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ABSTRACT. In this note the numbers of common triples in two
simple balanced ternary designs with block size 3, index 3 and
p2 = 3 are determined. )

1 Preliminaries and notation

A balanced ternary design is a collection of multi-sets of size k, chosen from
a v-set in such a way that each element occurs 0, 1 or 2 times in any one
block, each pair of non-distinct elements, {z,z}, occurs in p2 blocks of the
design and each pair of distinct elements, {z,y}, occurs A times throughout
the design. We denote a design with these parameters by (v; p2; k, A) BTD.
A BTD on element set V is denoted by (V,B), where B is the collection of
multi-subsets of V. It is easy to see that each element must occur singly
in a constant number of blocks, say p; blocks, and so each element occurs
altogether r = p; + 2p times. Also if b is the number of blocks then

vr=>bk and AMv-1)=r(k—1)-2p. (1)

(For further information [1] should be consuited.) A BTD is called simple
if it has no repeated blocks. Finally, let (V;, B;) and (V2, B;) be two BTDs.
We say the design (V}, B;) contains the design (Vz, Bz) as a sub-design if
Vo C V; and B; € B;. In this note we deal with BTDs with k = A = 3.
Thus all blocks are of the form zyz or zzy. It is straightforward to show
that since k = XA = 3 such a design must satisfy the following properties:

(i) if p2 =1 or 2 (mod 3), then v = 3 (mod 6);

(i) if p2 = 0 (mod 3), then v = 1, 3 or 5 (mod 6). Moreover, since
k = )\ = 3 we have b > pov. Now equalities given in (1) can be used
to show v > 2p, — 1. But since v is odd we obtain v > 2p2 + 1.
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The intersection problem for triple systems has been considered in the
past. Some of the results obtained are as follows. Let I,, x(v) denote the
set of integers n such that there exist two simple (v; p2; 3, \) BTDs based
on a common v-set and having n common blocks. Note that when p2 = 0
and A = 1, a (v;0;3,1) BTD is a Steiner triple system of order v (STS(v)).

Theorem 1 ([5]). Let v=1 or 3 (mod 6). Then for all v > 13, I ;(v) =
{0,1,2,3,..., a}\{a—3j| 5 = 1,2,8, 5}, where a = v(v—1)/6, and Ip 1(3) =
{1}, Io,1(7) = {0,1,3,7} and I 1(9) = {0,1,2,3,4,6,12}.

Theorem 2 ([2]). Let v =0 (mod 3). Then I 3(v) = {0,1,2,3,...,9%/3}\
{v?/3 — 1,4%/3 — 2} with the one exception: 5 ¢ I, 2(6).

Theorem 3 ([3]). Let v =0or2 (mod 3). Then for all v > 6, I 2(v) =
{0,1,2,3,.., a}\ {a = 1, — 2}, where a = v(v + 1)/3, and I23(5) =
{0,3,4,5,6,7,10).

Theorem 4 ([4]).

(i) Let v=00r 1 (mod 3). Then forallv > 9, I3 2(v) = {0,1,2,3,...,a}\
{a—1,a -2}, where o = v(v +2)/3, and I32(7) = {0, 3,4,5,...,17,
18,21}.

(ii) Let v =0 (mod 3). Then for all v > 11, I, 5(v) = {0,1,2,3,...,8} \
{8 1,8 -2}, where B = v(v +3)/3, and I, 5(9) = {0,3,4,5, ..., 32,
33,36}

We use the Stern and Lenz Lemma (Theorem 5 below) and thus provide
the following necessary notation for this lemma. Using the notation of
difference methods, if G is a graph with V(G)= {0, 1,2, ...,g — 1} then the
edge {u, v} in G is defined to have difference |u—v| = min {u—v, g—(u—v)}.
Let D C {1,2,..,9/2]}, and let G(D, g) be the graph with vertex set
{0,1,2, ..., g— 1} and edge set containing all edges having a difference in D;
that is, the edge set of G(D, g) is {{s,v}| Ju — v| €D}.

