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Abstract. In this paper we construct a latin (1 x n x (n ~ d))-parallelepiped that
cannot be extended to a latin cube of order n for any pair of integers d, n where d > 3
andn> 2d+ 1. Ford = 2, it is similar to the construction already known.

1. Introduction

One of the best known property of latin squares is that any latin (n x k)-rectangle
can be extended to a latin square of order n. This was proved by M. Hall [5].
Since then have arised questions whether this theorem can be extended to “more
dimensional” cases. To be more precisse we introduce some notations.

Let AD = [a{)1, AP = [a{7], ..., A® = [a{] be latin squares of el-
ements 1,2,...,n The ordered k-tuple A = (A, AP ..., AB®) is called a
latin (n x n x k)-parallelepiped if the elements o}, ..., a{¥) are distinct for
every1 <4,j < n Inthecase k = n, A is called a latin cube of order n.

With respect to the theorem of Hall [5] it is natural to ask the following question:
Given a latin (n x n x k)-parallelepiped, do there exist n— k latin squares which
may be added to the given parallelepiped to form a latin cube? This problem was
posed in the Sixth Hungarian Collogium on Combinatorics, 1981. In contrast with
the classical case there are known constructions of latin (n x nx (n— d))-para-
llelepipeds that cannot be extended to a latin cube of order n. These constructions
have been presented in [7) (ford = 2 and n= 2&, k > 3),in [4] (for d = 2 and
n=6o0rn> 12),in[8] (ford=2 andn > 5),in (9] (ford > 3 and n = kd,
k > 3 orn > 6d), and in [3] (for d = 3 and n = 5). In this paper we construct a
latin (n x n x (n— d))-parallelepiped that cannot be extended to a latin cube of
ordernforanyd >3 andn> 2d+ 1.

It is an easy task to prove that any latin (n x nx 1)-and (nx n X (n—1))-
parallelepipeds can be extended to latin cubes of order n. We have conjectured in
[9] that, if d > 2 and n < 2d, then every latin (n X n x (n — d))-parallelepi-
ped can be extended to a latin cube of order nand, ifd > 2 andn > 2d+ 1,
then there exists a latin (n x n x (n— d)) -parallelepiped that cannot be extended
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to a latin cube of order n. This conjecture was verified for d = 2 in [8], but
disproved ford = 3 and n = § in [3]. In this paper we prove the second part
of the conjecture. Unfortunately there are no nontrivial results regarding the first
part of the conjecture, unless the contraexample presented in [3].

As a survay of properties of latin squares together with some applications we
refer to the book edited and partially writtenby Dénes and Keedwell [2], especially
the chapters written by Heinrich [6] and Lindner [10].

2. Basic notations and definitions

An incomplete latin square of elements cy , . . ., ¢, (or, simply, of order n) is an nx
n array such that the entries are the elements ¢y, ..., ¢y, no elements of ¢; ..., ¢y
occurs in any row or column more than once, and some cells may be empty. Unless
otherwise specified ¢; = i forany i = 1,...,n If every cell is nonempty we get
a latin square of order n. If A is an (incomplete) latin square of order n, then we
write A = [a;;] where a;; denotes the entry in the i-th row and the j-th column.

We say that an incomplete latin square of order n can be extended to a latin
square of order n if the empty cells can be filled in such that the result is a latin

square of order n.

Weshalluse S(ci, .. ., ¢,) todenote the latin square [ a; ;] of elementscy, ..., c,
such that a;; = c;+j—1, Where the indices are taken in {1, ..., n} mod n. For in-

stance
1 2 3
5(1,2,3)=[2 3 1]
31 2

Let A be an (incomplete) latin square of ordernand 1 < 1 < m2 < n,
1< s €8 <n Wecallan (r,1r2) X (31,82)-subrectangle of A the (15 —
r1 + 1) x (83 —s; + 1) array which arises as the intersection of the 1 th, (r; + 1)st,
...,rathrows and the s; th, (s + 1)st, ..., s2th columns of A.

Let A be an (incomplete) latin square of ordern, 1 <11 < m <n,1< 81 <
32 < nand B be the 2 x 2 array which arises as the intersection of the ry th, 72 th
rows and the s, th, s th columns of A. Then B is called the (11, m2) # (81,82)-
subsquare of A.

