NEW SUFFICIENT CONDITIONS FOR EQUALITY OF
MINIMUM DEGREE AND EDGE-CONNECTIVITY

PETER DANKELMANN AND LUTZ VOLKMANN

ABSTRACT. New sufficient conditions for equality of edge-connecti-
vity and minimum degree of graphs are presented, including those of
Chartrand, Lesniak, Plesnik, Plesnik and Znidm, and Volkmann.

1. TERMINOLOGY AND INTRODUCTION

We consider finite, undirected, and simple graphs G of order n = n(G)
with the vertex set V = V(G) and the edge set E = E(G). For X C V(G)
let G[X] be the subgraph induced by X. N(z) = N(z,G) denotes the set of -
vertices adjacent to the vertex z and N(X) = N(X,G) = Uzex N(z) for
a subset X of V(G). The degree of the vertex z and the minimum degree
of G are d(z) = d(z,G) = |[N(z)| and é = §(G) = min{d(z) | z € V(G)},
respectively. The distance between twosubsets X and Y of V(G) is denoted
by d(X,Y) and dm(G) means the diameter of G. If (X,Y) is the set of
edges with one end in X and the other in Y and X = V(G) — X for
X,Y C V(G), then the edge-connectivity of G is given by

A= MG) = min{|(X, X)| | X CV(G), X #£0,V(©)}.

The inequality A(G) < §(G) is immediate. Equality holds, if

(1) n < 26 + 1: Chartrand [2], 1966.

(2) d(z) + d(y) > n — 1 for all nonadjacent vertices: Lesniak [6], 1974.
(3) dm(G) < 2: Plesnik [7], 1975.

(4) G is connected, and there are no four vertices u;, vy, us, vo with

d(uy, uz), d(u1,v2), d(vy,us), d(vi,v2) > 3:

Plesnik and Znam (8], 1989.
(5) G is bipartite with n < 46 — 1: Volkmann [10], 1988.
(6) G is bipartite with dm(G) < 3: Plesnik and Znam [8], 1989.
(7) G is p-partite with n < 2[;%] — 1: Volkmann [11], 1989.
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Condition (4) includes these of (3), (2), and (1), and (5) is a special case
of (7), while the conditions (5) and (6) are independent of (4). For further
such and similar results see the survey of Plesnik and Znam [8]. Proofs of
(4) and (7) can also be found in [12].

In this note we shall give new sufficient conditions for equality of min-
imum degree and edge-connectivity, in particular we shall generalize (4),
(6), and (7).

2. REsuLTS

A pair of sets X, Y C V(G) with d(X,Y) = k (k € N)is called k-distance
mazimal, if there exist nosets X1 D X andY; DY withX; # X or ¥} Y
such that d(X;,Yy) = k.

Theorem 1. Let G be a connected graph. If for all 3-distance mazimal
pairs of sets X,Y C V(G) the condition §(G[X UY]) = 0 is fulfilled, then
A=6.

Proof. Suppose on the contrary that A < 8. Then there exists a set of edges
E’ with |E’| = A, such that G — E’ consists of two components G; and G».
If S=V(G,) and T = V(G3), then let A C S and B C T be the set of
vertices incident with any edge of E’. Furthermore, we define Ag =S — A
and By =T — B.
In view of our assumption, we see |A|, |B] < A < §. Now we shall investigate
two cases.

Case 1: Ag, Bg # 0. Clearly, the distance between Ag and By is at least
3. Choose a 3-distance maximal pair (X,Y) with A4 C X and By C Y.
According to our assumption, one of the subgraphs G[X] or G[Y] contains
an isolated vertex u. Without loss of generality, u is contained in X. If
u € Ag, then we obtain the following contradiction.

§<IN(,G)<|AI<A<6

If u € A, then the definition of A and the fact that u has neighbours only
in AU B yields

§ < |N(u,G)NB|+|N(u,G)n A|
< IN@,G)NBl+ Y. |N(z,G)nB|
r€N(u,G)NA
< Y IN(z,G)n B
TEA
= ,\,
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but this contradicts our assumption A < 4.
Assume now that u € B. Again, N(u,G) C AU B holds. Similar to the
above case u € A, a contradiction is derived.

Case 2: If we have without loss of generality |Ag] = 0, then we obtain
the same contradiction for an arbitrary vertex a € A instead of v. O

Corollary 1. [8] If in a connected graph G there exist no four vertices
uy, vy, Ug, Vo wilth

d(ulauZ)) d(ul)vZ)y d(”l)“?)l d(”lﬁ”?) 2 3)
then A = 6.

Proof. If X,Y C V(G) is a pair of 3-distance maximal sets, then the hy-
pothesis yields min{|X|,|Y|} < 1, and the desired result is immediate by
Theorem 1. O

Remark 1. If A < § and if E' is an edge set of cardinality A, such that
G — E' consists of two components, then the proof of Theorem 1 shows
that |Ao|, |Bo| > 2. This observation that also implies Corollary 1, can be
found in a paper of Goldsmith [3].