Theorem 5 ([6]). If D contains an element d where g/gcd({d, g}) is even,
then G(D, g) has a 1-factorization.
In this paper we prove the following result:
Theorem 6. Letv =1 (mod2)andv > 9. Then I33(v) = {0,1,2,3,...,a}\
{a—1,a -2}, where a = v(v+1)/2, and I33(7) = {0, 1,3,4,5,..., 25,28}.
For brevity, we use the notation Tj, ;,44...4, instead of T, UT;, UT;,U...UT;,
and we define J3(v) = {0,1,2,3,...,v(v + 1)/2} \ {v(v + 1)/1 — 1,v(v +
1)/2 — 2}. Finally, the graph G*+-+ is the graph G with n loops per
vertex (denoted by ++...+, n times).
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2 Construction of designs

In this section we use the techniques of [2], to determine I3 3(v) (so I assume
familiarity with this paper). However since A = 3, there are more small
cases to be determined for the recursive constructions. In order to achieve
this we take a (v;3;3,3) BTD and use it to construct a (2v—1;3;3,3) BTD
and a (2v + 1;3;3,3) BTD. Note that for any BTD with parameters set
(v;3;3,3), we have v =1, 3 or 5 (mod 6) and so 2v —1 = 1, 5 or 3 (mod 6),
and 2v+1=3, 1 or 5 (mod 6). So 2v — 1 and 2v + 1 are both admissible
orders for our designs here.

21 vto2v-1

Let {F;}!=3 be a 1-factorization of the complete graph K,_;. If we define
H; = F;U Fy4 U Fyyy for 0 £ i < v — 3 (addition is mod » — 2), then
{H:}?=3 is a 3-factorization of 3K, such that none of these H;’s has a re-
peated edge. Now we may use the set {Fg", Fit, Fif, Hy, Ha, Ha, ..., Hy_3},
to obtain v 3-factors for 3K} *. Suppose that (V; B) is a simple (v;3;3,3)
BTD on the v-set V = {z,z2,z3, ...,Zv}. We associate one of the v ele-
ments {x,x2,Z3,...,Zy} With each of these v 3-factors. For each edge ab
and each loop cc in a 3-factor, we take the block abz; and ccz;, if z; is the
element associated with this 3-factor. Of course we also take the blocks of
the simple BTD of order v based on the set {z,z2,zs,...,z,}. Since no
3-factor has a repeated edge, the resulting BTD of order 2v — 1 is simple.

Moreover it contains the BTD (V, B) as a sub-design.

22 wvto2w+1

Let G; = G({i},v+1) for1 <i < (v+1)/2 and w = (v — 7)/2. Now
consider the graph G({i,i + 1},v +1). For i # w+ 3 (i = w + 3) this is
a 4-regular (3-regular) graph on v + 1 vertices. By Theorem 5, this graph
has a 1-factorization for 1 < i < w+3, say {F}, F§, F§, F§} when i # w+3
and {Fy, F5, F3} when i = w+ 3. Let v = 1 (mod 4) and « be the cyclic
permutation (w w —2 w—4 ... 5 3 1). Then the set

{F1+1 F2+$ Gw+2 U Gw+4; Gw+2 9 Gw+41 Gw+2 U F3: G?i—l U F‘la(zi—l)a
Gai_1 U F® ™D, Gy U F§®Y, Gy U FP )| 1 i < (w4 1)/2)

consists of v 3-factors of 3K/ such that none of these 3-factors has

a repeated edge. Let v = 3 (mod 4) and B be the cyclic permutation
(w+1w-1w-3..531). Then similarly the set

(Gt .Gt 0y FLU R U F3,Go_ UFP-D @,y pPA-D),
G UF®™D G U Ff PV 1 < i< (w+2)/2)
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consists of v 3-factors of 3K}/ such that none of these 3-factors has
a repeated edge. Note that the remaining differences are {0, w + 3,w +
3}. Now suppose that (V,B) is a simple (v;3;3,3) BTD on the v-set
{z1, 2, 23, ...,Zy}. As before, we associate one of the v elements {z, x2, z3,
...y Ty} With each of these v 3-factors. For each edge ab and each loop cc in
a 3-factor, we take the blocks abxz; and ccz;, if z; is the element associated
with this 3-factor. Moreover we take v + 1 blocks from the initial block 0 0
w+3 or 0 0 w5 cyclically (mod v+ 1). Of course we also take the blocks
of the simple BTD of order v based on the set {z,, z2, z3, ..., zv}. Since no
3-factor has a repeated edge, the resulting BTD of order 2v + 1 is simple.
Moreover it contains the BTD (V, B) as a sub-design.

2.3 Pairs of designs

Now we use these constructions to produce two BTDs based on the same
set of elements (of size 2v —1 or 2v + 1). Having constructed one BTD, the
number of common blocks in the second design can be adjusted by

(i) changing the allocation of the v elements in the sub-design of order v
to the v 3-factors;

(ii) changing the sub-design of order v;

(iii) in v to 2v + 1 cases, possibly trading the single orbit of v + 1 triples
outside the sub-design of order v.

