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Abstract. We show that (81, 16, 3)-block designs have no involutionary automor-
phisms that fix just 13 points. Since the nonexistence of (81, 16,3) -designs with in-
volutionary automorphism fixing 17 points has already been proved, it follows that any
involution that an (81, 16, 3) -design may have must fix just 9 points.

1. Introduction and preliminaries
At the beginning we recall some basic definitions and facts related with symmetric
block designs (see for example [1,4]). In the following, we assume all sets under
consideration to be finite.

Let D = (P, B, I) be an incidence structure with point set P, line set B and
incidence relation I C P x B. For P € P, z € B denote

(Py={veB|(Py) eI}, (z2}={QeP|(Q,7) €]},
|P] = P, |zl = =)

The number |z] is called the block length.

Definition 1: A symmetric block design (v,k,)), v,k, ) € N, is an incidence
structure D = (P, B, I) such that:

@ Pl=IBl=v=k(k—-1)/A+1

(i) |z| = |P|=k,forallz € B,P € P
i) [(z)n{)l = (P)N(Q)| = A, forallz,y € B, P,Q € P withz # 4, P # Q.

The conditions (iii) we call the consistence cornditions.

For two symmetric block designs Dy = (P1,B;,11) and D, = (P, B;, I2) an
isomorphism from D; onto D, is a bijection which maps points onto points and
lines onto lines and preserves incidences.

In this article we deal with the (81, 16, 3) -symmetric block design, which is
one of the most interesting block designs whose existence is still in doubt. We try
to make a design under the assumption that it has an involutionary automorphism
p. Suppose p fixes exactly F points and, consequently, exactly F lines. Using the
known result for an upper bound for F' (see [4],p.33), and a lower bound for F
(see [3],p.155), we have:

k—1
+
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For a 2-(81,16,3) design, since p can operate only with an odd number of
orbits (see [3],p.98), we obtain F € {9, 13, 17} as the only possibilities for F.
The case F = 17 is eliminated in [2). In our paper we eliminate the case F = 13
and thus prove the following :

Theorem. Let D be a symmetric block design (81,16 ,3) admitting an involu-
tion p. Then p fixes exactly nine points of ‘P and exactly nine lines of B.

This result we obtain by means of combinatorial methods and with the help of
an exhaustive computer search.

2. The fixed structure of D for p

For the action of p on D denote by P, = {001,002,...,0013} and B,, =
{(Poo) 1, (Peo)2s -+ s (Po) 13 } the sets of fixed points and fixed lines respectively.
Among the v — F non-fixed lines of D we distinguish two types of lines: those
that contain just one fixed point, and those that contain just three fixed points. De-
note by g; the lines of the first type, and by g4 the lines of the second. Let M; ,M3
be the numbers of corresponding 2 -orbits {g1, 910}, {g3,930}. Then:

1) M1+M3=%(u—F)=34.
We define the fixed structure F(p) in the usual way:

@ F(p) = (Poo, Boo,y I).

Since the number of fixed points on a line from B, need not be constant, the
structure F( p) is not necessarily uniform. We say the block of F( p) is of p,-type
if its length is r. Denote by N, the number of p,-blocks in F(p). In our case
k = 16 is even, which implies the sizes r are also even. Putting r = 24, with
F=13,weobtaini € A= {0,1,...,imx = 6},and so:

3) S Ny =F=13.
f€A

Definition 2: An l-distribution is the vector A = (Ny;, M; | i € {6,...,0},
J € {3,1}) where N3;,M; satisfy (1) and (3).

In our further considerations we study only those [-distributions which can be
induced by a fixed structure F(p). For this purpose we impose some conditions
on the components of A .

Since A = 3 is odd, every two blocks of F(p) intersect in an odd number of
fixed points, which means that every p,-block must contain at least one fixed point.
This fact eliminates the existence of pg-blocks, i.e. Np = 0.
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Let z and y be any two blocks of F(p) with (not necessarily) distinct lengths
|z] = r and |y| = s. Then the condition [z N y| < X implies FF > |z U y| =
lz| + |yl = lzNyl > r+ 8= ie.