The latin ( n % n x k)-parallelepipeds have been introduced in the first section.
Furthermore, if A = (A, A2, ..., AW®) js a latin (n x 7 x k)-parallelepi-
ped then we denote by M; ;(.A) the subset of the numbers 1,2,...,n which do
not occur in the intersection of the ith row and the jth column in any of the latin
squares AN, A 4B,

3. The main idea of the construction
Our construction will be based on the following lemma.
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Lemmal. Letd > 2,n > dand A = (A, AP . A9 be a latin
(n x nx (n— d)) -parallelepiped such that
Mii(A) ={2,3,...,d+ 1}, .
M;1(A)={1,3,4,...,d+1}, (2<LiL4d),
M;;(A)={1,2,...,d}, (1Li<d, 2<j<d).
Then A cannot be extended to a latin cube of order n.
Proof: Suppose, to the contrary that there exist latin squares B = [b{})],
BD = [521,..., B = [b}71] of order n such thatB = (A“’ Al
BM,, B"") is a latin cube (m other words, {b{},57,...,57} = Mi;(A)
forany 1 < 1,7 < n). We may assume without loss of generahty that b“’
d+ 1. Since {2,3,...,d} C M11(A), M12(A), ..., M) d(A) then, forany
ke {2,3,...,d},mereexlsls i € {2,3,...,d} suchthatb,, = k (otherwise
k could not be element of the sets Mm(A) Mi2(A), .. M1 d(A)). Then
8{2,689,...,5{0} = {2,3,...,d} and b{") ;elforanyj: 1,...,d.
Denote I = {(1,]) 1 <z,] < d}.
We have proved that bl J # 1 forany j = 1,...,d. Then there exist at most
d — 1 elements (4, ) € I such that 5} = 1.
Since b{"} = d+ 1andd+ 1 ¢ M.j(A) for any (,5) € I and j > 2, then
there exists just one (1, 7) € I such that bs-) =d+ 1.
Since 2 ¢ M;i1(A),2 < i < d,and2 # b{!), then there exist at most d — 1
elements (i, /) € I such that b)) = 2.
Clearly, there exist at most d(d — 2) elements (i,7) € I such that b)) €
3,4 d
{ Concludn}g, there exist at most d> — 1 elements (5, 7) € I such thatb‘}) €
{1,2,...,d+1}. But|I| = d® and M;;(A) C {1,2,...,d+ 1} forany (i,/) €
I, what is a contradiction. |
In the sequel we shall construct 1atin ( nx nx ( n—d) ) -parallelepiped C such that
M;;(C) ={1,...,d} forany 1 < 1,; < d. Then we shall do small changes in C
and obtain a new latin (n x n x (n— d))-parallelepiped £ having the properties
of Lemma 1. In order to construct such C and £ we need two incomplete latin
squares introduced in the next chapter.

4. Definitions of two basic incomplete latin squares
Definition 1: Letd > 3,n > 2d + 1. Denote by K(d,n) the incomplete latin

square of order n such that (see K(4,9) and K(3,7) in Table 1, where the empy
cells are depicted as dots):

(@ The (1,d) x (1,d)-subrectangle of K(d,n) is S(d+ 2,...,2d+ 1).
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() The(1,d+ 1) # (1,d+ 1)-subsquare of K(d,n) is equal to S(d + 2,2),
the (2,d+ 2) # (1,d + 2)-subsquare of K(d,n) is equal to S(d + 3, 3),
the (d,2d) # (1,d + 3)-subsquare of K(d,n) is equal to S(2d+ 1,1).

(c) Ifd > 4,then, foranys = 4,...,d, the(i—1,d+i— 1) #(1,d+ 3)-
subsquare of K(d, n) is equal to S(d + 1, 1).

(d) All other cells are empty.

Since any of the subsquares of K(d, n) from items (b) and (c) is in fact a latin
square of order 2, we can interchange the positions of the entries in any of these
subsquares and K(d,n) (or its extention) remains latin. This will be used in the
following section.