By this method, for v > 9 and v odd, we obtain
3(v-1)/2.{0,1,2,3,...,v — 2,9} + I33(v) C I3 3(2v — 1) (2)
and for v > 19 and » odd, we obtain
3(v+1)/2.{0,1,2,3,...,v — 2,9} + {0,v + 1} + I3 3(v) C I3 3(2v + 1)(3)

When v 2> 11, by the construction in Section 2.2 we can construct a simple
(2v + 1;3;3,3) BTD, having the original (v;3;3,3) BTD as a sub-design.
But when 11 < v < 17, this construction can not determine all possible
intersection numbers. For these cases we proceed as follows. When v =9,
11, 13, 15 or 17, by Tables 3.5, 3.6, 3.7, 3.8 and 3.9 respectively, we can
decompose 3K/;t into v 3-factors and an extra v + 1 triangles which we
obtain by cycling the base blocks 013 (mod v + 1) or 023 (mod v + 1).
Note that none of these 3-factors has repeated edges. Now by the method
described above we find that Equation (3) is also valid for v = 9, 11, 13, 15
or 17.

Remark 7: It is quite straightforward to verify that there do not exist two
(v; p2; 3, A) BTDs based on the same v-set which have all but one block the
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same, or all but two blocks the same. So for v > 9, I3 3(v) = Ja(v) implies
I33(2v—1) = J3(2v—1) and I3 3(2v + 1) = J3(2v + 1).

3 The small cases

In this section we show that I33(v) = J3(v) for v = 9, 11, 13 and 15 and
I33(7) = J3(7) \ {2}. So Theorem 6 is proved by Remark 7.

3.1 Thecasev=7

Let D, be a (7;3;3,2) BTD and D; be a STS(7) on the same 7-set V.
Since all blocks in D; are of the form zzy, we have |D; N Dy|=0. Thus
D, U D, is a simple (7;3;3,3) BTD on V. Now by Theorems 1 and 4,
we obtain {0,3,4,...,18,21} + {0,1,3,7} C I33(7). Moreover we assert
that 2 ¢ I3 3(7). To prove this, let (X, B) be a (7;3;3,3) BTD, and define
B, = {b € B | b= {zzy} for some z,y € X} and B, = B\ B;. Since
p2 = A =k = 3 we find |B)| = 21, |By] = 7 and each distinct pair
{z,y} occurs at least once in the blocks of B;. On the other hand B;
contains at most 21 distinct pairs. Thus (X, Bp) is a STS(7) and (X, B;)
is a (7;3;3,2) BTD. Now let (X, B) and (X, B’) be two (7;3;3,3) BTDs
such that |B N B’| = 2. Suppose that B = B, U B; and B’ = B{ U B}
such that (X, B;) and (X, By) are two (7;3;3,2) BTDs and (X, B;) and
(X, B3) are two STS(7). Since |B N B’| =2 we obtain |B, N Bj| =0, 1 or
2. If |By N B{| =1 or 2 then this is a contradiction by Theorem 3, and
if |By N Bi| = 0 then |Ba N Bj| = 2 and this is also a contradiction by
Theorem 1. Therefore 2 & I3 3(7). So I33(7) = J3(7) \ 2.

3.2 Thecasev=29

Let Dy, Dy and D3 be three (9;3;3,3) BTDs which we obtain from the
initial blocks 003, 005, 008, 027, 023 and 001, 002, 006, 045, 025 and
003, 007, 008, 045, 047 cyclically (mod 9), respectively. If we define T} =
{001,113,330}, T, = {006,667,778,880}, T3 = {002,223, 335,557, 770},
Ts = {112,224, 445,556, 668,881}, Tz = {117,774,441, 228,885, 552, 334,
446,663}, S; = {005,554,440}, S, = {887,776, 662,227,773, 338}, S5 =
{003, 336, 660, 116, 665, 551}, S, = {884, 443, 332, 221,110, 008}, S5 = {114,
447, 771,225, 558, 882}, T = {aab| bba € T;} and S} = {aab| bba € S;} for
1 <14 < 5, then by Table 3.1 we verify I3 3(9) = J3(9).
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DinDs|=0 (Dz—Tzs)UTés N D3| =22
(D1 -S))uSinDy =1 (D2 — T3s5) UT3s]| N Ds| = 23
(D1 =5)US)n Dy =2 (D —Tys) UT4s| N D3| = 24
(D1 — S12)US),|N Dy =3 (D2 — T125) UTje5) N D3| = 25
(D1 —-S3)USi|ND,| =4 (D2 — T1a5) UT{a5] N D3| = 26
(D1 —=83)USN Dy =5 (D2 — Tha5) UTy4s) N D3| = 27
(D1 —S5)USinD2 =6 (Dg—T245)UT2'45 N D3| =28
(Dl—sls)USis NDy|=7 (Dz—Tus)UTé«; N D3| =29
(D1 —Sgs)Uszs NDy|=8 (Dz—T45)UT4'5 N Dy =30
(D1—334)US';4 NDy| =9 (Dg—Tss)UTés NDy| =31
(D1 — S35) U S35| N Do =10 (Dy — Tos) UTys) N Dy| = 32
(D1 ~ Sai5)USi]N Dy =11 (Dz—Tm)UT{s NDy| =33

