 forcing that set, say Y3, to be just one vertex, say ys.

Next observe that if there is a vertex us € N3(v) adjacent to neither y,
nor y3 then Y2 = {y2} and u; must be adjacent to y,. If u3 were adjacent to
y2 then v would have two leaves in H — N{ug] (recall that ug is not adjacent
to y1). Hence uj is adjacent to y3 but not y; nor y2. Since G — N[{uz, u3}]
would contain two leaves at v, uz must be adjacent to us.

Now by assumption y; has a neighbour 44 in Na(v). If it were adjacent
to both y; and ys a 5-cycle would result. If it were adjacent to y; and
to exactly one of y; and y3 thenH — N[u,] would contain two leaves at v.
Hence u; is adjacent to y; and to neither 2 nor y;. By the girth condition
either u; and ug or u; and us are independent, say u; and u;. But then
H — N[{u1,u}] contains two leaves at v.

Hence N(y1) U N(y3) 2 Na(v).

Observing that H — N[{y,,y3}] contains the leaves {v}UY> at z; we note
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that |Y2] is even. Hence |Y2| > 2 (as Y; # 0).

Now H — N[Y2 U {y3}] must contain a neighbour of y; in N3(v), say u;,
for otherwise there would be two leaves at z,. Furthermore u; is adjacent
to all u adjacent to y3 for otherwise H — N[{u;, u}] contains two leaves at
v. Therefore y3 can have only one neighbour in Ng(v), say us. Similarly
" H — N[Y2 U {31}] must contain a vertex in N3(v) which by the previous
paragraph is uz and u; must be the unique neighbour of y; in N3(v). But
then, in H — N[{u1,y3}], Y2 would be the set of leaves at z» which is
impossible as |Y3| is even. a

Now we investigate the nonextendable vertices of degree two.

Lemma 5. Let v be a nonextendable vertex of degree two in a parity graph
G of girth at least six where G is not Cy. Then one of the neighbours of
v must be extendable and the other must be nonextendable and of degree
two.

Proof: Let the neighbours of v be u and z and assume that both are extend-
able. Then u must have an odd number of leaves attached (by Lemma 2).
Let a be a leaf attached to x and consider G’ = G — Nla]. By the girth
condition v is the only common neighbour of u and z and since deg(v) = 2,
G’ has an even number of leaves at u which is a contradiction. Hence v has
at most one extendable neighbour.

Next assume that both neighbours, say « and z, of v are nonextend-
able. Since v is nonextendable neither u nor z can be a leaf and hence, by
Lemma 4, each has degree two. Let Na(v) = {uz,z,} where u, is adjacent
to u and z, is adjacent to x. Since u and z are nonextendable neither
ug nor zz can be leaves. But if up has a neighbour a # u and z; has a
neighbour b # z, then G — N|{e,b}] (or G — N|a] if a = b) has two leaves
at v forcing a and b to be adjacent. This must hold for all such pairs a and
b which with the girth condition (no 4-cycles) implies that us and z, must
be of degree two. Furthermore if either a or b, say a, has degree greater
than two, then if a’ ¢ {b, u2} is a neighbour of a, G — N[{e’, z2}] has two
leaves at u. But then, with a and b forced to be of degree two, G must be
C7 which has been excluded by hypothesis. This completes the proof. O

Lemma 6. Suppose G is not C; but is & parity graph of girth at least
six and that v, is a nonextendable vertex in G of degree two. Then there
exist extendable vertices z and y in G and distinct nonextendable vertices
of degree two {u;,v;}, for i = 1,2,...,k, where k is an even integer such
that N(u;) = {z,v;} and N(v;) = {u;,y} foreachi=1,2,...,k.