QO 00
~ OO ®
o0 3 O\ O
« O\ N
~ . . W
Ho.
[P B I -
AR
w

\O 00 -

K(4,9) = K(@3,7) =

-5 WOV
o
- N~

Table 1

Definition 2: Letd > 3,n > 2d+ 1. Denote by L(d, n) = [l;;] the incomplete
latin square of order n such that (see Table 2):

(@ The(n—d+ 1,n) x (1, d)-subrectangle of L(d, n) is S(1,...,d).
(b) The (1,2)# (d,2d)-subsquare of L(d,n) is

d+2 2
d+1 1]°
(¢) The(1,d+ 1)# (1,d+ 1)-subsquare of L(d,n) is
2d+1 1
d+1 2}|°
(d) Foranyi = 3,...,d,the (1,5)#(d— 1+ 2,2d — { + 2)-subsquare of
L(d,n) is
d+1 4
d+1 2|°

©) b =12 =lp2ge3 = =lpgr12¢4=d+ 1.
() Al other cells are empty.
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5 . | 765132
o5 00 02 L. .4 . 01
.5 .. .2 0 .. .4 . .2
L(4,9=5 . . .2 L(3,H=4 .2 ..
1234 . 5. 123 .4 .
2341 5 231 .4
3412 .5 3124
41235
Table 2

In the sequel we use the following fact. Suppose L(d, n) be extended to a latin
square of order n and remove the last d rows from it. We get a latin rectangle.
This rectangle remains latin if we interchange the positions of the entries d + 1
and 1 in the 2nd row and the entries d + 1 and 2 in the 3th, ..., (d + 1)strows.

§. The construction
The last section will be devoted to the proof of the following lemma.

Lemma 2, Letd >3,n> 2d+ 1. Then K(d,n) and L(d,n) can be extended
to Iatin squares of order n.

If p is a permutation of the set {1,...,n} and A = [a;;] is a latin square of
order n, then by p(A) = [b;;] we denote the latin square of order n such that
bij = p(aiy).

Now we can prove the main theorem.

Theorem 1. Foranyd > 2 andn > 2d+1 there exists a latin(nx nx (n—d)) -
Dparallelepiped that cannot be extended to a Iatin cube of order n.

Proof: This theorem was proved ford =2 andn > § in [8).

Choose fixed integers d, n where d > 3 and n > 24 + 1. By Lemma 2, there
exist latin squares R(d, n) and S(d,n) of order n that are extentions of K(d,n)
and L(d, n) respectively.

Take S(d, n) = [3;;]. This latin square defines n permutations p; (1 < i < n)
of the set {1,...,n} such that ; maps the 1st row of S(d,n) on the sth row of
S(d, n), more precissely, pi(s1;) = 8;; forany 1 < j < n Note that p; is the
identical mapping.

Take R(d,n) and let us construct a latin (n x n x (n — d))-parallelepiped
C=(CO,...,C"9) such that CP = p;(R(d,n)) forany 1 < i < n—d.
From the fact that R(d, n) and S(d, n) are extentions of K(d,n) and L(d,n)
respectively, we can easily check (1)-(3):

(¢)) M,}'(c) = {l "'sd} forany1 <i4,j<d.
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(2) M;;(C) ={1...,d} for any pair (4, ;) from the set
{(d+1,d+1),(d+2,d+2),(d+3,d+3),(d+4,d+3),...,(2d,d+ 3)}.

(3) d+ 1 € M;;(C) for any pair (1, j) from the sets

{(1,d+1),(2,d+2),(3,d+3),(4,d+3),...,(d,d+ 3)},
{(d+1,1),(d+2,1),(d+3,1),...,(2d,1)}.

Furthermore, from Definitions 1 and 2 we can easily check: (See Table 3, where
are depicted segments fromC ..., CD ifd = 4 ,n=9 and S(4, 9) is depicted
in Table 4. The less important entries of C¥ are depicted as dots.)

(4) The(1,d+ 1) # (1,d+ 1)-subsquare of C® is equal to S(d+ 1, 1). (For
instance this follows from the facts thatthe (1,d+ 1) # (1, d+ 1) -subsquare
of K(d,n) is S(d+2,2) and the (1,2) # (d,2d)-subsquare of L(d, n) is

a1 1))

(5) The(2,d+ 2)# (1,d+ 2)-subsquare of C'® is equal to S(d + 1,2).