(D1 — Sis)U Si45 N Dy| =12 (D2 —T34)U T3'4 NDy| =34
(D1 — S245) U Syys] N Do| = 13 (D2 —Tog) VT3] N Do| = 35
(D1 — S1245) U Sjpus] N Do = 14 | |[(D2 — T5) UTg] N Do[ = 36

(Dy — Sa4s) U Siys] N Do| =15 (D2 —Ti3) U T3} N Do| = 37
(D1 — S134s) U Siays] N Do| = 16 (D2 —Tio)U T’g N Dy| = 38

(D1 — Saass) U 35345 N Dy| =17 (D2 — T4) UT‘; N Dy =39
DinNnDs| =18 (D — T3)UT3]N D] = 40
(D2 — To4) UTo4) N D3| =19 (Dz—Tz)UTé_'ﬂDz =41
(DQ—TSA)UT& N D3| =20 (Dg-Tl)UT{]an =42
(D2 —Tis) UT{s]N D3| =21 Dy N Do =45

Table 3.1

3.3 The case v=11

Let Dy, Dy and D3 be three (11;3;3,3) BTDs which we obtain from the
initial blocks 001, 002, 005, 047, 025, 018 and 0 0 10, 009, 006, 047,
028, 014 and 003, 004, 0 0 10, 029, 056, 028 cyclically (mod 11), respec-
tively. As before, we define Ty = {001, 116,660}, T, = {002, 227,779, 990},
T3 = {112,223,338,8 8 10,10 10 1}, Ty = {005,557,778,889,9 9 10,10 10
0}, Ts = {334,446,668,882,224,449,993}, Ts = {771,113,335,5 5 10,10
10 4,445,556,667}, Ty = {334,445,556, 667,779,993}, Ts = {778,889,9 9
10,10 10 0,002,227}, T = {0 0 10,10 10 9,998,887,776,665,554,443,332,220},
Ty = {221,117,772} and T = {aab| bba € T;} for 1 < i < 10. Now by
Table 3.2 we verify I3 3(11) = J3(11).
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DlnD3|=0 (Dl—less)Ull'z_sé N Dy| = 33
(D1 —T)UT{InDs| =1 (Dy —Ti3s6) U T1ag6l N Do| = 34
(D - T3)U Téj ND3}=2 (D1 — T456) U Ty 456] N D2| = 35
(D1 —Ti3)UTi3]Nn D3| =3 (D1 — To4s6) U Tg456) N Da| = 36
(D1 - T)UT;N D3| =4 (D; — T3486) U Ta456] N Dy| =37
(D1 —Th7)VUTi;]N D3| =5 (D1 — Th2356) U T{3356 NDs| =38
(D) —Ts37)U Té7 ND3| =6 (Dy — T9386) U T{2&‘56 ND| =39
(D1 — Tia7) UTYs 7] n D3| =7 (D1 — Taas6) U T3456] N D1| = 40
(D1 —Thg)U T';S ND3| =8 (Dy — Togge) UTpu56] N D1 =41
(Dy = Ti78)UTy45|N D3} =9 (D1 — Tiase) U Tig56] N D1 = 42
(Dl - T373) U Té?S ND;| =10 (D1 - T1356) U TIISSG ND;| =43
DN Dp| =11 (D1 —Th956) U Tygse] N Di| = 44
(D2 —Iglo) U Tg,0] N D3| = 12 (D1 — Tyse) U % ND;| =45
(Dz —-Ts)U Té ND3| =13 (Dl - T355) U Téss N Dy| = 46
(Dl—T1)UT1' NDy| =14 (D, —T256)UT£56 N Dy| =47
(D] - Tz) U Tz'j NDy|=15 (D1 - T246) U T;«; N D;| = 48
(D1 —T3)UT3N Dy = 16 (D1 — Thae) U Tog6] N Dy| = 49
(Dl—Tq)UT,a' NDy| =17 (Dy — Thag) U Ti3¢] N Dy| = 50
(D1 —Ts)UTé NDy| =18 (D1 —T55)UT5:6 NnD;| =51
(D1 —Tg)UTg)N Dy =19 (D1 ~ Tug) U Tyg] N Dy} = 52
(D) —To3)UTy5]N Da| =20 (D; — T36) UT4g) N Dy] = 53
(D1 - T24) U T2'4 NDy| =21 (Dl - Tzs) U T2’6 NnD;,| =54