Proof: By Lemma 5, »; must have an extendable neighbour, say y, and a
nonextendable neighbour, say u;, of degree two. Similarly, u; must have an
extendable neighbour which we can call z (z and y are distinct by the girth
condition). Now consider the set S of leaves of z in G and observe that if T'
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is the set of leaves of z in H = G — N[y}, then T = SU {2 : deg(z) =2 and
z € N(x) N Na(y)}. But any z € T — S must be nonextendable in G since
it can be isolated by {y} U S. Since |T'| and |S| are both odd (Lemma 2),
|T — S| must be even. Let T — S = {u1,u2,...,ux} noting that u,, as
defined, must belong to T — S. By Lemma 5 each u; has a neighbour v;
which is nonextendable and of degree two. By the girth condition, v; # v;
if ¢ # j. Furthermore u; € N(z) N Na(y) so that the extendable neighbour
of each vy; must be y. (]

In view of these results it is natural to make the following definition:
vertices u and v of G are said to be connected by a 2-bridge if there are
vertices z and y € V(G) with deg(z) = deg(y) = 2 and both N(z) = {u,y}
and N(y) = {z,v}. We can now summarize our results as follows:

Theorem 1. Let G be a connected parity graph of girth > 6. Then G is
K1,Cy or G is a connected graph of girth at least six which consists of a
finite union of odd bushes B; each with stem v; where, for each i and j,
one and only one of the following hold:

i) v; and v; are joined by an edge and any other path, if there is one,
joining v; and v; must include at least one stem other than v; and
vj.

ii) v; and v; are connected by 2n 2-bridges and any other path joining
v; and v; must include another stem besides v; and v;.

iii) every path joining v; and v; contains at least one stem other than v;
and vj.

Finally, it is interesting to restate the girth > 6 part of the results for
well covered graphs obtained in [6}:

Theorem 2. Let G be a connected well covered graph of girth > 6. Then
G is K,,C7 or G is a connected graph of girth at least six which consists
of a finite union of leaves L; each with stem v; where, for each i and j, one
and only one of the following hold:

i) v; and v; are joined by an edge and any other path, if there is one,
Jjoining v; and v; must include at least one stem other than v; and
’vj.

ii) every path joining v; and v; contains at least one stem other than v;
and vj.

These two theorems together beg the question: “How hard is the recog-

nition question for well covered graphs when the graphs in question are
known to be parity graphs?”

232



References
[1) C. Berge, Some common properties for regularizable graphs, edge-
critical graphs and B-graphs, Tohoku Univ. Tsuken Symp. on Graph
Theory and Algorithms, Oct 1980, 108-123.

[2] S. R. Campbell, Some results on cubic, well-covered graphs, Ph.D.
Dissertation, Vanderbilt University, 1987.

[3] S. R. Campbell and M.D. Plummer, On well-covered 3-polytopes, Ars
Combinatoria, 25-A(1988), 215-242.

[4] O. Favaron, Very well covered graphs, Discrete Math. 42(1982), 177-
187.

[5] A. Finbow and B. Hartnell, A game related to covering by stars, Ars
Combinatoria 16-A(1983), 189-198.

[6] A.Finbow, B. Hartnell, and R. Nowa.kowski, A characterization of well
covered graphs of girth 5 or greater, Journal of Combinatorial Theory
(B) 57, No. 1(1993), 44-68.

[7] A.Finbow, B. Hartnell, and R. Nowakowski, A characterization of well
covered graphs which contain neither 4- nor 5-cycles, Journal of Graph
Theory, (to appear).

[8] A. Finbow and B. Hartnell, On locating dominating sets and well-
covered graphs, Congressus Numerantium 65(1988), 191-200.

[9] A. Finbow, B. Hartnell, and R. Nowakowski, Well-dominated graphs:
A collection of well-covered ones, Ars Combinatoria bf 25-A(1988),
5-10.

[10}] M.R. Garey and D.S. Johnson, “Computers and Intractability”, W.H.
Freeman, San Francisco, 1979.

(11} M.D. Plummer, Some covering concepts in graphs, J. Combinatorial
Theory 8(1970), 91-98.

[12] G. Ravindra, Well covered graphs, J. Combin. Inform. System. Sci. 2
1(1977), 20-21.

[13] R.S. Sankaranarayana and L.K. Stewart, Complexity results for well
covered graphs, Networks 22(1992), 247-262.

[14] T.J. Schaefer, Complexity of some two-person perfect-information
games, J. Comput. System Sci. 16(1978), 185-225.

[15] P.J. Slater, Private communication, 1990.

233



[16] J.A. Staples, On some subclasses of well-covered graphs, Ph.D. Disser-
tation, Vanderbilt University, 1975.

[17] J.A. Staples, On some subclasses of well-covered graphs, J. of Graph
Theory 8(1979), 197-204.

234