Remark 2. Obviously, conditions (1) - (4) work only for graphs with di-
ameter at most 4. Moreover, it is easy to prove that no graph whose degree
sequence satisfies one of the conditions given by Bollobds [1], Goldsmith
and Entringer [4], or Goldsmith and White [5] has diameter more than 5.
The following figure shows a graph with arbitrary large diameter for which
Theorem 1 guarantees equality of minimum degree and edge-connectivity.

Corresponding examples exist for every § = A > 3.

Now we give similar results for bipartite graphs. The second one uses a
weaker degree condition, but needs a diameter restriction of the graph G.
The following convention will be used. If G = (V, E) is a bipartite graph
with bipartition V = V/ U V" and M is an arbitrary subset of V, then we
define M =M NV'and M"=MnN V",
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In a bipartite graph G, a pair of sets X,Y C V(G) with d(X',Y’) =
d(X",Y") = k (k € N) is called (k, k)-distance mazimal, if there exist no
sets X; D X and Y; DY with X3 # X or Y; # Y such that d(X{,Y{) =
d(X?,Y{") = k.

Theorem 2. Let G be a connected bipartite graph. If for all (4,4)-distance
mazimal pairs of sets X, Y C V(G) the condition §(G[X UY]) = 0 is
fulfilled, then X = 6.

Proof. Suppose on the contrary that A < §. Weshall use the same notations
as in the proof of Theorem 1. First we show A}, AY, By, B # 0.

Suppose that A} is empty. If Af contains a vertex v, then we observe
§ < |[N(v,G)| < |A’| < A, but this is impossible. Therefore, Aj is also
empty and we assume without loss of generality that there is a vertex
v € A’. Then we have

§ |N(v) N A"|+ [N(v) " B”|
|AI[|+ IBI’I

A

IN A IA

contradicting A < §. Thus we have shown A} # 0. Similarly, Af, B}, BY
are nonempty.

Clearly, d(Ajp, Bp), d(Af, By) > 4 holds. Choose a (4, 4)-distance maximal
pair (X,Y) with 49 C X and By C Y. According to our hypothesis, one
of the subgraphs G[X] or G[Y] contains an isolated vertex u. Without loss
of generality, u € X’. By our assumption, u has neither neighbours in A§
nor in Bf. So. we obtain the contradiction

6 < d(u) < |A"| +|B") < A
This completes the proof of Theorem 2. [

Corollary 2. [8] Let G be a bipartite graph with bipartition V = V' UV".
Ifd(z,y) = 2 for all different z,y € V', then A = 6.

Plesnik and Znam derived from Corollary 2 that condition (6), stated in
the introduction, is sufficient for A = 6.

Remark 3. Obviously, Corollary 2 works only for bipartite graphs
whose diameter does not exceed 4. The condition (5) stated in the intro-
duction, and each of the conditions for bipartite graphs given below, imply
that the graph has diameter at most 7. The following figure shows a bipar-
tite graph with arbitrary large diameter for which Theorem 2 guarantees
equality of minimum degree and edge-connectivity.
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Theorem 3. Let G be a bipartite graph with dm(G) < 4. If for all (4,4)-
distance mazimal pairs of sets X,Y C V(G) with | X'|,| X"|,|Y'|,|Y"]| > 2
the condition 6(G[X UY]) <1 is fulfilled, then X = 6.

Proof. Suppose on the contrary that A < §. We use the same notations as
in the proof of Theorem 1. First we show |Ap|, |A§|,|Bbl, |BS| > 2.
Similar to the proof of Theorem 2, the sets Ay, Ag, Bp, and By are nonempty.
Suppose on the contrary that |A4| = 1. Since Aj is nonempty, A’ contains
at least § — 1 vertices and thus A” = §. It follows d(Aj, By) > 5, contra-
dicting dm(G) < 4. Analogously, we can prove |Aj|,|Byg|, |By| > 2.
Clearly, d(Ajp, By) = d(Ajp, By) = 4 holds. Choose a (4, 4)-distance maxi-
mal pair (X,Y) with 49 C X and By C Y. According to our hypothesis,
one of the subgraphs G[X] or G[Y] contains a vertex u of degree at most
1. Without loss of generality, u € X'.

Case 1: u € Ay.
Then |N(u,G)U A§| < 1, and thus

§—1<|N(uw,G)NA"|<|A"| < A<6—1.

Consequently, equality holds and A’ is empty. Again, we have d(Ajj, By) >
5, contradicting dm(G) < 4.

Case 2: ue A'.
From |N(u,G) N A§| < 1, we conclude

6 < 1+]({u}, A"+ |({u}, B")]
< 1+|(A", B+ (4, B")]
= 14
< 6

Thus, equality holds, implying that ({u}, B”) = (A’,B”) and A’ = {u}.
Because of |[N(u,G) N Aj| < 1 < 2 < |Af|, there exists a vertex v €
AY — N(A',G). Hence, it follows d(v, Bf) > 5, contradicting dm(G) < 4.
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Case 3: ue B'.
Each vertex v € B U BY has a neighbour in B}, since otherwise A >
|A’|+ |B’| > 6. But d(u, B§) = 4 yields N(u,G)N(B"” UBY) = 0, and thus

§ <IN, G)NA"| S A" S A,
contradicting our assumption A < 4. [J

An immediate consequence of the previous theorem is the following result
of Plesmk and Zndm [8] from 1989.