(D1—T25)UT2'5 N Dy| =22 (D1—T25)UT2'5 N D;| =55
(Dl —Ty) UTés NDs| =23 (D1 —Toy) U T2'4 N Dy| = 56
(D1 —T36)UT36) N Do| = 24 (D1 —Tps) UToa) N Dh| = 57
(D1 —Ty)U T,;s NDy| =25 (D, —Te)U TG,] N D,| =58
(D1 —Te6) UTgg]N Dy = 26 (D1 —Ts) VTN Dy| = 59
(D1 —Thi36) U Tige] N Do| = 27 (D) —Ty)U TN Dy| = 60
(D1 — Ta36) U Toz6) N Do| = 28 (D1 -T3)uT3|n Dy =61
(D1 — Tog) U Tosg| N Da| =29 (D1 -Th)u Té_ N Dy| =62
(D1 — Tas6) U Toge) N Do = 30 (D1 -T) UT{] NnD,| =63
(D, — Tis6) UT556 N Dy =31 Dy Dy| =66

(D1 — Tys6) U Ty56) N Do = 32

Table 3.2

3.4 The case v =13

First, by the construction given in Section 2.1, we decompose 31((';*~ *+ into
seven 3-factors:
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, 01, 25, 34;

Hy: 00, 11, 22, 33, 44, 55, 01, 25,
Hy: 00, 11, 22, 33, 44, 55, 02, 13, 45;
Hs: 00, 11, 22, 33, 44, 55, 03, 15, 24;

Hy  (0,24,5,1,3), 04, 35, 12;
Hs: (0,3,5,1,2,4), 05, 14, 23;
He: (04,1,2,3,5), 01, 25, 34;
Hr: (0,5,2,3,4,1), 02, 13, 45.

Secondly, we take a copy of a (7;3;3,3) BTD on the set {zy, =2, 23, Z4, Z5, Z¢, T7}.
If we let j € I3,3(7), then the following permutations give possible assign-
ments of the seven elements {z;} to the seven 3-factors of 3K§*+.

no. of common blocks

H, H, Hs H, Hg Hg H; 63+5
Hy Hy, Hs3 H, Hg Hg H; 4545
Hy Hs Hs H, H, Hg¢ H; 2745
H¢ Hs H; H, Hy Hy Hj3 6+7

So we get {6,27,45,63} + I33(7) C I3 3(13). Thus we need to show that
{0,1,2,3, 4,5,8} C I33(13). For this, let D; and D; be two (13;3;3,3)
BTDs which we obtain from initial blocks 001, 004, 008, 024, 036, 067,
035 and 002, 007, 0 0 12, 058, 049, 037, 023 cyclically (mod 13), respec-
tively. Moreover, let T} = {001,115,550}, T, = {112,226,661}, T3 =
{223,334,445,559,994,4 4 12,12 12 7,772}, T, = {556,667,778,889,9 9 10,10
10 5} and 7] = {aab| bba € T;}. Then we find:

DiNDy|=0 (D1 —T13)UTsNDy[=4
D —TO)UTA D =1 [ [(Di =T2)UT] N Ds] =5

(D1 - T]g) UT'Q] n D2| =2 (Dl —T34) UT§4] n D2| =8
(D1 —-Ta)UTé ﬂDzI =3

Table 3.3

So I33(13) = J3(13).