(6) The(i—1,d+i—1)# (1,d+3)-subsquare of C'? is equal to S(d+ 1,2)
foranyi=4,...,d+ 1.

As pointed out after Definition 1, we can interchange the positions of the en-
tries of the subsquares from items (4)-(6). Le., the subsquares equal to S(d +
1,1) or S(d + 1,2) can be replaced by the subsquares equal to S(1,d + 1) or
S(2,d + 2), respectively. Performing all these changes we get new latin squares
E® ... E“Y from C?,...,C4*D, respectively. Otherwise let E® = C(9
(see Table 3).

From (1)-(3) it follows that if we use the notation E” = [e{}],r=1,...,n—
d, then the entries e} , ..., e are distinct for every 1 < 4, < n. (In fact we
have used that S(d, n) is an extention of L(d, n) and the arguments of the remark
after Definition 2.) Thus £ = (EV, ..., E®™9) js latin (n x n x (n— d))-pa-
rallelepiped.

Finally, from (4)-(6) and (1) it follows that

M 1(8) ={2,3,...,d+ 1},
M(.l(£)={1,3,4,.-.,d+ 1}1 (2SiSd).
Mi.}‘(g) = {l,2,...,d}, (1£i<d,2<j5<d).

Thus, by Lemma 1, € cannot be extended to a latin cube of order n. 1

Unfortunatelly, the construction of Theorem 1 cannot be applied for n < 24d.
‘We can check that if n < 2d, then there exists no latin (n x n X (n— d))-para-
llelepiped satisfying the conditions of Lemma 1.
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78956 . 78956 .
8957 4 8957 4
9578 1 9578 .1,
5789 2 2789 . .5.
c =6 7 . c =6 7 .
4 . 8 .. 4 . 8 ..
1 . 9. 1 . . 9.
2 . . 5. 5 . .2,
Table 3 (continued)
987614325
876543912
765938241
6 598721134
S(4,9=5987 21463
1234896157
234196578
341265789
412357896
Table 4
6. Proof of Lemma 2

As pointed out before, this part has only auxiliary character and its aim is to prove
Lemma 2. Primarily we need several easy lemmas:

Lemma 3. Let A be an incomplete latin square of order n such that

(@) Thecells in the firstd (< m) columns are occupied.
(b) There are occupied some (but not necessary all) cells from the first row.
(c) All other cells are emply.

Then A can be extended to a latin square of ordern.

Proof: Take as A’ the incomplete latin square that is the subsquare of A and has
only the cells of the first d rows occupied. Then, by [5), A’ can be extended to a
latin square A” of order n. Using the appropriate permutation of columns of A"
we get the required extention of A. 1

Note that Lemma 3 is in fact a special case of a more general result from [1].

Let ¢ be a mapping that maps an incomplete latin square A = [a; ;] of order n
to an incomplete latin square {(A) = [b;;] of order nsuch that (see e.g. L(4, 10)
and §(L(4, 10)) in Table 10):

(@) Ifa;j=k,thenb;y=jforanyl <1i,7,k<n
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(b) If a;; is an empty cell, then £(A4) has no cell in the ith row with the entry
equal to j.
We can check that {(£( 4)) = A.

Lemma 4. Let A be an incomplete latin square of order n and suppose B is an
incomplete Iatin square of order n obtained from A by using any combination of
the following processes:

(@) permutation of rows,
(b) permutation of columns,
(c) using the mapping €.
Then A can be extended to a latin square of ordern if and only if B can be,

Proof: The property of being a latin square is unchanged by any of the processes

and furthermore each can be reversed. | |
6789243 .
7896435, 567213
8967314. 675134
9678521 . 756421
K'(4,9=2341657. K'(3,H=231546
3415972, 314762
4152798 . 142357
15238609.. 4236175
5234186 .
Table 5
6 789 2 4 3.
7 8096 4 310. 567283 .
8 96 7 3104 . 675134.
96 785 2 1. 756421 .
, 23416 57. vaon 231548,
K@10=73 4 | s107 2... KG8=31,1862.
4151079 8. 148357.
15102 86 9. 482716 .
5102 318 6. 823675.
02 3 491 5.
Table 6
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Lemma §, Foranyd > 3, K(d,2d+ 1) and K(d,2d + 2) can be extended to
a latin square of order2d + 1 and2d + 2 respectively.