Corollary 3. [8] If in a bipartite graph G of diameter at most 4 no parti-
tion set conlains four vertices uy, vy, Uz, v2 with

d(uy,uz), d(ui,vs), d(vy,us), d(vy,v2) =4,
then XA = 6.

The next theorem shows that condition (5) can be weakened to guarantee
equality of minimum degree and edge-connectivity of a bipartite graph.
Instead of a minimum degree condition, a corresponding neighbourhood
condition is proved to be sufficient. As a corollary, we obtain a condition for
bipartite graphs that is adequate to condition (2) which concerns arbitrary
graphs. For any noncomplete connected graph G let

NC(G) = min{ |N(z)UN@)| | = £y € V(G), zy ¢ EG)},

NC2(G) = min{ IN(2) UN()| | 2,y € V(G), d(z,5) =2},

Theorem 4. If G is a bipariile connecled graph of order n > 3 with
NC2(G)>(n+1)/4, then A = 6.

Proof. Suppose on the contrary that A < § and thus § > 2. Again we will
use the same notations as in the proof of Theorem 1. Similar to the above
proof Ay, Ag, By, and Bf are nonempty.

We first show that Aj contains two vertices of distance 2.

Assume that [A§| = 1 or no two vertices of Aj have a common neighbour.
In either case, for each vertex y € A holds

S<IN(yNAY +|Ny)NA|<1+|A|<1+X<6.
0

Hence, |A’| = § — 1 and A” = @. Choose a pair y;,y2 € AY§. Clearly,
d(y1,y2) = 2 and thus NC2(G) < |A’|+2 = §+1. If A} consists of a single
vertex, it follows from our hypothesis

L < NCAG) S ING) U N(w)| < 1+ 14 = 6.
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Now condition (5) yields the contradiction A = §. So we may assume that
0 contains at least two vertices without a common neighbour. From there
we see |Ap| + |Ag] + |A| > 36 + 1. Furthermore, with T = BU By, we have
|T| = |B| + |B§| + |B| > 25. If |T| = 26, then it is not difficult to check
that NC2(G) = 4, which contradicts (5). In the case |T| > 26, we obtain

n+l_ 364+1+426_ 56+2
>
T > 1 21
but this is impossible, since § > 2.
Altogether we have shown that there exist two vertices z;,z2 € A with

d(z1,z3) = 2. From the fact that the neighbourhood of z; and z; is
contained in A N A”, we deduce

n+1
4

§+1>NC2(G) >

< |N(z1) UN(z2)| < |AQU A"
Analogously, we are able to show

|Ag U A'|,|Byu B'|,

n+1
Y
These inequalities yield

n=|AGUA'|+|A§UA"|+|ByUB'|+|BjuU

which completes the proof of Theorem 4. [0

Corollary 4. If G is a bipartite connected graph of order n such that each
pair z,y € V with d(z,y) = 2 satisfies max{d(z),d(y)} > (n + 1)/4, then
A=4.

Corollary 5. Let G be a bipartite graph of order n. If d(z) + d(y) >
(n+1)/2 for all nonadjacent vertices x and y, then A = 6.

Remark 4. Many of the sufficient conditions for bipartite graphs guar-
anteeing A = 6 have analogues for arbitrary graphs. See for example (4)
and (1) or Corollary 5 and (2). The graph G = K,_3U K3 + ¢, where e is
an arbitrary edge joining the K,,_3 with the K3, indicates that Theorem 4
and Corollary 4 have no such analogue, since NC(G) = NC2(G) =n—-2 >
(n-1)/2but A=1<2=36.

Theorem 5. If a graph G of order n contains no complete subgraph of
order p+ 1 and salisfies
n< 2[ — 16J 1,
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Proof. For every proper subset S # 0 of V(G), we will show
(S, 5)I > &. (1)
Without loss of generality we assume 1 < |S| < n/2, and thus

n p 1
1S|S|S§SLT:-1'J 3

Since |S| = s is an integer, it follows

14
1<|S|<l FIJJ 1 61 (2)
In addition, the well known Theorem of Turén [9] (see also [12], p. 159)

together with the fact that G contains no complete subgraph of order p+1,
yields the estimation 2| E(G[S])| < %lsz, and hence we have

1(5,3)| > 56— ’%‘ 3)

If we define

g(z) = _p-; 1:1.-2 + bz,

then, because of (2), we have to determine the minimum of the function g
in the interval I : 1<z < ;{—16 — 1. It is a simple observation that

i o) =g(Pb5-1)=s_2=1
min{g(2)} = 9(1) = o (256~ 1) = :
and therefore we can immediately deduce (1) from (3). O

Corollary 6. [11] If G is a p-partile graph of ordern < 2[;%6] —1, then
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