3.5 Thecasev=15

Here, we decompose 3K+ into seven 3-factors {H;}7_, as follows and
- eight blocks which we may obtain from the initial block 003 or 005 cyclically
(mod 8).
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Hi: 00, 11, 22, 33, 44, 55, 66, 77, 03, 16, 47, 25;
Hp: 00, 11, 22, 33, 44, 55, 66, 77, 36, 14, 27, 05;
Hs: (0,1,2,34,5,6,7), 02, 46, 13, 57;

Hy: (0,1,2,34,5,6,7), 24, 06, 35, 17;

Hs: (0,1,2,34,5,6,7), 04, 15, 26, 37;

He: (0,2,4,6),(1,3,5,7), 04, 15, 26, 37;

Hpy: (0,24,6),(1,3,5,7), 04, 15, 26, 37.

Now we can assign seven new elements to the seven 3-factors in different
ways, where in the table below, j € I3 3(7):

no. of common blocks

H, Hy Hs Hy Hs Hs Hy 8443
Hs H, H, Hy Hs H¢ H; 60+5
Hs Hy H, Hy, Hs Hg¢ Hp 36+5
H¢ Hy H, Hy, H,; Hs H;s 1245

With the extra switch of the base blocks 003 and 005, we obtain {12, 36, 60,
84} + {0,8} + I3 3(7) C I33(15). For the remaining intersection numbers,
let D; and D, be two (15;3;3,3) BTDs which we obtain from the initial
blocks 002, 005, 007, 0 1 14, 0 3 12, 048, 0 6 12, 045 and 003, 004, 0 O
10, 079, 067, 068, 0 10 11, 013 cyclically (mod 15), respectively. Now if
T, = {005,557,779,991,118,880}, Tz = {007,7 7 12,12 12 4,449,9 9 11,11
1113,13130}, 73 = {116,6 6 11,11 11 1}, T, = {338,8 8 13,1313 3,5 510,10
10 0,002,227,7 7 14,14 14 4,4 4 11,11 11 3,335}, Ts = {12 12 2,224,446,668,8
8 10,10 10 12} and T} = {aab| bba € T;} for 1 < i < 5, then by Table 3.4
we obtain {0,1,2,3,...,11,14} C I33(15). So I33(15) = J3(15).

DinDy| =0 (D;—T4)UTj]nD2|=7
(Dl—T1)UT1' N Dy (Dl—T14)UT{4 ND;y| =8

(D1 —TR)VT5]N Dy (D) = Tog)UTo|N Dyl =9
(Dl—Ts)UTZ—]ﬂDQ (D1 — T34) U T3 N Da| =10

(D1 —Ti3) VTGN D=4 (D1 —T134) UT 5| N Dyf =11
(D1 —Ta3)UTss]N Dy =5 (D1 — T12345) U Tigass] N Do| = 14
(D1 = Th23) UTps] N D[ = 6

Table 3.4

W] e ol —
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Nine 3-factors of 3K;t* on Zyo

Hy | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 05, 16, 27, 38, 49;
H» | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 05, 16, 27, 38, 49;
Hs | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 05, 16, 27, 38, 49;
Hy | (0,1,2,3,4,5,6,7,8,9), 36, 29, 58, 14, 07;

Hy | (0,2,4,6,8),(1,3,5,7,9), 36, 29, 58, 14, 07;

Hg | (0,2,4,6,8),(1,3,5,7,9), 03, 69, 25, 18, 47;

Hz | (0,4,8,2,6),(1,5,9,3,7), 03, 69, 25, 18, 47;

Hs | (0,4,8,2,6),(1,5,9,3,7), 01, 23, 45, 67, 89;

Hjp | (0,4,8,2,6),(1,5,9,3,7), 12, 34, 56, 78, 09.

Table 3.5

Eleven 3-factors of 3K;t* on Z;,

Hy, | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 06, 17, 28, 39, 4 10, 5 11;
Ha | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 06, 17, 28, 39, 4 10, 5 11;
Ha | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 06, 17, 28, 39, 4 10, 5 11;
H, | (0,1,2,3,4,5,6,7,8,9,10,11), 03, 69, 14, 7 10, 25, 8 11;

Hs | (0,2,4,6,8,10),(1,3,5,7,9,11), 01, 23, 45, 67, 89, 10 11;

Hg | (0,2,4,6,8,10),(1,3,5,7,9,11), 12, 34, 56, 78, 9 10, 0 11;

H; | (0,3,6,9),(1,4,7,10),(2,58,11), 05, 3 10, 18, 6 11, 49, 27;

Hs | (0,5,10,3,8,1,6,11,4,9,2,7), 09, 36, 1 10, 47, 2 11, 58;

Hy | (0,4,8),(1,5,9),(2,6,10),(3,7,11), 5 10, 38, 16, 4 11, 29, 07;

Hiyo | (0,4,8),(1,5,9),(2,6,10),(3,7,11), 5 10, 38, 16, 4 11, 29, 07;

Hy | (0,4,8),(1,5,9),(2,6,10),(3,7,11), 05, 3 10, 18, 6 11, 49, 27.