4 r+s< F+)

Similarly, if r, s, t are the lengths of any three blocks of F( ), then using |[zUyU
zl=z|+ |yl + |zl = |lznyl=|znz| = lynz|+ |zNyNz| weget

4 r+s+t < F+3)

Since 2 - M) +2 -3 - M is the number of occurences of fixed points in B\ Be,
we have:
©) Y 2iNy = kF — (2M; +6M3) = (k+ )F —v—4Mj.

icA
Next, since 2 - (3) - M; is the total number of pairs of fixed points in B \ B,
we have:
24 F
©) Z(Z)Nz;= (2))\—6M3.
i€A
Lemma 1. Let F(p) and A be as stated above. We have exactly 12 solutions
for A satisfying the conditions (4) (4)'(5) and (6), as displayed in Table I.
Proof: From (5) and (6), by the elimination of M3, we find that:

oy
Q)] Nz=%[—AF2+(3k+)‘+3)F-3v] +Ei(i—2)Nz,-.
=3

Inserting this expression into (3) we get:

o
® N4=al-[)‘F2—(3k+4\—l)F+39]—E(i—l)zNz,-.
i=3
Therefore, from (7),(8) and (5) it follows that:
9 ST ) Nam LOAF —(Sk+A-BF 4501 4 M
) 23 5 JNai= gIAF? = (Sk+ X =3)F+5v] + M.

Whenv = 81,k = 16 )\ = 3,F = 13,imx = 6, the last three equations can be
rewritten as:

Ng¢ +3Ng+ 6Ny + 10Ny = -16+ Ms,
(%) Ny =—12+ (3Ng + 8Ng + 15Ny + 24 Ny»),
Ny =25 — (4 Ng + 9N + 16 Nyp + 25Ny3).

The solutions of the above equation system (*), taking into account (4) and (4)',
give the proof of Lemma 1.
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Table I
Possible l-distributions for Constructing F( p)

case N2 Nio N3 N¢ Ny N, M3 M
1) 1 0 0O 0 0 12 26 8
2) O 1 0 2 1 9 24 10
3) O 1 0 1 5 6 23 11
4) O 1 0 0 9 3 2 12
5) O 0 2 1 3 7 23 11
6) O 0 2 0 7 4 2 12
7) O 0 1 4 0 8 23 11
8) O 0 1 3 4 5 2 12
9) O 0 1 2 8 2 21 13

10) O 0 0 6 1 6 2 12

1) 0 0 0 5 5 3 21 13

12) 0 0 0 4 9 0 20 14

3. Constructing all possible fixed structures

For two fixed structures F1(p) = (Peoo, Br,, It) and F2(p) = (Poo, Br,, 12),
we define an isomorphism from F, onto F, as a bijection which maps points onto
points and lines onto lines and preserves incidences.

Next, we introduce a lexicographical order among the fixed structures. We de-
fine it in terms of the incidence matrix of F(p). Suppose that the points of F(p)
are indexed by 001,003, ...,00p and that the blocks are z,,x,,...,zp. Let us
recall that the incidence matrix ' = [ f;;]1 of F(p) is an F x F matrix, where
fij = 1if ooj is incident with the block x;, and fj = O otherwise.
Definition 3: Let z;,x; be two blocks of F(p), with the same length, and I" =

[ fi] be the incidence matrix of F(p). Then x; precedes z;, T; < z;j, if there is
some w, 1 < w < F,such that f;; = fj¢ fort < wand fi > fjo-

Definition 4: We say F(p) is in the canonical form if:
(i) the sizes of its blocks are in the reverse lexicographical order with respect to
the usual ordering within the natural numbers, and

(ii) within any set of blocks of the same block size, the blocks are ordered in

terms of the precedence introduced in Definition 3.

For every F(p) the canonical form of F(p) is uniquely determined. The se-
quence of the block sizes of this canonical form we denote by {s;},1 < i < F.

Definition S: For two fixed structures F ,F> we say that F) precedes F», F, <
JFa, if the canonical form of F; precedes that of 7 in terms of the precedence of
their blocks.

Now we sketch our algorithm for constructing all fixed structures F of D for p.
We produce the structures in a canonical form, by building up the schemes level
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by level.

Thus, let A be the I-distribution under consideration, and let {s;} be the se-
quence of block sizes of the canonical form of F. Denote by f; the i-th row of I".
" Thei-th layer of F, denoted by £¢?, consists of all possible rows f; with s; entries
equal to 1, and the remaining entries being 0.

A partial fixed structure of the i-th level is a (0, 1)-matrix I' () = [y,] with
s, units in the r-throw, 1 < r < 1, 1 < 8 < 13, and satisfying the conditions:

13
7#'7“6{1’3} r,se{l,...,i},r#s,
1

(%%) “

zq"m,ga r,s€{l,...,13}, r# s.
t=1

Denote by I'(? the set of all i-th level partial structures which we construct in
our procedure.
We begin in the following way:

1) I'™M consists of the initial row of the first layer.

2) We construct I'(? from I' -1 by adjoining, as the next row, each possible
i-th layer row f; € £V to each I"(4 — 1), in such a way that matrix I" (1)
50 obtained is an i-th level partial structure. In this way we obtain partial
structures of the i-th level.

Leta € S(Pw) % S({z1,...,%i}), S(S) denoting the symmetric group on the
set S. We include the matrix I'(4) in the set "), if it cannot be eliminated by
finding some a such that I’ ({)a < I' (1), in terms of the precedence of partial
structures considered as parts of the whole fixed structures F(p).