Proof: Let K'(3,7) be the incomplete latin square depicted on Table 5. If d > 4,
then define an incomplete latin square K'(d,2d + 1) of order 2d + 1 such that:

(@ The(1,d) x (1,d)-subrectangle of K'(d,2d + 1) is equal to S(d + 2,
veny2d+ 1),

(b) The(d+1,2d+1) x (1,d)-subrectangle of K'(d,2d+ 1) is formed from
S(2,3,...,d,1,d+ 1) by deleting the last column.

(c) The(1,2d+1) x(d+1,d+ 3)-subrectangle of K'(d,2d+ 1) is depicted
on Table 7(a). (This table can be used for any d > 4, see cf. K'(4,9) on
Table 5.)

(d) All other cells are empty.

It is easy to check that K'(d, 2d + 1) is an extention of K(d,2d + 1) for any
d > 3. ByHall [5], K'(d,2d + 1), d > 3, can be extended to a latin square of
order2d + 1.

Similarly, let K'(3, 8) be depicted on Table 6. If d > 4, then define an incom-
plete latin square K'(d, 2d + 2) of order 2d + 2 such that (see cf. K'(4,10) on
Table 6):

(@ The (1,d) x (1,d)-subrectangle of K'(d,2d + 2) is equal to S(d + 2,
ey 2d+ 1),

() The(d+1,2d+2) x (1, d)-subrectangle of K'(d,2d+ 2) is formed from
S(2,3,...,d,1,d+ 1,2d + 2) by deleting the last two columns.

(c) The(1,2d+2) x(d+1,d+ 3)-subrectangle of K'(d,2d+ 2) is depicted
on Table 7(b).

(d) All other cells are empty.

It is easy to check that K'(d,2d + 2) is an extention of K (d, 2d + 2) for any

d > 3. By Hall [5], K'(d,d + 2), d > 3, can be extended to a latin square of
order 2d + 2, completing the proof. [}

Lemma 6. Foranyd > 3, L(d,2d+ 1) and L(d,2d + 2) can be extended to a
Iatin square of order2d + 1 and2d + 2 respectively.

Proof: Let L'(d,2d + 1) = [§;] (d > 3) be an incomplete latin square of order
2d + 1 such that (see Table 8):

(@ The(l,d+1) x(d+1,2d+ 1)-subrectangle of L'(d, n) is formed by the
following process: Take S(1,d,d-1,...,3,d+ 1,2) and delete all entries
equal to d + 1 from it with the exception [} 5, = d+ 1.

(b) The(1,2d+ 1) x (1,d)-subrectangle of L'(d, 2d + 1) is the same as in
the L(d,2d + 1).

© L'zdn,m = 13.4,4+z == lﬁm,zd-x = l&n,un =d+1
(d) All other cells are empty.
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d—-1

d+1
d+2

d+1i

2d-1
2d

2d+1

2d+2

Let L(d, 2d+1) (d > 3) be the incomplete latin square of order 2 d+ 1 that arise
from L(d, 2 d+ 1) by interchanging the last two columns. Then L'(d,2d+1) isan
extention of L(d,2d+ 1). (See L(4,9) and L'(4,9) on Table 8). We can check
that §(L'(d,2d + 1)) satisfies the conditions of Lemma 3. Thus, by Lemmas 3

4 3 d+1
i+3 i+2 i1+1

3 1
5 2
d+2 d+1 d+3
d+5 d+3 2

- A

d+i+3 d+i+2 d+i+l

d+3 2d+1 2d
d+4 d+2 2d4d+1
1 d+4 d+2

(a)

i€{3,...,d-2}

Table 7

3 2d+2 d
5 2 1
d+2 d+1 d+3
2d+2 d+3 2

d+i+3 d+i+2 d+i+1
d+3 2d+1 2d
d+4 d+2 2d+1

1 d+4 d+2
d+5 1 d+1

(b

and 4, L(d,2d + 1) can be extended to a latin square of order 2d + 1.
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9876143.2 987614352

.5 ... .543 21

5 .2, 5.3 .214

5 2 5 .2143

L(4,9=5 . . .2 .. L'@4,9=5. .2143 .