Table 3.6

Thirteen 3-factors of 3Kj,;** on Z4

00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13,
07,18, 29,3 10,4 11, 5 12, 6 13;

00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13,
07, 18, 29,3 10,4 11, 5 12, 6 13;

00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13,
07, 18, 29,3 10,4 11, 5 12, 6 13;

(0,1,2,3,4,5,6,7,8,9,10,11,12,13), 03, 69, 1 12, 47, 10 13, 25, 8 11;
(0,2,4,6,8,10,12),(1,3,5,7,9,11,13), 01, 23, 45, 67, 89, 10 11, 12 13;
(0,2,4,6,8,10,12),(1,3,5,7,9,11,13), 12, 34, 56, 78, 9 10, 11 12, 0 13;
(0,3,6,9,12,1,4,7,10,13,2,5,8,11), 05, 1 10, 6 11, 27, 3 12, 8 13, 49;
(0,4,8,12,2,6,10),(1,5,9,13,3,7,11), 36, 9 12, 14, 7 10, 2 13, 58, 0 11;
(0,4,8,12,2,6,10),(1,5,9,13,3,7,11), 05, 1 10, 6 11, 27, 3 12, 8 13, 49;
(0,4,8,12,2,6,10),(1,5,9,13,3,7,11), 05, 1 10, 6 11, 27, 3 12, 8 13, 49;
(0,6,12,4,10,2,8),(1,7,13,5,11,3,9), 5 10, 16, 2 11, 7 12, 38, 4 13, 09;
(0,6,12,4,10,2,8),(1,7,13,5,11,3,9), 5 10, 16, 2 11, 7 12, 38, 4 13, 09;
(0,6,12,4,10,2,8),(1,7,13,5,11,3,9), 5 10, 16, 2 11, 7 12, 38, 4 13, 09.

Table 3.7




Fifteen 3-factors of 3K{it* on Z;6

Hy | 00, 11, 22, 33, 44, 55, €6, 77, 88, 09, 10 10, 11 11, 12 12, 13 13, 14 14, 15 15, 08, 10, |
210,311, 4 12, 5 13, 6 14, 7 15;

Hy | 00,11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13, 14 14, 15 15, 08, 19,
210,3 11, 4 12, 5 13, 6 14, 7 15;

Hz | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10; 11 11, 12 12, 13 13, 14 14, 15 15, 08, 19,
210,311, 4 12, 5 13, 6 14, 7 15;

Hy | (0,1,2,3,45,6,7,89,10,11,12,13,14,15), 05, 10 15, 49, 3 14, 8 13, 27, 1 12, 6 11;

Hs | (0,1,2,34,5.6,7,8.9,10,11,12,13.14,15), 05, 10 15, 49, 3 14, 8 13, 27, 1 12, 6 11;

Hg | (0:2,4,6,8,10,12,14),(1,3,5,7.9,11,13,15), 05, 10 15, 49, 3 14, 8 13, 27, 1 12, 6 11;

Hy | (0:2,4:6,8,10,12,14).(1,3.5,7,9,11,13,15), 5 10, 4 15, 9 14, 38, 2 13, 7 12, 16, 0 11;

Hg | (0,3,6:9,12,15,2,5,8,11,14,1,4,7,10,13), 5 10, 4 15, 9 14, 38, 2 13, 7 12, 16, 0 11;

Hg | (0,3,619,12,15,2.,5,8,11,14,1:4,7,10,13), 5 10, 4 15, 9 14, 38, 2 13, 7 12, 16, 0 11;

Hyo | (0,4,8,12),(1,5,9,13),(2,6,10,14),(3,7,11,15), 07, 5 14, 3 12, 1 10, 8 15, 6 13, 4 11, 29;

Hy | (0,4,8112),(1,5:9,13).(2.6.10,14).(3.7.11,15), 07, 5 14. 3 12, 1 10, 8 15, 6 13, 4 11, 29;

Hia | (0,4,8,12),(1,5,9,13).(2,6.10,14).(3,7,11,15), 07, 5 14, 3 12, 1 10, 8 15, 6 13, 4 11, 29;