On the 13 -th level, we also have to check that " ( 13) fulfils the column conditions:

13
> mr€4{2,4,6,8,10,12} re{l,...,13},

()’ t=1

13
Eq;,qg,e{lﬁ} r,s€{l,...,13}, r#s.
t=1

At the end of this procedure I" ('3 becomes the set of all possible incident ma-
trices I" of F(p), for the given I- distribution A. Carrying out this construction
for all l-distributions A we get all the required fixed structures F(p).

The described procedure was carried out by computer. It turned out that only
two [-distributions, namely the 1-st and the 12-th from the Table I, produced an
F(p). In the first case the solution is unique, while in the second there are two
nonisomorphic solutions. So we proved:
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Table II
Possible Fixed Structures of D for p

A B C

block block block

lev. length lev. length lev. length
1 12 111111111110 1 6 1111110000000 1 6 1111110000000
2 2 1000000000001 2 6 1110001110000 2 6 1110001110000
3 2 0100000000001 3 6 1001101101000 3 6 1001101101000
4 2 0010000000000 4 6 0101011011000 4 6 0000010011111
5 2 0001000000001 S 4 1110000000100 S 4 1110000000100
6 2 0000100000001 6 4 1001100000010 6 4 1001100000010
7 2 0000010000001 7 4 1000001100001 7 4 1000001100001
8 2 0000001000001 8 4 0101010000001 8 4 0100000001011
9 2 0000000100001 9 4 0100001010010 9 4 0010000001011
10 2 0000000010001 10 4 0010000001011 10 4 0001000010101
11 2 0000000001001 11 4 0001001001300 11 4 0000100010101
12 2 0000000000101 12 4 0000100010101 12 4 0000011000110
13 2 0000000000011 13 4 0000010100110 13 4 0000010100110

Lemma 2. Let D(81,16,3) be a symmetric block design admitting an involu-
tion p fixing 13 points. Then there exist exactly 3 nonisomorphic fixed structures
F(p) of D for p, as displayed in Table II.

4. Proof of the theorem

Denote by Nx(00,), 00, € Pog, the number of occurences of oo, on the blocks
of F(p), and by Cr(oo,) the number of pairs 0o,00,, 00, € Pe, 8 # 7, in the
blocks of F(p) . Let m;(oo,) be the number of {g;, g1 0}-orbits and m3 (co,) the
number of {g3, g3 p}-orbits in which the point oo, appears. By counting the total
numbers of occurences and pairs containing oo, in all the lines of B, denoted by
Np(oor) and Cp(oo,), we get

(10 Np(oor) = k= Nx(oor) + 2 m1(ooy) + 2 m3(oo,)= 16,
an Cp(oor) = A(F —1) = Cx(oo,) + 4 m3(oo,) = 36.

We prove that none of the fixed structures, constructed in the previous para-
graph, can be extended to a full design. We consider each of the three solutions in
turn.

Case A:
When co, = o013, Nx(0013) = 12, Cx(o013) = 12, the equations ( 10) and
(11) imply m3(o0013) = 6, m1(o0013) = —4. So A is eliminated.

Cases B and C:



Denote by:
pl)"°)p13)pl4t-'-)p47 EOO],---,0013,{10,11},...,{340,34]},

Bla'"'BB)BMs see )&7 = (Poo)l,---,(Poo)lax{-'ﬂlsxlp}; “'3{234)1‘.34‘)}:
the p-orbits of points and lines of D in the defined order. These two partitions are to
be considered as the point classes and the block classes of a tactical decomposition
of D (see e.g.[ 1, 2]). The known parameters of our decomposition are |Py| = wy,
|B]| = @,. Thusw, = Q, = 1forl < r < 13 andw, = Q, =2 for 14 <r<47.
The unknown parameters y;, (the number of points from P, contained in each line
of B;), satisfy the well known relations (see e.g. [1,2]):

47

(12) ) pa=k=16 1<i<47,
ral
47 Q'

a3 Y “wie=k=16 1<r <47,
=1 v ’
47 Q.

4) Y Lpinpye = 2+ 8k =) 1<4,7 <47,
r=1 T
47 9“

(15) E w_”irﬂ:'o = dw, + 8s(k — X) 1<rsL47,

i=1
8ij, 8,5 being the correspondent Kronecker symbols.

The 47 x 47 matrix S = [ ;] we call the multiplicity matrix (or orbital struc-
ture) of D for p. The entries of S in the top left corner are already determined by
the fixed structure under consideration, i.e. y; = i for1 < 4,7 < 13.