1234 . .5 1234 . .5
2341, .5 2341 5
3412 .5 3412 .5
41235 . 41235 .

Table 8

LetL'(d,2d+2) = (4,1 (2 > 3) bean incomplete latin square of order 2 d+ 2
such that (see Table 9):

(@) The (1,d+2) x (d+1,2d + 2)-subrectangle of L'(d, n) is formed by
the following process: Take S(d,1,d —1,...,3,z,d + 1,2) and delete
all entries equal to z and d + 1 from it with just two exceptions [] , 4, =
h"zd = d"‘ l.

(b) The (d+ 3,2d+ 2) x (1, d)-subrectangle of L'(d,2d + 2) is equal to
S(1,...,d). :

(©) The(1,1) x (1, d)-subrectangle of L'(d, 2d + 2) is equal to

[2d+1,2d,...,d+ 2].
@ lrg = lpan = lys = l1a = - = Ba= bargn = barages =

Iéd,dd == l:i+4,2¢-1 = l:1+324+2 =d+ 1.
(e) All other cells are empty.

9876413..2 9876413 .52
... 13.524
5. .53, . 241
5. . .2, s .. .2413

- . 2 5 . 241

L(“'lo):?s. 2 . L T410= 5..24133.

1234 ... ..5 1234 s

2341 . .5. 2341 . .5 .

34125 .. 34125 ..

4123 .5. 4123 .5 .
Table 9

We can check that L'(d, 2d + 2) is an extention of an incomplete latin square
which we get from L(d,2d + 2) by permutations of rows and columns. (See
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I(4,10), a permutation of L(4,10), and L'(4,10), which is an extention of
IL(4,10) in Table 9.) Clearly £( L'(d, 2d+ 2)) satisfies the conditions of Lemma
3. Thus, by Lemmas 3 and 4, L(d, 2d + 2) can be extended to a latin square of
order2d+ 2. [ ]

Let A be an incomplete latin square of order n. Denote by A(® the incomplete
latin square of order n+ k which arises from A by adding k new rows and k new
columns of empty cells to A. If A¥) can be extended to a latin square of order
n+ k then we say that A can be extended to a latin square of order n+ k. In [11]
(see also [10]) is proved:

Lemma 7. Let A be an incomplete latin square of order n such that the cells
in the intersections of the ith row and the jth column of A are empty for any
i,j €{1,...,n} andi+ j > n+ 2. Suppose A can be extended to a latin square
of ordern. Then A can be extended to a latin square of ordern+ k foranyk > 1.

Now we are able to prove Lemma 2.

98761432., 5876 .4321.

L5 .. 1., 8 .. .4 .. ...
.5 ... 2 ... 7. .3 .
R S T .6 . .2 .
M4Jm=5' L2 &LMJQ):'S 1.
' 1234 ...5. 12348 .
2341..5. 41237 .
3412 .5 34126 .
41235 . 23415 .

Table 10

Proof of Lemma 2: We have verified Lemma2ifd > 3 andn=2d+1,2d+ 2.

It is easily seen that K (d, n)® (L(d,n)‘¥) is equal to K(d, n+ k) (L(d,n+
k), respectively) as to permutations of rows and columns. Thus it remains to show
that K(d,2d+ 2) (L(d,2d+ 2)) can be extended to a latin square of order = for
anyn> 2d+ 2.

Take K(d,2d+ 2) (d > 3)and interchange the 2nd and the (d+ 3) th columns
and the 3th and the (d + 2)nd columns of K(d,2d + 2). We get an incomplete
latin square which satisfies the conditions of Lemma 7. Thus, by Lemmas 4, 5 and
7, K(d,2d+ 2) can be extended to a latin square of order nforany n > 2d+ 2.

Take £(L(d,2d + 2)) forany d > 3 (see {(L(4,10)) in Table 10). We can
check that there exists a permutation of rows and columns of §(L(d,2d + 2))
such that the new incomplete latin square satisfies the conditions of Lemma 7.
Then from Lemmas 4, 6 and 7 folows that L(d,2d + 2) can be extended to a latin
square of order n for any n > 2d + 2, completing the proof of Lemma 2. [ |
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