Hyz | (0,6,12,2,8,14,4,10),(1,7,13,3,9.15,5,11), 7 14, 5 12, 8 10, 18, 6 15, 4 18, 2 11, 09;

Hyg | (0,6,12,2,8,14,4,10),(1,7,13.3.9,15,5,11), 7 14, 5 12, 3 10, 18, 6 15, 4 13, 2 11, 09;

His | (0,6,12,28,14,4,10),(1,7,13:3:9,15,5,11), 7 14, 5 12, 8 10, 18, 6 15, 4 13, 2 11, 09,

Table 3.8
Seventeen 3-factors of 3KEt+ on Zys

Hy 00, 11, 22, 33, 44, 55, €6, 77, 88, 99, 10 10, 11 11, 12 12, 13 13, 14 14,
15 15, 16 16, 17 17, 09, 1 10, 2 11, 8 12, 4 13, 5 14, 6 15, 7 16, 8 17;

Ha | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13, 14 14,
1515, 16 16, 17 17, 09, 1 10, 2 11, 3 12, 4 13, 5 14, 6 15, 7 16, 8 17;

Hy | 00, 11, 22, 33, 44, 55, 66, 77, 88, 99, 10 10, 11 11, 12 12, 13 13, 14 14,
15 15, 16 16, 17 17, 09, 1 10, 2 11, 3 12, 4 13, 5 14, 6 15, 7 16, 8 17;

Hy | (0,1,23,4,5,6,7.89,10,11,12,13,14,15,16,17), 05, 10 15, 27, 12 17, 49, 1 14, 6 11, 3 16,
8 13;

Hs | (0,2,4,6,8,10,12,14,16),(1,3,5,7,9,11,13,15,17), 05, 10 15, 27, 12 17, 49, 1 14, 6 11, 3 16,
8 13;

Hg | (0,2,4,6,8,10,12,14,16),(1,3,5,7,9,11,13,15,17), 05, 10 15, 27, 12 17, 49, 1 14, 6 11, 3 1,
818;

Hy | (03,69,12,15),(1,4,7,10,13,16),(2,5,8,11,14,17), 5 10, 2 15, 7 12, 4 17, 9 14, 16, 16 11,
38 .

Hg | (03,69,12,15),(1,4,7,10,13,16),(2,5,8,11,14,17), 5 10, 2 15, 7 12, 4 17, 9 14, 16, 16 11,

0 13;

Ho | (04,812, 16,2,6,10,14),(1,5,9,13,17,3,7,11,15), 5 10, 2 15, 7 12,4 17, 9 14, 16, 16 11,
38, 0 13;

Hio | (04,8, 12 16,2,6,10,14),(1,6,0,13,17,3,71,11,15), 07, 3 14, 10 17,6 13, 29, 5 16, 1 12,
815,4

Hy | 048, 12, 1'62 6,10,14),(1,5,9,13,17,3,7,11,15), 07, 3 14, 10 17, 6 13, 29, 5 16, 1 12,
815,4

Hya | 06, 12) (1 7,13),(2,8,14),(3.9,15),(4,10,16),(5,11,17), 07, 3 14, 10 17, 6 13, 29, 5 16,
112,81

Hys (06'12),(1' 7 13),(2 8,14),(3,9,15),(4,10,16),(5,11,17), 7 14, 3 10, 6 17, 2 13, 9 16, 5 12,
18, 4 15,

His | (0, 12),(1 7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17), 7 14, 3 10, 6 17, 2 13, 9 16, 5 12,
18, 4

Hys (os 166 144'122 ,10),(1,9,17,7,15,5,13,3,11), 7 14, 3 10, 6 17, 2 13, 9 16, 5 12, 18, 4 15,
011;

Hie | (08,16,6,14,4,12,2,10),(1,9,17,7,15,5,13,3,11), 01, 23, 45, 67, 89, 10 11, 12 13, 14 15,
16 17;

Hyz

(0,8,16,6,14,4,12,2,10),(1,9,17,7,15,5,13,3,11), 12, 34, 56, 78, 9 10, 11 12, 13 14, 15 16,
017.

Table 3.9
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4 Conclusion

We now have our required result:

Theorem 6. There exist two simple balanced ternary designs of order
v =1 (mod 2), v > 7, with block size 3, index 3 and p2 = 3, having n
common blocks, for all n € {0,1,2, ..., (v(v +1)/2) — 3, (v(v + 1)/2)}, with
the one exception that there do not exist two such BTDs of order 7 having
2 common blocks.
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