We proceed with the construction of the orbits By, ..., B3 (the fixed lines of
D), by joining the nontrivial point orbits to the blocks of F( p). Obviously, since
) is odd, the number of appearences of every nontrivial point orbit inside B
must be also odd. Since we have Ng = 4, N3 = 9 in the both considered cases,
there exist exactly 5 values of r with u;, = 2 foreach 4,1 < 1 < 4, and ex-
actly 6 such values for each i, 5 < 1 < 13, the remaining u;, being 0. Denote
bY fooli,7) = 312, pirpsjr the number of points incident with both (pe); and
(Poo) » this number being determined by the F(p) under consideration. Now we
construct B, using the following relations :

47
3 i =2 (A= fuli, D) 47 €{1,..., 13}, id ],

r=14
(16) 13

S b €{2,6} r € {14,...,47}.
t=1

With the help of a computer, for case B we obtained 336 nonisomorphic solu-
tions for Bw. Case C produced no solutions. So we proved:
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Lemma 3, Let D be a (81,16, 3)-design and p € AutD an involution fixing
13 points. Then, up to isomorphism, there are 336 structures B, for the fixed
lines of D. They all have the same fixed structure F(p), case B in Table II.

In the Table III we display, as examples, only two of these solutions : lexico-
graphically the first and the last one (the first 5 lines in all solutions coincide).

level scheme 1.
1 1111110000000  2222200000000000000000000000000000
2 1110001110000  0000022222000000000000000000000000
3 1001101101000  0000000000222220000000000000000000
4 0101011011000  0000000000000002222200000000000000-
5 1110000000100  0000000000200002000022220000000000
6 1001100000010  0000020000000002000000002222000000
7 1000001100001  2000000000000000200020002000220000
8 0101010000001  0000020000020000000002000000202200
9 0100001010010  2000000000002000000000200200002020
10 0010000001011 0200002000200000200000000020002000
11 0001001001100  0020000200000000000000200020200002
12 0000100010101  0200000200020000020020000200000000
13 0000010100110  0020002000002000020002002000000000
level scheme 336.
6 1001100000010  0000020000000000200020002220000000
7 1000001100001  2000000000000000020002002002200000
8 0101010000001  0000002000020000000020000002022000
9 0100001010010  0200000000002000000000202000020200
10 0010000001011  0020020000200000020000000000020020
11 0001001001100  0020000200000000000000200202000002
12 0000100010101  0200000200020000200002000000000020
13 0000010100110  2000002000002002000000000200000020

Table ITI

Two Examples of The Fixed Lines of D

In this way, the case C fails and we proceed with the construction of multiplicity
matrices in the case B. With oo, € {00;,002,003}, Ns(00;1) = Nx(002) = 6,
Cr(001) = Cr(002) = 24, Nx(003) = 4, Cx(o03) = 16, equations (10) and
(11) imply m3(001) = ma(002) = 3, mi(o01) = m1(o02) = 2, m3(o03) =
5,mi1(o03) = 1.
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Define a lexicographical order among the line orbits in which the orbits of levels
14 — 18 contain ooy , the orbits of levels 19 — 23 contain ooz and those of levels
24 — 29 contain oco3. Also, let the {g3, g3 p}-orbits precede lexicographically
the {q1, g1 p}-orbits. The i-th row of S, denoted by [ x;,];, corresponding to any
{g3, g3 p}-orbit, has exactly three 1°’s for 1 < r < 13 and exactly thirteen 1°s
for 14 < r < 47, the remaining entries g being 0. If [ ;,]; corresponds to a
{a1,q1 p}-orbit then we have u;, = 2 for exactly one value r € {14,...,47},
exactly one 1 for r € {1,...,13} and exactly thirteen 1's for r € {14,...,47}.
The lexicographical order among the rows of the same level is introduced in the
natural way : [p;.]; precedes [v;]; if there is some w, 1 < w < 47, such that
it = vie for t < w and piy > Vi

Using an algorithm similar to the one described in paragraph 3, we startat level
14 and build multiplicity matrices, row by row. Atlevel ¢,{ > 14, we exhaust
all the possibilities for this level by generating the corresponding rows [u;.]; in
the above defined lexicographical order. For a particular [ u;,1;, after testing that
the row conditions (14) are satisfied and column conditions (13), (15) ar¢ not
violated, we include such a row into the s-th level scheme. The described proce-
dure was carried out by computer and it required a big expenditure of computer
time. An IBM RISC/6000 machine was used and nearly 6 000 computer-hours
were spent. The biggest number, aproximately 20 000 000, of possible schemes
was observed at level 16. At level 23 that number was reduced to 17 schemes,
and on level 24 there was no possible continuation. So we proved :

Lemma 4. An (81,16, 3) -design cannot have an involutionary automorphism
fixing 13 points.

Since we proved in [2] that p cannot fix 17 points of D, then by Lemma 4 we
have proved the Theorem of Section 1.
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